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Abstract: The latest advancements in satellite technology have allowed us to obtain video imagery
from satellites. Nanosatellites are becoming widely used for earth-observing missions as they require
a low budget and short development time. Thus, there is a real interest in using nanosatellites with
a video payload camera, especially for disaster monitoring and fleet tracking. However, as video
data requires much storage and high communication costs, it is challenging to use nanosatellites for
such missions. This paper proposes an effective onboard deep-learning-based video scene analysis
method to reduce the high communication cost. The proposed method will train a CNN+LSTM-based
model to identify mission-related sceneries such as flood-disaster-related scenery from satellite videos
on the ground and then load the model onboard the nanosatellite to perform the scene analysis
before sending the video data to the ground. We experimented with the proposed method using
Nvidia Jetson TX2 as OBC and achieved an 89% test accuracy. Additionally, by implementing our
approach, we can minimize the nanosatellite video data download cost by 30% which allows us
to send the important mission video payload data to the ground using S-band communication.
Therefore, we believe that our new approach can be effectively applied to obtain large video data
from a nanosatellite.

Keywords: nanosatellites; satellite video; onboard video scene analysis; disaster monitoring; deep
learning

1. Introduction

Due to their low cost and quick development cycle, nanosatellites have become more
popular in recent years for remote sensing and disaster monitoring [1,2]. Nanosatellites
have constrained onboard computer (OBC) processing power and communication band-
width in comparison to larger spacecraft.

Can we use a satellite to capture real-time videos of the earth’s surface to track
moving objects and record special events and disasters that occur on our planet? With the
advancement of space-borne satellites outfitted with payload cameras capable of recording
high-resolution videos, this dream could become a reality. High-resolution space-borne
videos can potentially change how we observe the earth. This is because satellite videos can
be used for various purposes, such as city-scale traffic surveillance, the 3D reconstruction
of urban buildings, and earthquake relief efforts [3,4].

There will be several challenges when comparing video payload data to image payload
data. Because video data is larger than image data, having high-resolution video data will
necessitate more storage and communication costs (downloading bandwidth and time)
to send all of the video data to the ground. Once the video data has been downloaded
to the ground, it must be processed in a timely and efficient manner. Furthermore, the
majority of the frames from the payload video data may be ineffective or irrelevant to
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the mission under consideration [5]. So, sending all the video data to the ground station
without first analyzing and processing them will be costly. Figure 1 depicts the challenge
of having a nanosatellite with a video payload.
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Figure 1. Nanosatellite video payload challenges. (Red line indicates the command sent to the
nanosatellites, the green line indicates the download of the video payload data from the satellite to
the ground, and the black line the transfer of the payload data in the ground system).

Many kinds of research works are being carried out to overcome these limitations
and increase the onboard processing capability of nanosatellites by using GPUs and
FPGAs [5–7]. One of the advantages of having the capability of onboard processing in
nanosatellites is reducing the data to be downloaded [8–10].

Satellite video data processing has recently gained attention in aerospace engineering
and remote sensing. Most of the research focuses on two areas: the super-resolution and
tracking of objects using satellite data.

The first group of researchers focused on improving the quality of video taken from
the satellite by increasing the low resolution to high resolution. Study [11] proposed
a super-resolution method using a CNN for “Jilin-1” satellite video data without any pre-
processing or postprocessing. In [12], the authors proposed a novel end-to-end deep neural
network that generates dynamic up-sampling filters and generates much sharper HR
videos; study [13] used feature extraction, a residual network containing ResNet, CNN,
and up-sampling, for generating an HR video.

The other group of researchers tried to find a better solution for detecting objects such
as cars, trains, or ships from satellite video imagery and tracking their movement. In the
study [14], a predicting-attention-inspired Siamese network (PASiam) was proposed to
track moving targets in space-borne satellite videos. In [3], a vehicle detection method
using background subtraction with 94.7 % accuracy was proposed. In [15], vehicle detec-
tion in satellite video using FoveaNet was proposed, which achieved a 0.84 F1 score. In
studies [5,16], a framework was proposed that fuses both the spatial feature and temporal
(motion) representation of a satellite video for scene classification and identifying events of
interest by using deep learning methods.

The researchers share two things in common, however: they all concentrated on pro-
cessing video data after they have been received by the ground station, and the video data
they used in the research came from the SkySat or Jilin-1 satellites, which are microsatellites
and use X-band communication for downlink.

Meanwhile, In September 2020, the European Space Agency (ESA) launched a 6U
CubeSat named PhiSat-1 into low Earth orbit. The mission was to demonstrate the use of
onboard artificial intelligence (AI) to perform cloud detection from the images taken by
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the payload hyperspectral camera to remove cloudy images before sending them to the
ground. The AI model they proposed achieved 92% accuracy [17].

Lofquist and Cano [18] examined the adequacy of the NVIDIA Jetson Nano and
NVIDIA Jetson AGX Xavier, which have low capacity and high performance, to be onboard
a nanosatellite OBC and perform object detection in images by applying compression. The
object detection network models they examined were the single shot multibox detector and
region-based fully convolutional network and their performance was measured in terms of
execution time, memory consumption, and accuracy. In study [19], the authors examined
the usability of the Jetson board onboard a nanosatellite by performing a radiation test.

However, to the best of the authors’ knowledge, onboard video payload data process-
ing to minimize the downlink communication cost for nanosatellites with a video payload
has not been deeply investigated. In this paper, we propose a new effective approach to
minimize the high downlink cost incurred on a nanosatellite with video payload data. For
this purpose, the deep learning method was used to identify important sceneries that were
related to the mission from the videos and send only those to the ground.

Therefore, the contribution of this paper is developing an effective mechanism for
minimizing the downloading communication cost for a nanosatellite with a video payload
by applying deep learning video scene analysis onboard the satellite.

2. Problem Scenario

To the best of the authors’ knowledge, to date, there have been no launched nanosatel-
lite missions with video payloads, but there are ongoing projects such as High-Resolution
Image and Video CubeSat (HiREV) by the Korea Aerospace Research Institute (KARI) [20].

HiREV is a 6U CubeSat capable of obtaining a 5 m color (3 m monochromatic) image
and high-definition (HD) video. HiREV is designed to follow a sun-synchronous orbit
with 97.8 inclination at 400 km altitude [20]. The optical payload camera of HiREV takes
full high definition (HD) color video and uses the S-band for downloading the payload
data, as depicted in Figure 2. The images and video taken by the payload camera are
transferred to the onboard computer (OBC) through gigabit ethernet and are stored in the
OBC memory until they are sent to the ground. HD video poses a storage and download
bottleneck for the HiREV system because it has limited storage and uses an S-band for
transmission. HD video demands more storage and transmission bandwidth than standard
photos and videos.
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To analyze the problem of the downlink bottleneck encountered by nanosatellites
with video payloads, we took the HiREV CubeSat as our scenario satellite and assumed
its mission was to monitor flood disasters in Ethiopia and the East Africa region, as flood
disasters are becoming frequent in this area. The video data from HiREV were downloaded
to the ground station located in Adama, Ethiopia.

The full-HD color video taken by HiREV has a duration of 120 s (2 min), a frame rate
of 7 fps, and a frame size of 1920 × 1080 pixels, with 8-bit color depth as shown in Table 1.

Raw Video Size = (Frame Rate × Duration × Frame Size)/1024 (1)

Table 1. HiREV payload specification.

Specification Value

Ground resolution 5 m from 400 km orbit

Pixel resolution 1920 × 1080 pixel

Frame rate 7 FPS

Focal length 500 mm

Aperture 89 mm

Data interface Gigabit ethernet

So, using (1), the size of a raw video file data from the HiREV optical payload will be:

Raw Video Size = (7 × 1920 × 1080 × 120)/1024 = 1701 Mb = 1.7 Gb.

After the compression of the raw file data with the MP4 compression method, the
size will be reduced to 250 Mb. The duty cycle for the payload is 10% of one orbit. That is
30 videos per day, so the size of video data stored in the satellite to be downloaded would
become 30 × 250 = 7500 Mb = 7.5 Gb.

Using the STK® Simulation tool, we measured the mean duration for our satellite to
access and communicate with the ground station in a day to be 236 s.

Data size to be downloaded = Bandwidth × Mean Access Duration (2)

Based on this analysis and using (2), the video data to be downloaded per day using
S-band communication will be:

Data size to be downloaded = 2 Mbps × 236 s = 472 Mb

From the scenario analysis, we examine that by having a nanosatellite with a video
payload and S-band downlink communication, the amount of video data to be downloaded
to the ground per day is 427 Mb, while the payload camera of our satellite record and store
7.5 Gb per day. Additionally, this means we will not be able to download all the videos in
a day and eventually run out of storage in the satellite. As our mission is flood disaster
monitoring, which requires timely data, it will be difficult to achieve the intended mission.

After analyzing the problem scenario, we observe that using S-band communication
will not be efficient enough to send all the video payload data to the ground and this will
cause a bottleneck on the onboard memory and the general operation of the mission. To
solve the problem, we propose an approach to have an onboard video analysis that can
help to use the memory efficiently and minimize downlink costs.

3. Video Scene Analysis

Video analysis is the capability of automatically analyzing video to detect and deter-
mine temporal and spatial events. Video scene analysis is an automatic process to recognize
and classify objects from live-video sequences. It is a recent research topic due to its vital
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importance in many applications, such as real-time vehicle activity tracking, pedestrian
detection, surveillance, and robotics [21]. Despite its popularity, video scene analysis is still
an open, challenging task and requires more accurate algorithms. However, advances in
deep learning algorithms for video scene analysis have emerged in the last few years for
solving the problem of real-time processing.

Deep Learning Algorithms for Video Scene Classification

The use of deep learning techniques has exploded during the last few years, and one
of the areas is scene recognition from visual data. The most widely used deep learning
algorithms for video scan classification are CNN and RNN [16].

For image classification, among all the variants of deep learning algorithms, CNN is
the most widely used supervised learning model. A video consists of an ordered sequence
of frames. Each frame contains spatial information, and the sequence of those frames
contains temporal information. To model both aspects, we used a hybrid architecture that
consists of convolutions (for spatial processing) as well as recurrent layers (for temporal
processing). Specifically, we used a convolutional neural network (CNN) and a recurrent
neural network (RNN) consisting of GRU layers. This kind of hybrid architecture is
popularly known as a CNN-RNN [17].

One of the recurrent neural networks (RNN) is long short-term memory (LSTM). Un-
like CNN, LSTM has internal mechanisms called gates that regulate the flow of information.
During training, these gates learn which data in a sequence are important to keep and
which they can forget. This allows the network to pass relevant information down the long
chain of sequences to make a prediction.

4. Proposed Methodology

To tackle the scenario problem of minimizing the downlink cost for transmitting
full-HD color video payload data from a nanosatellite with limited processing and commu-
nication capability, onboard processing with a lightweight and fast method is required.

We propose an onboard deep learning video scene analysis method that takes a raw
video from the payload camera and recreates the video with only the important frames
that contain the scenery related to the mission, disaster monitoring, which is smaller in size
when sent to the ground. Using deep learning techniques, we train and create a lightweight
model for video scene classification using a hybrid convolutional neural network (CNN)
and long short-term memory (LSTM) model that can be easily loaded onboard the satellite
and requires low processing capacity.

In our approach, the first step is for the required scene classes to be trained with the
related satellite video data on the ground and then for the model to be loaded to the OBC. To
classify the important (mission-related) and nonimportant frames from the video, we used
the proposed hybrid CNN+LSTM model shown in Figure 3. The proposed CNN+LSTM
model contains three convolutional layers with max pooling, an LSTM layer, one fully
connected layer, and the output layer with two classes. The CNN layer was used for visual
feature extraction and the LSTM layer was for sequence learning. The reason we chose
these models is that as the number of CNN layers increases, the model becomes heavy and
takes a longer time to perform the classification, while a smaller number of CNN layers will
be faster and lighter at the expense of accuracy. As nanosatellites have limited processing
capacity, the models that are processed onboard should be fast and lightweight.

Onboard the satellite, after the payload camera takes the video, the video data will
be sent to the OBC. In the OBC, blur detection and removal will be performed to identify
video frames with blurs due to the motion of the satellite. The blur detection is carried
out using Gaussian blur detection. This step is advantageous as blurry frames are not
important and their removal will decrease the frame size to be processed by the next step
which is the scene analysis part.

The scene analysis is the major part to solve the downlink and memory bottleneck
problem. In this part, we first detect the mission-related objects identified in the trained



Remote Sens. 2023, 15, 2143 6 of 10

model from the video using the pretrained model. After that, each frame will be classified
based on the trained classes in the model and the scene time for each class will be calculated.
Then, the frames that contain the class that is related to the mission will be identified. The
other frames that are classified to contain nonimportant frames (not related to the mission
objects) will be discarded. After identifying the required class of objects in the frames, we
reconstruct the video from the frames that contain these objects. Then, the reconstructed
video will be compressed using a compression algorithm. Finally, the compressed video,
which is smaller in size and contains only the important frames, in our case related to the
flood disaster, will be sent to the ground. The proposed method architecture is depicted
in Figure 4.
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5. Experiment and Results
5.1. Experiment Setup

For training the deep learning CNN+LSTM-based scene analysis in the ground system,
we used a laptop with Core I7, 8th Gen, and a GPU Processor with 16 GB RAM. For testing
the trained model onboard, we used the Nvidia Jetson TX2 development board.

For the experiment, we implemented the proposed CNN+LSTM video scene classifi-
cation model using the NVIDIA Deep Learning GPU Training System (DIGITS) that has
TensorFlow and Keras.
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Because we could not obtain a satellite video dataset for training the model, we used
a satellite image dataset and changed it into a video dataset. We used the publicly available
RESISC45 dataset, which is the benchmark for remote sensing image scene classification
(RESISC) created by Northwestern Polytechnical University (NWPU). This dataset contains
31,500 images RGB images of 256 × 256 size and varying spatial resolution ranging from
20 cm to more than 30 m, covering 45 scene classes with 700 images in each class. However,
as we were interested in sceneries that were related to water bodies such as rivers, sea, and
wetlands, we rearranged the images into two classes: one class containing images with
water bodies in them and the other containing images without any water bodies or scenery
in them.

The video dataset we created contained two scene classes: one class for frames that
contained flood-disaster-related scenes (water class) and the other class that did not con-
tain flood-disaster-related scenes (no water class). The satellite video dataset used con-
tained 10,096 image frames (30 videos with 300 frames each) for training and 1264 image
frames (3 videos) for validation in the ground classification training, and 380 image frames
(1 video) for testing the scene classification network onboard the Nvidia Jetson TX2, as
shown in Figure 5.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 11 
 

 

 

Figure 5. Video scene classification output classes from the test Video. 

For comparing the performance of our proposed model, we implemented three video 

classification models: Alexnet, MobileNet, and GoogleNet. The reason we chose these 

models for comparison is that they are widely used for classification on mobile and em-

bedded systems. We evaluated the comparison based on the classification accuracy, pro-

cessing speed, and memory saving of the recreated video. 

5.2. Experiment Results 

We used 1 video with 115 frames, of which 50 frames contained no-water sceneries 

and 65 which contained water sceneries, to test the accuracy of the training. After training 

the scene classification with the models with 200 epochs, we obtained the confusion matrix 

of test accuracy results for the models as shown in Tables 2–5. 

The test accuracy of the proposed CNN+LSTM model was 90% for the No Water class 

and 86% for the Water class.  

Table 2. Confusion matrix for the proposed CNN+LSTM model. 

 No Water Water Per-Class Accuracy 

No Water 45 5 90.0% 

Water 9 56 86.15% 

Table 3. Confusion matrix for the AlexNet model. 

 No Water Water Per-Class Accuracy 

No Water 44 6 88.0% 

Water 11 54 83.08% 

Table 4. Confusion matrix for the MobileNet model. 

 No Water Water Per-Class Accuracy 

No Water 44 6 88.0% 

Water 8 55 87.6% 
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For comparing the performance of our proposed model, we implemented three video
classification models: Alexnet, MobileNet, and GoogleNet. The reason we chose these mod-
els for comparison is that they are widely used for classification on mobile and embedded
systems. We evaluated the comparison based on the classification accuracy, processing
speed, and memory saving of the recreated video.

5.2. Experiment Results

We used 1 video with 115 frames, of which 50 frames contained no-water sceneries
and 65 which contained water sceneries, to test the accuracy of the training. After training
the scene classification with the models with 200 epochs, we obtained the confusion matrix
of test accuracy results for the models as shown in Tables 2–5.

The test accuracy of the proposed CNN+LSTM model was 90% for the No Water class
and 86% for the Water class.
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Table 2. Confusion matrix for the proposed CNN+LSTM model.

No Water Water Per-Class Accuracy

No Water 45 5 90.0%

Water 9 56 86.15%

Table 3. Confusion matrix for the AlexNet model.

No Water Water Per-Class Accuracy

No Water 44 6 88.0%

Water 11 54 83.08%

Table 4. Confusion matrix for the MobileNet model.

No Water Water Per-Class Accuracy

No Water 44 6 88.0%

Water 8 55 87.6%

Table 5. Confusion matrix for the GoogleNet model.

No Water Water Per-Class Accuracy

No Water 43 7 86.0%

Water 12 53 81.5%

As the ground training result shows, the proposed model achieved a good scene
classification accuracy compared to the other models. For the onboard experiment, we
loaded the trained models on the Nvidia Jetson TX2 to test the performance of our scene
classification models. Compared to the other models, the proposed model had a small
number of parameters for the classification, so the storage size was smaller, and the
classification speed was higher. To test the accuracy of the models onboard the Nvidia
Jetson TX2, we created 1 video that had 380 frames, of which 193 were water scenes and
187 were no-water scenes; Tables 6–9 show the confusion matrixes for the test.

Table 6. Confusion matrix for the proposed CNN+LSTM model onboard Nvidia Jetson TX2.

No Water Water Per-Class Accuracy

No Water 167 20 89.3%

Water 20 173 89.6%

Table 7. Confusion matrix for the AlexNet model onboard Nvidia Jetson TX2.

No Water Water Per-Class Accuracy

No Water 163 24 88.6%

Water 32 161 83.4%

Table 8. Confusion matrix for the MobileNet model onboard Nvidia Jetson TX2.

No Water Water Per-Class Accuracy

No Water 169 18 90.3%

Water 23 170 88.6%
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Table 9. Confusion matrix for the GoogleNet model onboard Nvidia Jetson TX2.

No Water Water Per-Class Accuracy

No Water 160 27 85.5%

Water 31 160 83.0%

The original video file used in the onboard test had a duration of 4.10 min and 75 Mb.
Additionally, after applying the proposed approach onboard the Nvidia Jetson TX2 for both
models, the reconstructed video file that was to be downloaded became reduced in duration
and size. For the Alexnet model, the reconstructed file size had a duration of 1.73 min
and a file size of 25 Mb, but only contained 83% of the important flood-disaster-related
frame; for the MobileNet model, the reconstructed file size had a duration of 1.89 min and
a file size of 30 Mb and only contained 8% of the important frames, while for the proposed
CNN+LSTM model, the reconstructed file size had a duration of 1.87 min and a file size of
28 Mb and contained 89% of the important frames needed by our satellite mission. From the
result, we can see that by implementing our approach, we can minimize the nanosatellite
video data download cost by 30%.

Consequently, by using the proposed approach, the HD video data file taken by the
satellite payload camera which is originally large-sized can be downloaded with minimized
storage and downlink cost using S-band communication. The proposed approach can solve
the downlink bottleneck described in the case of the HiREV nanosatellite mission scenario.

6. Conclusions

We proposed onboard deep-learning-based video scene analysis approach for
a nanosatellite with video payload data and a flood disaster monitoring mission. Satellite
video data can play a great role in disaster-monitoring missions as they can provide seman-
tic and rich information compared to image data. As nanosatellites have limited storage,
processing, and communication capability, performing onboard video scene processing
before storing and sending the large raw data can significantly reduce the downlink cost.

The proposed method trains the model on the ground to minimize the burden of
training the model onboard, which has a low processing capability, therefore ensuring
an easy and lightweight model to be loaded onboard. Using the lightweight video scene
model onboard the nanosatellite OBC, the proposed approach was able to effectively use
the storage and decrease the downlink cost drastically.

The proposed onboard video scene approach can help reduce the manpower and effort
in the ground station that would be wasted going through the video files to find a video
scene that contains mission-related information, such as a disaster, because the proposed
approach only sends the mission-related video frames.

Using the proposed methodology, nanosatellites will soon be able to accommodate
a payload camera that can take HD videos and send the video data using low communica-
tion channels such as S-band and the ground mission operation can be easy for nanosatellite
constellations with video payload data. The study can be further extended by considering
various disasters and increasing the complexity by having many scene classification classes.
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