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Abstract: Synthetic aperture radar (SAR) is an advanced active microwave sensor widely used in
marine surveillance. As part of typical marine surveillance missions, ship classification in synthetic
aperture radar (SAR) images is a significant task for the remote sensing community. However,
fully utilizing polarization information to enhance SAR ship classification remains an unresolved
issue. Thus, we proposed a dual-polarization information-guided network (DPIG-Net) to solve
it. DPIG-Net utilizes available dual-polarization information from the Sentinel-1 SAR satellite to
adaptively guide feature extraction and feature fusion. We first designed a novel polarization channel
cross-attention framework (PCCAF) to model the correlations of different polarization information for
feature extraction. Then, we established a novel dilated residual dense learning framework (DRDLF)
to refine the polarization characteristics for feature fusion. The results on the open OpenSARShip
dataset indicated DPIG-Net’s state-of-the-art classification accuracy compared with eleven other
competitive models, which showed the potential of DPIG-Net to promote effective and sufficient
utilization of SAR polarization data in the future.

Keywords: synthetic aperture radar; ship classification; polarization-guided

1. Introduction

Ship classification plays an important role in ocean surveillance [1–6]. It can distinguish
the specific types of ships and provide more comprehensive and extensive marine surveillance
information, which is conducive to trade management, marine traffic and transportation
monitoring, fishery management, etc. The specific types of ships are related to their functions,
such as bulk carriers carrying industrial and commercial resource, container ships carrying
important goods in international trade, oil tankers carrying industrial petroleum, ore carriers
carrying materials from coal mines, fishing vessels carrying out marine fishing, cruise ships
carrying passengers for sightseeing, law enforcement vessels carrying out marine river traffic
management, etc. Ship classification belongs to a typical image classification task, that is,
a two-dimensional ship image is input into an image classification model and the specific
category label of the ship in the image is generated as output.

Imaging radiometers, optical sensors, and SAR are commonly used systems in the
related area [7,8]. Optical sensors can provide high-quality image information, but they are
easily disturbed by clouds and the revisit period is long [9,10]. Visible infrared imaging
radiometers can obtain a wider field of view and have a shorter revisit period, but they
are still susceptible to cloud interference [11]. In comparison with the above systems, SAR
is able to obtain relatively clear images, the operation of which is usually unhindered by
both light and weather [12]. Therefore, compared with other technologies, SAR has unique
advantages that makes it very suitable for marine ship classification [13]. Nowadays, SAR
ship classification is receiving much attention.

Similar to SAR automatic target recognition (ATR) methods [14–18] designed for
vehicle targets, traditional ship classification methods [1,19–23] focus on feature extraction
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based on handcraft features according to expert experience, such as geometric features,
texture features, scattering intensity features, directional gradient histogram features, etc.
Subsequently, the extracted features are input into classic machine learning classifiers such
as SVM, decision tree, and KNN to complete the classification of ships. In the last ten
years, most of the subsequent scholars [19–27] have followed this research approach to
design SAR ship classification models, such as improving the representation of ship manual
features and selecting machine learning classifiers with better performance to process ship
manual features. However, these traditional methods still have many defects, such as
being time-consuming and having laborious manual feature extraction processes, complex
mathematical theory, limited migration ability, and so on [28]. Nowadays, it is difficult to
adapt to the needs of more intelligent SAR ship classification.

With the boom in deep learning in recent years [29,30], SAR ship classification meth-
ods based on deep learning [31–41] are receiving more attention. Deep convolutional
neural networks have been used by researchers to achieve SAR ship classification with
higher accuracy and faster speeds than traditional classification models. Moreover, deep
convolutional neural networks are able to conduct end-to-end training and testing, greatly
simplifying the design process and reducing the burden of manual feature extraction. For
example, Hou et al. [31] designed a simple convolutional neural network to classify ships in
Gaofen-3 images. Huang et al. [32] proposed a group squeeze excitation sparsely connected
convolutional network to extract robust ship features. Wang et al. [33] studied transfer
learning to solve the few-shot ship classification problem. Wang et al. [34] proposed a
semi-supervised learning method via self-consistent augmentation to boost classification
accuracy. He et al. [35] designed a densely connected triplet CNN and integrated Fisher
discrimination regularized metric learning for ship classification in medium-resolution SAR
images. Zhang et al. [36] fused HOG features into CNNs to reduce model risk. However,
these works did not consider ship polarization information, which is acquired through spe-
cific polarized antenna transmitting one polarization and simultaneously receiving multiple
polarizations. Ships imaged by such sensors have different backscattering characteristics
in different polarization channels. Therefore, utilization of polarization information is
helpful to improve the performance of SAR ship classification, especially for low-resolution
SAR images where the spatial features of ships are limited and more useful information is
needed to guide the classification task.

Several works [38–41] tried to utilize polarization information for better classification
performance. For example, Zeng et al. [38] proposed a loss function for better dual-
polarization feature training, but their network ignored feature interaction that might
lead to local optimization. Zhang et al. [39] designed a squeeze-and-excitation Laplacian
pyramid network for multi-resolution feature extraction, but their network did not highlight
salient features and yielded limited accuracy gains. Xiong et al. [40] established a mini
hourglass region extraction network for dual-channel feature fusion, but they did not
consider channel correlation, resulting in insufficient utilization of polarization information.
Zhang et al. [41] established a polarization fusion and geometric feature embedded network
to increase feature richness, but their network treated each polarization branch equally and
resulted in difficult training and incomplete feature extraction.

The above information demonstrates that it remains a challenging and unresolved
issue to make full use of polarization information to further boost SAR ship classifica-
tion performance. Previous works have not provided a simple and effective implemen-
tation so far. Therefore, we proposed a dual-polarization information-guided network
(DPIG-Net) to address the problem. DPIG-Net utilizes available dual-polarization informa-
tion from the Sentinel-1 satellite to guide SAR ship classification from two aspects—feature
extraction and feature fusion. In the feature extraction process, we designed a novel po-
larization channel cross-attention framework (PCCAF) to model feature correlations of
different polarization information, which was used to guide the network to extract more
representative features. In the feature fusion process, we designed a novel dilated residual
dense learning framework (DRDLF) to refine the features, which enabled better feature
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fusion benefits. The results on the open three-and six-category OpenSARShip datasets [42]
revealed the state-of-the-art classification accuracy of DPIG-Net compared with eleven
other competitive models.

The main contributions of this paper are as follows:

(1) DPIG-Net is proposed for the sufficient utilization of polarization information to boost
classification accuracy. It is a brand new architecture for achieving dual-polarization
SAR ship classification. Compared with other state-of-the-art methods, DPIG-Net can
make full use of ship polarization information and has the potential to implicitly mine
useful dual-polarization feature patterns for better classification accuracy.

(2) PCCAF is proposed for representative polarization feature extraction. It is a brand new
framework for dual-polarization feature extraction. Compared with other state-of-the-art
methods, PCCAF can model the correlations between different polarization channels by
the proposed cross-attention subnetwork so as to serve for better feature extraction.

(3) DRDLF is proposed for refined polarization feature fusion. It is a brand new frame-
work for achieving dual-polarization feature fusion. Compared with other state-of-
the-art methods, DRDLF can maintain a large receptive field in network depth and its
idea of feature reuse is conducive to the deep supervision of feature learning, thus
reducing overfitting risk.

(4) For the community of SAR ship detection and classification, we provide the idea of
using polarization information to guide the intelligent interpretation of SAR images,
and we contribute a network framework (PCCAF-DRDLF) that makes it possible to
make full use of dual-polarization information.

The rest of the paper is organized as follows: Section 2 introduces DPIG-Net. Section 3
introduces the experiments and the results. The discussion is described in Section 4.
Section 5 sums up this paper.

2. Method

Figure 1 shows the network architecture of DPIG-Net. It is similar to [43], but it is
closely related to ship polarization. The data used in this work were the open OpenSARShip
dataset, samples of which were from the Sentinel-1 [44] SAR satellite. Sentinel-1 works
in dual-polarization mode, i.e., vertical–vertical (VV) and vertical–horizontal (VH). The
offered data were denoted by SVV and SVH which were in the form of complex numbers.
Since SVV has higher scattering energy of ships [7], it was selected as the source of the
middle main branch guiding other branches for feature extraction. Additionally, the input
of the middle main branch was denoted by I2 = |SVV |. We selected SVH as the source of
the upper branch since SVH reflects less scattering energy of ships than SVV [7], and the
input of the upper branch was denoted by I1 = |SVH |. See [7] for more details.

Moreover, to fully leverage the polarization information, the lower branch in PCCAF
was constructed to measure the polarization channel difference for a more comprehensive
description of ship characteristics, and its input was given by:

I3 = |SVV · S∗VH | (1)

where * denotes a complex conjugate operation. Significantly, SVV and SVH used in our
work must be complex data, rather than the previous commonly used amplitude-based
real data. To the best of our knowledge, OpenSARShip might be the only data that can
meet this requirement. Notably, FUSAR-Ship only offers amplitude real data, so I3 could
not be obtained by Equation (1). Moreover, images in FUSAR-Ship are not paired in the
form of VV–VH or HH–HV, which prevents the application of our network.

In particular, our current work only considered the dual-polarization case due to the
limitation of available data. If full-polarization data is available in the future, one can
expand DPIG-Net into four parallel branches to receive four different polarization inputs
(or more branches for the cross-channel model).
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Figure 1. Network architecture of DPIG-Net. PCCAF denotes the polarization channel cross-attention
framework. DRDLF denotes the dilated residual dense learning framework. DRDB denotes the
dilated residual dense block.

PCCAF received three types of data (I1, I2, and I3) for feature extraction. Its output
was denoted by ZS, which contained the high-level semantic features [45] of the three
types of data. DRDLF received ZS for feature fusion through several cascaded dilated
residual dense blocks and global residual learning from the main branch I2. Finally, 2D
feature maps were flattened into 1D feature vectors to transmit into a fully-connected ( f c1)
layer. The terminal f c2 was responsible for category prediction with the soft-max function.
Significantly, the reason that we set two fully connected layers was to gradually aggregate
the flattened feature, which was conducive to keeping important semantic features and
training the network. More fully connected layers may provide benefits, but the amount of
calculations and number of parameters will increase sharply. Therefore, we only kept two
fully connected layers in DRDLF.

DPIG-Net showed a tendency of feature aggregation from the three input branches
to the terminal feature integration. Most previous works only adopted I2 to predict ship
categories, i.e., the middle main branch of PCCAF. In contrast, we made full use of the
polarization information (I1 and I3) to guide the classification prediction of I2. We named
the above paradigm the dual-polarization information-guided SAR ship classification.
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2.1. Polarization Channel Cross-Attention Framework (PCCAF)

PCCAF established a simple encoder f to preliminarily extract features from the three
types of data. The encoder structure is shown in Table 1. The encoder f used standard
convs to extract features, batch normalization (BN) [46] to ensure training, and ReLU to
activate neurons. The max-pooling operation was used to reduce the size of feature maps.
With network deepening, the channel width increased by a multiple of 2. Significantly, the
number of channels is known to increase as the resolution decreases in order to prevent the
loss of discriminative features [47]. Moreover, our feature encoder f only had four stages,
rather than the usual five stages [36]. This was to avoid the loss of spatial features [48] due
to the small size [49] of SAR ships. Their outputs were denoted by Z1, Z2, and Z3 for the
subsequent processing. A more advanced encoder might achieve better performance, but it
was not within the scope of this research.

Table 1. Encoder Structure in PCCAF.

Stage Layer Input Shape Output Shape Kernel@Stride

S1
Conv + BN + ReLU 224 × 224 × 1 224 × 224 × 8 3 × 3 × 8@1

Max-pooling 224 × 224 × 8 128 × 128 × 8 @2

S2
Conv + BN + ReLU 128 × 128 × 8 128 × 128 × 16 3 × 3 × 16@1

Max-pooling 128 × 128 × 16 64 × 64 × 16 @2

S3
Conv + BN + ReLU 64 × 64 × 16 64 × 64 × 32 3 × 3 × 32@1

Max-pooling 64 × 64 × 32 32 × 32 × 32 @2

S4
Conv + BN + ReLU 32 × 32 × 32 32 × 32 × 64 3 × 3 × 64@1

Max-pooling 32 × 32 × 64 16 × 16 × 64 @2

To better exploit the benefit of polarization information, we designed a cross-attention
subnetwork to model the correlations between different polarization branches. The design
concept of the cross-attention subnetwork was that the middle main branch generated
referenced feature maps to guide the other two auxiliary branches. Most existing attention
networks merely refine their own feature maps in the uncrossed mode, which cannot
solve the multi-branch dual-polarization-guided case. That is, their module input has
only one entry, but our proposed cross-attention subnetwork was specially designed for
dual-polarization ship missions, i.e., our module input had two entries. The cross-attention
subnetwork could be summarized as:

Ai = ai(Zi, Zr) (2)

where Zr denotes the referenced feature maps (in this paper, Zr = Z2, i.e., the main VV
branch), Zi denotes the feature maps to be corrected (in this paper, Zi means the VH
branch Z1 or the polarization difference branch Z3), ai denotes the learned mapping, and
Ai denotes the cross-attention map.

Figure 2a shows the network implementation. Taking Z1 and Z2 as an example, the
same procedure was applied to Z3 and Z2. We first concatenated the two input feature
maps directly, and then, three convs with a skip connection were employed to learn the
inputs’ interrelations. Finally, the learning knowledge was activated by a sigmoid to obtain
the final cross-attention map A1. Significantly, the reason that we selected a sigmoid as
the activation function was that a sigmoid is easily differentiated for backpropagation and
can narrow the range of attention weights in the cross-attention map for stable network
training. Moreover, in comparison with other activation functions, such as Tanh and ReLU,
a sigmoid is able to map any real number to output from 0 to 1, which is suitable for
measuring the attention level of one position in a feature map [50]. Specifically, the closer
the attention weight in the cross-attention map is to 0, the less important the feature of the
corresponding position in the feature map, and vice versa.
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Furthermore, for better skip connection fusion between shallow low-level features
and deep high-level features, we designed a self-attention module (SA-module) to refine
the previous features. The motivation for the SA-module was also related to SAR image
characteristics, e.g., speckle noise and sea clutter. It can relieve their related interferences to
enhance ship saliency, as shown in Figure 2a. The SA-module could highlight important
global information in space [51], suppress low-value information, and promote network
information flow. Ablation studies in Section 4.1 indicated that it could offer a ~2% accuracy
improvement on the six-category task. The SA-module generated a self-attention map
to modify input and then the result was added to the raw conv branch. The above was
described as:

Ci = Ci−1 · fSA(Ci − 1) + f3×3(Ci−1) (3)

where Ci denotes the i-th conv feature map, fSA denotes the SA-Module operation, and
f3×3 denotes the 3× 3 conv. Figure 2b shows the implementation process of the SA-module.
The representation of the input at j-position was embedded by g, which was instantiated
by a1 × 1 conv. The spatial features of the i-position were embedded by θ. The spatial
features of the j-position were embedded by φ. The relationship between i-position and
j-position was calculated through the relationship function f , which was defined as:

f =
e(Wθ xi)

>(Wφxj)

∑
∀j

e(Wθ xi)
>(Wφxj)

(4)

where Wθ and Wφ serve as learnable weights. ∑
∀j

e(Wθ xi)
>(Wφxj) serves as a normalization

factor to normalize the relationship between two positions for stable training of the network.

In practice, we instantiated Wθ xi and Wφxj through a 1 × 1 conv, respectively. eyj

∑
∀j

eyj was

instantiated by soft-max along dimension j, where yj = (Wθ xi)
>(Wφxj

)
was instantiated

by matrix multiplication after 1 × 1 conv was completed. The response at i-position was
obtained by a matrix element-wise multiplication between input Ci−1 and self-attention
map fSA(Ci − 1). Significantly, the reason that soft-max was selected for normalization



Remote Sens. 2023, 15, 2138 7 of 18

was derived from concerns about the definition of the relationship function f . On the
one hand, f needs a normalization factor as the denominator for normalization in case
network training is unstable [52]. On the other hand, f should be conveniently instantiated
in consideration of efficiency and operability. Using existing operators such as convolu-
tion and soft-max is suitable for instantiating f while designing a network. Therefore,

using soft-max along dimension j as the instantiation of eyj

∑
∀j

eyj was a convenient method

for normalization [51].
The final resulting cross-attention map was acted on the other two branches by matrix-

element multiplication to obtain the refined polarization-guided features:

Z′i = Zi ⊗ Ai (5)

where Z′ denotes polarization-guided features that will be used to guide the main polariza-
tion branch.

Finally, the output of the main polarization branch was the concatenation of three
types of features:

Zs = Concat(Z′1, Z2, Z′3) (6)

where Zs denotes the output of PCCAF. We found that feature concatenation performed
better than feature adding because the former could avoid the resistance effects between
different polarization features with our subsequent feature fusion operations.

2.2. Dilated Residual Dense Learning Framework (DRDLF)

DRDLF used some dilated residual dense blocks (DRDBs) to fuse the extracted polar-
ization features coming from the previous PCCAF stage. The input of DRDLF was denoted
as Zs, which was associated with the dual-polarization information using the concatenation
operation of Equation (5) where Z′1 denotes the feature maps of I1 VH information, Z2 de-
notes that of I2 VV information, and Z′3 denotes that of VV-VH correlation information. Zs
was refined by a 3× 3 conv for feature concentration and channel dimensionality reduction.
The result was denoted by F0. Then, several cascaded DRDBs were used for feature aggre-
gation. DRDB was motivated by RDB [53], which was designed for image super-resolution
tasks. However, there are many speckle noises around SAR ship images [54,55], so we
inserted a dilated rate of 2 to the standard conv for larger receptive fields.

Figure 3 shows the DRDB’s implementation. Its input was the previous output Fi, and
its output was denoted by Fi+1. DRDB contained three 3 × 3 conv layers with a dilated
rate of 2, and their results were denoted by D1, D2, and D3 respectively. They were concate-
nated directly as DS. To meet the requirement of residual connection in the entire DRDB,
a 1 × 1 conv was used for channel reduction. Finally, the sum between Fi and DS was
its output. In DRDLF, we arranged n DRDBs for feature fusion where n was empirically
set to the optimal value 3. The results of n DRDBs from F1 to Fn were concatenated and
then processed by a 1 × 1 conv for overall channel reduction. The result was denoted
by Q0. Significantly, we did not select dilated convs with a higher dilated rate or more
dilated convs for feature extraction. Even though a higher dilated rate and more dilated
convs can obtain a larger receptive field, which is helpful to extract contextual information
and discriminate between the foreground and background [56], this will deteriorate the
spatial details of ships, especially in the case of low-resolution SAR images. Therefore, the
chosen dilated rate and number of dilated convs was more like a trade-off in the design of
the network.

Significantly, we observed that after a series of DRDB processing with multiple dense
connections, the details of the main VV branch might be gradually diluted, causing unstable
training and deteriorating performance. Thus, inspired by [57], we proposed a global
residual learning to solve this problem. As shown in Figure 1, the global residual learning
connected PCCAF and DRDLF, thus maintaining the dominant position of the main branch
and making the other two branches smoothly play an auxiliary guiding role. This was
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an important design aspect of our dual-polarization-guided network. The global residual
learning was described by:

Q1 = Q0 + Z2 (7)

where Q1 denotes the final output of DRDLF. From Figure 1, we set another two 3 × 3 convs
to process Q1 for more semantic features Q2, which was helpful for balancing spatial and
semantic information.
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To sum up, combined with the above designed PCCAF and DRDLF, our proposed
DPIG-Net could make full use of the polarization information ignored in previous works.
The other two types of polarization data were well refined to assist in the feature extraction
and feature fusion of the main branch. Finally, an effective dual-polarization information-
guided SAR ship classification paradigm was realized. DPIG-Net successfully handled the
problems of how to conduct polarization guidance and how to carry out more effective
polarization guidance, which are of great value.

3. Result
3.1. Dataset

The open OpenSARShip dataset [42] was used to evaluate the effectiveness of DPIG-
Net. It offers VV–VH dual-polarization SAR ship data from Sentinel-1 with different
environmental conditions. The labels of SAR ships are annotated through automatic
identification system (AIS) messages corrected for position shifts, which ensures the high
reliability of labeling. The raw data covered five typical ports, including Shanghai Port
(China), Shenzhen Port (China), Tianjin Port (China), Yokohama Port (Japan), and Singapore
Port (Singapore), with the form of single look complex (SLC) type. Same as [39], two subsets
of the data were used for experiments, i.e., a three-category subset and a six-category
one. As previously mentioned, OpenSARShip is the only dataset that could satisfy our
experimental requirements, i.e., paired dual-polarization complex data with corresponding
ground truth labels. Tables 2 and 3 show descriptions of the data. Figures 4 and 5 show
some samples of different ship categories.

Table 2. Three-Category Data.

Category Training Test

Bulk carrier 169 164
Container ship 169 404

Tanker 169 73
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Table 3. Six-Category Data.

Category Training Test

Bulk carrier 100 233
Cargo 100 571

Container ship 100 473
Fishing 100 25

General cargo 100 42
Tanker 100 142

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 19 
 

 

handled the problems of how to conduct polarization guidance and how to carry out more 
effective polarization guidance, which are of great value. 

3. Result 
3.1. Dataset 

The open OpenSARShip dataset [42] was used to evaluate the effectiveness of DPIG-
Net. It offers VV–VH dual-polarization SAR ship data from Sentinel-1 with different en-
vironmental conditions. The labels of SAR ships are annotated through automatic identi-
fication system (AIS) messages corrected for position shifts, which ensures the high relia-
bility of labeling. The raw data covered five typical ports, including Shanghai Port (China), 
Shenzhen Port (China), Tianjin Port (China), Yokohama Port (Japan), and Singapore Port 
(Singapore), with the form of single look complex (SLC) type. Same as [39], two subsets 
of the data were used for experiments, i.e., a three-category subset and a six-category one. 
As previously mentioned, OpenSARShip is the only dataset that could satisfy our experi-
mental requirements, i.e., paired dual-polarization complex data with corresponding 
ground truth labels. Tables 2 and 3 show descriptions of the data. Figures 4 and 5 show 
some samples of different ship categories. 

Table 2. Three-Category Data. 

Category Training Test 
Bulk carrier 169 164 

Container ship 169 404 
Tanker 169 73 

Table 3. Six-Category Data. 

Category Training Test 
Bulk carrier 100 233 

Cargo 100 571 
Container ship 100 473 

Fishing 100 25 
General cargo 100 42 

Tanker 100 142 

 

   
(a) (b) (c) 

Figure 4. Three-category data. (a) Bulk carrier; (b) container ship; (c) tanker. 

  

Figure 4. Three-category data. (a) Bulk carrier; (b) container ship; (c) tanker.
Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 19 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Six-category data. (a) Bulk carrier; (b) cargo ship; (c) container ship; (d) fishing vessel; (e) 
general cargo ship; (f) tanker. 

3.2. Training Details 
We trained DPIG-Net by 100 epochs from scratch using Adam with a learning rate of 

0.0001. The network parameters were initialized by [58,59]. Samples were resized to 224 × 
224 by bilinear interpolation. It is worth noting that there are a lot of other classic interpo-
lation methods, such nearest neighbor interpolation, bicubic interpolation, and Lanczos 
interpolation [60]. In comparison with these methods, bilinear interpolation is able to bal-
ance interpolation performance and computational burden and hence is widely used in 
the computer vision community. Moreover, since this paper focused on the SAR ship clas-
sification method, resampling was not within the scope of this paper. Therefore, we se-
lected bilinear interpolation for resampling, which was the same as many SAR ship clas-
sification methods [36,39,41,56,61–63]. The batch size was set to 16 in consideration of the 
theoretical guidance and hardware limitations. Specifically, in theory, the batch size 
should not be too small or too large [64–67]. When the batch size is too large, optimization 
of the network tends to be trapped at a local optimum and generalization of the trained 
network is weak due to the lack of randomness in gradient descent. When the batch size 
is too small, the speed of convergence is restricted due to excessive noise resulting from 
the small batch size. Therefore, the batch size is usually set as 16, 32, or 64. However, a 
batch size of 32 or 64 was not available due to our limited GPU memory. Hence, 16 was 
set as the batch size in the experiment. The multi-category cross entropy [34] served as the 
loss function of the network, which was defined as: 

1 1

, ,
0 0

1 ln
N K

i k i k
i k

Loss y p
N

− −

= =

= −   (8)

where ,i ky  is the ground truth of kth category of ith sample and ,i kp  is the predicted 
result of kth category of ith sample. N 		 denotes the number of samples in this batch, 
while K 	 denotes the number of categories. We chose multi-category cross entropy for 
two reasons. On the one hand, multi-category cross entropy is sensitive to wrong predic-
tions. Specifically, when , 0i ky =  and ,i kp  is close to 0, the loss will be much closer to 
positive infinity, which guides the network towards wrong predictions. On the other 
hand, multi-category cross entropy is more likely to avoid the vanishing gradient in 

Figure 5. Six-category data. (a) Bulk carrier; (b) cargo ship; (c) container ship; (d) fishing vessel;
(e) general cargo ship; (f) tanker.

3.2. Training Details

We trained DPIG-Net by 100 epochs from scratch using Adam with a learning rate
of 0.0001. The network parameters were initialized by [58,59]. Samples were resized to
224 × 224 by bilinear interpolation. It is worth noting that there are a lot of other classic
interpolation methods, such nearest neighbor interpolation, bicubic interpolation, and
Lanczos interpolation [60]. In comparison with these methods, bilinear interpolation is
able to balance interpolation performance and computational burden and hence is widely
used in the computer vision community. Moreover, since this paper focused on the SAR
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ship classification method, resampling was not within the scope of this paper. Therefore,
we selected bilinear interpolation for resampling, which was the same as many SAR ship
classification methods [36,39,41,56,61–63]. The batch size was set to 16 in consideration of
the theoretical guidance and hardware limitations. Specifically, in theory, the batch size
should not be too small or too large [64–67]. When the batch size is too large, optimization
of the network tends to be trapped at a local optimum and generalization of the trained
network is weak due to the lack of randomness in gradient descent. When the batch size is
too small, the speed of convergence is restricted due to excessive noise resulting from the
small batch size. Therefore, the batch size is usually set as 16, 32, or 64. However, a batch
size of 32 or 64 was not available due to our limited GPU memory. Hence, 16 was set as
the batch size in the experiment. The multi-category cross entropy [34] served as the loss
function of the network, which was defined as:

Loss = − 1
N

N−1

∑
i=0

K−1

∑
k=0

yi,k ln pi,k (8)

where yi,k is the ground truth of kth category of ith sample and pi,k is the predicted result of
kth category of ith sample. N denotes the number of samples in this batch, while K denotes
the number of categories. We chose multi-category cross entropy for two reasons. On
the one hand, multi-category cross entropy is sensitive to wrong predictions. Specifically,
when yi,k = 0 and pi,k is close to 0, the loss will be much closer to positive infinity, which
guides the network towards wrong predictions. On the other hand, multi-category cross
entropy is more likely to avoid the vanishing gradient in classification tasks, which is
suitable for network training. Specifically, the derivation of multi-category cross entropy
with respect to weight in a network was suitable, whereas the value of other loss functions,
such as mean squared error, tends to be extremely small in the case of classification tasks
where a sigmoid or soft-max are used before loss functions. Therefore, multi-category cross
entropy was selected as the loss function of the network. We reproduced other models that
were basically consistent with their raw reports. The experiments were run on a personal
computer (PC) with the Intel i9-9900K CPU, NVIDIA RTX2080Ti GPU, and 32G memory.
We use PyTorch based on the CUDA10.1 and CUDNN7.4 framework for network training
and evaluation.

3.3. Evaluation Criteria

Accuracy (Acc) was calculated to evaluate the network’s ability to classify ships, which
was described by:

Acc =
TP + TN

TP + TN + FP + FN
(9)

where TP denotes the true positives, TN denotes the true negatives, FP denotes the false
positives, and FN denotes the false negatives. Significantly, we did not adapt class-related
global measures such as completeness, correctness, or F1 score since class-related global
measures would be affected by imbalance in sample categories. In the OpenSARShip
dataset, the imbalance in ship categories was quite severe. As shown in Table 2, in the
test set of three-category data, the number of tankers in the sample was 73, while that
of container ships was 404. As shown in Table 3, in the test set of six-category data, the
number of fishing vessels in the sample was 25, while that of cargo was 571. This severe
imbalance in ship categories would force the class-related measures to pay more attention
to categories with small sample numbers, which may result in a fairish indicator of the
class-related global measure but poor performance of the model in reality. Therefore, we
selected accuracy as the global measure. Moreover, to evaluate the ship classification ability
more specifically, we selected a confusion matrix as the class-wise measure to evaluate
the classification ability of each category, which was also performed in previous SAR ship
classification research [36,39,41,61,62].
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3.4. Classification Performance

Table 4 shows the quantitative evaluation of different models. The top-10 best results
among 20 trainings were used to calculate the average and standard deviation, except for
DenseNet-LRCS [62].

Table 4. Classification Performance of Different Models.

Methods Three-Category Acc (%) Six-Category Acc (%) Time (ms)

Hou et al. [22] 67.41 ± 1.13 47.44 ± 2.01 4.30
GSESCNN [23] 74.98 ± 1.46 54.78 ± 2.08 4.28
Wang et al. [24] 69.27 ± 0.27 48.43 ± 3.71 4.33

HOG-ShipCLSNet [27] 78.15 ± 0.57 53.77 ± 3.63 4.52
Zeng et al. [28] 77.41 ± 1.74 55.26 ± 2.36 4.47

SE-LPN-DPFF [29] 79.25 ± 0.83 56.66 ± 1.54 5.05
Mini Hourglass Net [30] 75.44 ± 2.68 54.93 ± 2.61 4.52

PFGFE-Net [31] 79.84 ± 0.53 56.83 ± 2.68 4.95
VGGNet-Grey [49] 78.51 ± 0.93 55.80 ± 2.05 4.63

GBCNN [51] 78.84 ± 0.26 56.48 ± 1.94 4.85
DenseNet-LRCS [50] 78.00 ± 0.00 56.29 ± 0.00 5.36

DPIG-Net (Ours) 81.28 ± 0.65 58.68 ± 2.02 5.12

The best result is in bold and the second best is underlined.

From Table 4, it can be noted that the accuracy of the three-category task was obviously
higher than that of the six-category task. The reason is that more categories caused more
misclassification, especially in low-resolution SAR images where the characteristics of ships
in different categories tended to be similar [31,42,68,69].

Moreover, the accuracy of models using polarization information is usually higher
than that of models [31–33,36] that do not consider polarization information and directly
input SAR images into the ship classification model. The reason is that the characteristics
of ships in different polarization modes are different, which may be complemented by
combining different polarization information together. However, there is one exception:
HOG-ShipCLSNet adds tradition HOG features to guide the classification and hence
surpasses some ship classification models that utilize polarization information. In fact, the
exception of HOG-ShipCLSNet makes sense from a general point of view. That is, more
information will lead to smarter decisions. Additionally, fully utilizing the polarization
information may further improve the performance of SAR ship classification. As can
be seen from Table 4, DPIG-Net obviously outperformed the other eleven comparative
models. The second-best model offered 79.84% accuracy on the three-category task, which
was still lower than our network by 1.44%, and 56.83% accuracy on the six-category
task, which was still lower than our network by 1.85%. This revealed the state-of-the-
art classification performance of DPIG-Net. Note that such accuracy improvement was
already huge progress for the SAR ship classification community. Compared with the other
methods, DPIG-Net could make full use of ship polarization information with the potential
to implicitly mine useful dual polarization feature patterns for better classification accuracy.

Figure 6 shows the computational efficiency comparison of different methods. From
Figure 6, it can be noted that the speeds of models without considering polarization infor-
mation were usually faster than those of models using polarization information. The reason
is that the utilization of polarization information usually needs more prepossessing and
merging of different polarization information, which will lead to more computations and
hence slower speeds. However, it is worth sacrificing a little speed for higher classification
accuracy in consideration of relatively long SAR imaging processing, which usually takes
several hours or days and makes the speed of SAR ship classification less important in
a way than accuracy. Moreover, it can be noted in Figure 6 that DPIG-Net consumed
more time (5.12 ms) to classify ships than most other methods, but it was still faster than
DenseNet-LRCS [62]. Furthermore, the speed gap between DPIG-Net and other methods
was relatively small (within 1 ms), so DPIG-Net might still meet practical applications.
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According to our theoretical statistics of the network parameters, DPIG-Net had about
17,961,536 (~18M) parameters. This indicated that DPIG-Net might be a little heavy, which
led to its longer running time in our experiments, as shown in Figure 6. Thus, speed
optimization will be studied in the future.
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3.5. Confusion Matrix

Tables 5 and 6 show the confusion matrix of DPIG-Net. From Tables 5 and 6, it can
be observed that DPIG-Net could successfully identify most ships, i.e., the diagonal value
was greater than others at the same line in most cases, which revealed the superior ship
classification ability of DPIG-Net.

Table 5. Confusion Matrix of the Three-Category Task.

True Predicted Bulk Carrier Container Ship Tanker

Bulk carrier 125 21 8
Container ship 48 342 14

Tanker 11 8 54

Table 6. Confusion Matrix of the Six-Category Task.

True
Prdicted

Bulk Carrier Cargo Container
Ship Fishing General

Cargo Tanker

Bulk carrier 143 23 43 0 22 2
Cargo 69 325 19 27 83 48

Container ship 67 16 359 0 29 2
Fishing 0 2 0 22 0 1

General cargo 6 20 2 0 9 5
Tanker 13 91 1 4 19 14

Moreover, as can be seen from Table 5, container ships had the highest class-wise
classification accuracy (i.e. 342/(48 + 342 + 14) = 84.65%) in the three-category task. The
reason could be that container ships have a duplicate texture derived from the grid structure
of the cabin and strong scattering characteristics [70], which makes container ships relatively
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easy to classify. Similarly, as seen in Table 6, container ships had the second highest
class-wise classification accuracy (i.e. s359/(67 + 16 + 359 + 29 + 2) = 75.90%) in the six-
category task, while fishing vessels had the highest class-wise classification accuracy (i.e.
22/(2 + 22 + 1) = 88.00%). Meanwhile, tankers had the lowest class-wise classification
accuracy in both tasks (i.e. 54/(11 + 8 + 54) = 73.97% in the three-category task and
14/(13 + 91 + 1 + 4 + 19 + 14) = 9.86% in the six-three category task). This was a typical
case in that the class-wise classification accuracy of a certain category will decrease as the
number of categories increases in the dataset.

4. Discussion
4.1. Discussion on PCCAF

To confirm the effectiveness of PCCAF, we conducted ablation studies including the
polarization-guided paradigm and the proposed cross-attention module. The results are
shown in Table 7. As shown in Table 7, the polarization-guided paradigm offered obvious
accuracy gains. Taking the six-category task as an example, I1 (the VH polarization channel)
boosted the accuracy by 1.47%, and I3 (the polarization channel difference) boosted the
accuracy by 2.67%. The combination of two inputs was better than a single input; the
combination of three inputs was better than the combination of two inputs. The above
showed the effectiveness of utilizing polarization information. Moreover, the offered
accuracy gain was greater than some previous works [39,41]. This showed that PCCAF
could make full use of the polarization information. Finally, the proposed cross-attention
module could further improve the classification accuracy (~2% improvement on the six-
category task), which was in line with the subjective analysis in Section 2.1. This was
because the network could establish correlations between channels to extract features with
more mutual recognition. As a result, the information flow between channels was promoted
for better feature extraction.

Table 7. Discussion Results on PCCAF.

I2
Polarization-Guided Cross

Attention
Three-Category

Acc (%)
Six-Category

Acc (%)I1 I3

X – 78.45 ± 1.78 52.69 ± 2.98
X – 77.86 ± 1.94 50.82 ± 1.75

X – 75.28 ± 1.50 50.32 ± 2.03
X X – 79.89 ± 2.01 54.16 ± 2.57
X X X
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We discussed the effect of different inputs in the main branch on the results, as shown
in Table 8. It can be observed that the VV of I2 offered better results than the others since
it contained more ship scattering energy. Additionally, I3 had the worst results, which
indicated that improper utilization of the merged polarization information may backfire
and the original data (i.e. VH of I1 and VV of I2 in OpenSARShip dataset) should serve as
the foundation for SAR ship classification.

Table 8. Results of Different Main Branches in PCCAF.

Main Branch Three-Category Acc (%) Six-Category Acc (%)

I1 80.02 ± 0.84 57.45 ± 1.85
I2 81.28 ± 0.65 58.68 ± 2.02
I3 75.38 ± 1.64 51.52 ± 2.36

The best result is in bold.

We conducted another experiment to verify the advantage of feature concatenation
over feature adding. The results are presented in Table 9. The former performed better than
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the latter, indicating that features between different polarization channels should not be
added directly or they might cause feature resistance effects.

Table 9. Results of Feature Concatenation or Feature Adding in PCCAF.

Type Three-Category Acc (%) Six-Category Acc (%)

Feature Adding 80.65 ± 1.26 57.66 ± 2.14
Feature Concatenation 81.28 ± 0.65 58.68 ± 2.02

The best result is in bold.

Finally, we performed experiments to confirm the effectiveness of the SA-module in
the cross-attention subnetwork, as shown in Table 10. The SA-module further improved
the accuracy since it could enable more prominent features for multi-stage residual fusion.
Furthermore, the SA-module could ease the negative effects of the SAR image characteristics
of speckle noise and sea clutter in order to enhance ship saliency, as shown in Figure 2a.
This was in line with the experimental results in Table 10.

Table 10. Results on Effectiveness of SA-Module.

SA-Module Three-Category Acc (%) Six-Category Acc (%)
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To verify the effectiveness of DRDLF, we conducted ablation studies. The results are
shown in Table 11. DRDB improved the accuracy by 1.54% on the three-category task and
by 2.08% on the six-category task. It could learn context information more effectively to
achieve more concentrated feature fusion effects. Furthermore, the global residual learning
further boosted the accuracy because it could effectively restore original feature details from
the main branch I2, which avoided possible feature loss from multiple convs and pooling
operations. Significantly, the basic operation behind global residual learning is actually feature
adding, which was different from the feature concatenation in PCCAF. The difference was
derived from the fact that we regarded the feature of global residual learning as a residual
correction [71] to the original output in DRDB, while the feature of different polarization
channels in PCCAF was regarded as three complementary features extracted by different
feature extraction subnetworks, just as we concatenated the output of different convolution
kernels in the same conv layer together instead of adding them together [72].

Table 11. Discussion Results on DRDLF.

DRDB Global Residual Learning Three-Category Acc (%) Six-Category Acc (%)

– – 79.44 ± 0.82 55.38 ± 1.98
X 80.98 ± 0.63 57.46 ± 2.25
X X 81.28 ± 0.65 58.68 ± 2.02

The best result is in bold.

We determined the number of DRDBs empirically via experiments, as shown in
Table 12. Table 12 indicates that the accuracy first increased and then decreased as the
number of DRDBs increased. One possible reason is that excessive DRDBs may lead to
overfitting for its large number of network parameters. Another possible reason is that
a more dilated convolution brought by DRDB may cause adverse effects on the network.
Specifically, although a dilated convolution can broaden the receptive field and extract
the contextual information of features, which is helpful to suppress the effects of speckle
noise in SAR images [73], it may dilute the spatial details of ships. All in all, it is a trade-off
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when it comes to the number of DRDBs. For this study, we set the number of DRDBs to the
optimal value of 3.

Table 12. Results on Different Numbers of DRDBs.

Number Three-Category Acc (%) Six-Category Acc (%)

1 80.69 ± 0.48 57.05 ± 2.26
2 80.99 ± 0.32 57.87 ± 2.18
3 81.28 ± 0.65 58.68 ± 2.02
4 81.02 ± 0.17 58.27 ± 3.01
5 80.78 ± 0.84 58.02 ± 3.18

The best result is in bold.

5. Conclusions

In this paper, DPIG-Net was proposed for dual-polarization-guided SAR ship classifi-
cation. DPIG-Net exploits available dual-polarization information to adaptively model the
correlations of different polarization channels, implicitly mining useful dual-polarization
feature patterns for feature extraction from Sentinel-1 to guide better ship classification
performance. PCCAF was designed for better dual-polarization feature extraction through
a cross-attention network. DRDLF was designed for fine dual-polarization feature fusion
through multiple dilated convolutions and residual dense connections. We performed
extensive experiments on the public OpenSARShip dataset to confirm the effectiveness
of DPIG-Net. The results showed that DPIG-Net achieved 81.28% accuracy in the three-
category task and 58.68% accuracy in the six-category task, surpassing the second-best
model PFGFE-Net by 1.44% in the three-category task and 1.85% in the six-category task.
These findings indicated the state-of-the-art ship classification ability of DPIG-Net and the
effectiveness of exploiting SAR polarization data.

Our future work will be as follows:

1. Strive to improve the speed of DPIG-Net without sacrificing the classification accuracy
of ships.

2. Study the generalization of DPIG-Net for more polarization information.
3. Study how to combine traditional handcraft features and different polarization infor-

mation together for higher classification accuracy.
4. Explore a transformer-related feature extraction subnetwork for better modeling of

long-range dependencies among different parts of ships, such as prows and sterns, to
improve the performance of ship classification.

5. Strive to improve the accuracy of tanker classification in the OpenSARShip dataset.
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Abbreviations
The following abbreviations are used in this manuscript:
SAR Synthetic Aperture Radar
DPIG-Net Dual-Polarization Information-Guided Network
PCCAF Polarization Channel Cross-Attention Framework
DRDLF Dilated Residual Dense Learning Framework
ATR Automatic Target Recognition
VV Vertical–Vertical
VH Vertical–Horizontal
BN Batch Normalization
SA-Module Self-Attention Module
DRDB Dilated Residual Dense Block
AIS Automatic Identification System
SLC Single Look Complex
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