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Abstract: Climate change is closely linked to changes in soil organic carbon (SOC) content, which
affects the terrestrial carbon cycle. Consequently, it is essential for carbon accounting and sustainable
soil management to predict SOC content accurately. Although there has been an extensive utilization
of optical remote sensing data and environmental factors to predict SOC content, few studies have
explored their applicability in karst areas. Therefore, it remains unclear how SOC content can be
accurately simulated in these areas. In this study, 160 soil samples, 8 environmental covariates
and 14 optical remote sensing variables were used to build SOC content prediction models. Three
machine learning models, i.e., support vector machine (SVM), random forest (RF) and extreme
gradient boosting (XGBoost), were applied for each of three land use classes, including the entire
study area, as well as farmland and forest areas. The variables with the greatest influence were the
optical remote sensing bands, derived indices, as well as precipitation and temperature for forest
areas, and optical remote sensing band11 and Pop-density for farmland. The results from this study
suggest that RF and XGBoost are superior to SVM in prediction accuracy. Additionally, the simulation
accuracy of the RF model for the forest areas (R2 = 0.32, RMSE = 6.81, MAE = 5.63) and of the XGBoost
model for farmland areas (R2 = 0.28, RMSE = 4.03, MAE = 3.27) was the greatest. The prediction
model based on different land use types could obtain a higher simulation accuracy than that based
on the whole study area. These findings provide new insights for the estimation of SOC content with
high precision in karst areas.

Keywords: soil organic carbon; complex surface; remote retrieval; machine learning; karst trough
valley area

1. Introduction

Factors such as climate change and human disturbance can have a significant impact
on soil, as it is a vital element of the environment with high sensitivity [1]. On land, the
most significant amount of organic carbon is stored in the soil [2], which plays a vital role in
terrestrial ecosystem functioning through its structure and quality. A previous research has
shown that the global reservoir of soil organic carbon (SOC) exceeds the amount stored in
the atmosphere and vegetation by a factor of two to three [3], respectively. Changes in SOC
levels, even at minimal levels, can cause significant fluctuations in atmospheric CO2 levels.
The soil has the ability to increase carbon uptake, which can potentially mitigate CO2
emissions and slow the progression of climate change [4]. Previous studies have shown
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that the adoption of good agricultural practices on degraded land can significantly increase
its capacity to store carbon. This, in turn, can increase crop production and effectively
contribute to maintaining food security [5,6]. Therefore, in the context of climate warming,
soil degradation and food security, the measurement and monitoring of SOC levels over
large regions is of paramount importance.

For predicting SOC content, the traditional method of field sampling and laboratory
testing is both difficult and costly for large areas with large numbers of sampling points [7].
However, digital soil mapping (DSM) can be an effective and low-cost tool for predicting
large-scale SOC distributions [8,9]. The majority of DSM methods is based on soil landscape
models and is built using soil properties and environmental variables quantitatively [10,11].
The prediction models mainly include statistical regression and machine learning methods.
Among the statistical regression models, multiple linear regression and partial least squares
regression (PLSR) are most widely used. In addition, the use of machine learning algo-
rithms has been extensively applied to the study of SOC estimation and its cartographic
representation, including support vector machine (SVM), random forest (RF), artificial
neural network (ANN) [12] and extreme gradient boosting (XGBoost) [13]. Previous studies
comparing six machine learning methods found that the estimation accuracy of Deep Learn-
ing Neural Networks (DNN), RF and XGBoost was higher than that of SVM, ANN and
Cubist [13–15], and the stacking ensemble learning model achieved the highest prediction
accuracy overall. Here, we chose SVM, RF and XGBoost as the simulation models for SOC
content prediction.

The prediction of soil properties such as SOC content requires the use of sufficient
environmental variables, for example, topography, climate, soil texture, vegetation or
human interference (land use and land cover, population, etc.). These factors affect the
formation and change of the soil and are typically used in SOC content prediction [16–18].
Although we cannot directly obtain the soil spectral information in a vegetation cover area,
the interaction between vegetation and soil, such as vegetation influencing soil biochem-
ical processes and the distribution of vegetation being governed by soil properties [19],
provides an important theoretical basis for the inversion of soil properties using optical
remote sensing data. As another important data source, remote sensing imagery is also
widely used for predicting SOC levels and significantly affects the ability to predict SOC
content [20]. Currently, predicting SOC content using optical remote sensing data has
received considerable attention due to its ubiquitous application. The band reflectance [21]
vegetation index [22,23] and, especially, the NDVI [24,25] are most widely used in DSM in
combination with other environment variables. In recent years, synthetic aperture radar
(SAR) has also been used in the prediction of SOC content, as it has the advantage of
operating continuously in all weather conditions. For example, a previous study found
that Sentinel-1 displayed good potential for application in digital soil mapping [12], while
Poggio and Gimona [26] and Yang and Guo [27] also found that in eastern China, the
use of the backscatter coefficient derived from Sentinel-1 imagery represents a promis-
ing approach for the comprehensive characterization of soil properties, especially with
respect to their spatial variability. Above all, with the emergence of spatiotemporal big
data, many open-source remote sensing data and basic geographic data have become more
readily available and have greatly enriched the input variables of SOC estimation models.
Using data such as these, researchers have now successfully predicted and mapped SOC
globally [28] and the spatial variation of soil properties [10].

Covering an area of about 22 million km2, karst landforms occupy about 15% of the
earth’s surface [29]. In southwest China, they account for about 26% (0.51 million km2)
of the total land area [30]. Karst landforms are most easily defined by their topographic
and geomorphological features, soil development levels, hydrothermal and vegetation
conditions. The typical characteristics of karst areas are broken terrain, a thin soil layer,
exposed rocks dividing the soil mass into pieces and serious water and soil loss. These
features result in a poor immunity to interference and low stability in these areas [29]. Due
to their complex geological and topographic conditions, SOC content in karst areas exhibits
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an obvious spatial heterogeneity [31]. Moreover, with the rapid economic development
and explosive population growth in recent years, excessive human disturbance has caused
soil desertification and significant variation in SOC content [32]. These factors inevitably
influence the properties of the soil and the carbon cycle and thus make it difficult to assess
the dynamics of SOC storage in these areas. However, previous studies on the content of
SOC or its dynamics mainly focused on a single driving factor [33]. In karst areas, complex
landforms, fragmented topography, various land use types and soil types cause the soil
to follow a discontinuous and patching pattern [34]. In karst areas, the variability of SOC
content is strongly influenced by different conditions, resulting in a high degree of spatial
heterogeneity. Predicting SOC levels in such regions requires the consideration of the
dominant driving factors, which vary widely. Therefore, by exploring the main driving
factors associated with different land use types, the simulation accuracy of SOC content
may be increased. The main objectives of this study were: 1© to determine the applicability
of optical and SAR remote sensing data in predicting SOC content in karst areas; 2© to
determine whether the prediction model based on different land use types could obtain
higher simulation accuracy than that based on the whole study area.

2. Materials and Methods
2.1. Study Area

Figure 1 shows the study area, situated in the northwest of Chongqing, China.
The climate is humid subtropical with a monsoon flavor and temperatures ranging be-
tween 16 and 18 ◦C. Additionally, the region has an annual precipitation ranging from
1000 to 1350 mm. The study area consists of yellow soil and purple soil zonal types and
is characterized by farmland and forest as the main forms of land use. Its altitude ranges
from 130 to 950 mm above sea level.
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of the sampling points (d) in the study area.

2.2. Sample Data

Field surveys were conducted in January 2020, where sampling points were selected
reasonably using Google satellite imagery based on the geographical characteristics of the
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study area (Figure 1). In this study, the survey methodology involved the selection of a
2 km by 2 km square area as the unit of analysis. Specifically, three plots were systematically
sampled from each survey site, with their locations distributed along the diagonal of the
square area. At each sampling point, soil samples were collected using the five-point mixed
sampling method, and multiple samples were then combined into one sample. Each topsoil
sample was taken from a quadrat with five different subsamples selected for analysis. All
sampling points were pinpointed using GPS. The soil samples were labeled and sealed after
collection. The sampling sites were recorded in detail with regard to land use type, soil
texture and vegetation cover. Photographs were taken of the surroundings of the sampling
sites. In total, 160 surface soil (0–20 cm) samples were collected and used for analysis.

2.3. Driving Variables

All variables were converted to a raster format at 10 m resolution and used to generate
the driving variables. Based on these raster data, for each soil sample point, the variables’
pixel values were calculated to build the model.

2.3.1. Environmental Covariates

Environmental variables used for SOC prediction mapping included land use/land
cover (LULC), climate and topography variables. The LULC data were provided by the
European Space Agency (ESA) (https://viewer.esa-worldcover.org/worldcover/, accessed
on 1 March 2022). The ESA WorldCover 10 m 2020 product provided a global land cover
map for 2020 at 10 m resolution, developed and validated in near real time based on
Sentinel-1 and Sentinel-2 data [35]. The WorldCover product comes with 11 land cover
classes (tree cover, shrubland, grassland, cropland, built-up, bare/sparse vegetation, snow
and ice, permanent and water bodies, herbaceous wetland, mangroves, moss and lichen)
and has been generated in the framework of the ESA WorldCover project, part of the 5th
Earth Observation Envelope Programme (EOEP-5) of the European Space Agency. The
mean annual temperature and precipitation data for the study area were obtained from
the Resources and Environmental Science and Data Center of the Chinese Academy of
Sciences (RESDC) (http://www.resdc.cn, accessed on 3 March 2022). The calculation of five
topographic variables was performed using the raster calculator in Arcmap12.5 software
from the Advanced Land Observing Satellite (ALOS) DEM [36] at 12.5 m spatial resolution,
including elevation, terrain undulation, slope, aspect and topographic wetness index (TWI).
The population density data were provided by the Socioeconomic Data and Applications
Center (https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11,
accessed on 5 March 2022) [37].

2.3.2. Remote Sensing Variables

In this study, Sentinel-2A optical data which were downloaded from Google Earth
Engine (GEE), were included. The acquisition dates were close to the field data collection
dates (January 2020). Sentinel-2A data were acquired from the Multispectral Instrument
(MSI) L2A product. The product has been pre-processed by ESA for radiometric calibra-
tion, atmospheric correction, etc., so the data reflect the reflectance information at the
surface. Nearest neighborhood resampling methods were used to harmonize the spatial
resolution. Seven extracted bands and eight calculated spectral indices of Sentinel-2A were
included [20,38,39]. In remote sensing, soil texture, mineral composition, soil moisture and
organic matter content were considered, all four of which can affect the optical properties
of the soil. Thus, for the purpose of retrieving variables indirectly by predicting their
interrelationships, several sets of spectral indices were calculated, including vegetation
indices (which respond to changes in soil organic matter content sensitively; Jin et al. [40,41]
and Liu et al. [42] have recently used these indices to predict soil attributes) and brightness-
related indices (sensitive to the soil texture). The employed spectral indices included the
Normalized Differences Vegetation Index (NDVI), Transformed Vegetation Index (TVI),
Soil-Adjusted Vegetation Index (SAVI), Green Normalized Difference Vegetation Index

https://viewer.esa-worldcover.org/worldcover/
http://www.resdc.cn
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11
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(GNDVI), Brightness Index (BI), Second Brightness Index (BI2), Color Index (CI) and Clay
Index (CI1). Table 1 shows the formulas used to obtain these indices. The details of the
Sentinel-2A bands that were utilized are provided in Table 2 [43]. The Sentinel-1 mission
provides data from a dual-polarization C-band SAR instrument at 5.405 GHz (C band).
This collection includes the S1 Ground Range Detected (GRD) scenes, processed using
the Sentinel-1 Toolbox to generate a calibrated, ortho-corrected product. Pre-processed
Sentinel-1A SAR data were downloaded from GEE (Table 3). Additionally, VV and VH
polarization data were used in this study.

Table 1. Derived indices.

Index Definition Reference

BI
√
(ρRed× ρRed) + (ρGreen× ρGreen)

2
[44]

BI2
√
(ρRed× ρRed) + (ρGreen× ρGreen) + (ρNIR× ρNIR)

3
[44]

CI ρRed− ρGreen
ρRed + ρGreen

[45]

CI1 SWIR1
SWIR2

[46]

GNDVI ρNIR− ρGreen
ρNIR + ρGreen

[47]

NDVI ρNIR− ρRed
ρNIR + ρRed

[48]

SAVI (ρNIR− ρRed)× 1.5
ρNIR− ρRed + 0.5

[49]

TVI
√

ρNIR− ρRed
ρNIR + ρRed

+ 0.5× 100 [50]

Table 2. Technical specifications of Sentinel-2A bands used in this study.

Band Spectral
Range (nm)

Spectral
Position

(nm)
Wavelength Band Width

(nm)

Spatial
Resolution

(m)

B2 458–523 490 Blue 65 10
B3 543–578 560 Green 35 10
B4 650–680 665 Red 30 10
B5 698–713 705 Red Edg 1 15 20
B8 785–900 842 NIR 115 10

B11 1565–1655 1610 SWIR 1 90 20
B12 2100–2280 2190 SWIR 2 180 20

Table 3. Parameters of the Sentinel-1A data.

Date Beam Polarization Direction Spatial Resolution
(m)

18 January 2020 IW VV Descending 10
18 January 2020 IW VH Descending 10

2.4. Prediction Models

The concept of the SVM model was derived from the principles of the statistical
learning theory, which were then applied to classification and regression tasks through the
process of structural risk minimization [51]. The SVM model benefits from its ability to
handle small samples and its nonlinearity and high dimensionality. We utilized the e1071
package within the R software to implement the SVM model. The kernel was set to a radial
kernel function using the caret package.



Remote Sens. 2023, 15, 2118 6 of 16

The RF model, a type of algorithm in the field of machine learning, uses ensemble
learning. As a big data and nonlinear application, the RF model can reduce the running
time and ensure the model accuracy. During the training process, multiple random trees
are used in the RF model to generate a unified prediction, effectively combining their
individual outputs [16]. A bootstrap sample is utilized from the training data to construct
the trees located in the forest, with each tree being distinct. This process helps to avoid
overfitting and ensures that the model is robust. The randomForest package in R software
was utilized to execute the RF model. The parameters that need to be adjusted using the
RF model are ntree and mtry. The ntree was adjusted to 700.

XGBoost is a new ensemble model based on the decision tree approach [52], combining
the advantages of regression trees and boosting algorithms. Based on the boosting strategy,
XGBoost obtains strong learners from weak learners, improves computing speed through
parallel learning and effectively prevents over-fitting. The XGBoost model improves the
iterative optimization process and establishes the residual model in the gradient descent
direction of the training sample. It also uses Taylor expansion to fit the residual of the
loss function model. The learning rate(eta) and maximum depth(max_depth) per tree in
XGBoost model were set to 0.3 and 7. We used the grid searching technique provided by
the caret package to fine-tune the parameters for all three models. This was achieved by
adjusting the values of various parameters and evaluating the performance of the models.
The above three models and SOC prediction mapping were implemented in R 4.1.1.

2.5. Model Evaluation

In this study, the models were calibrated by implementing a 10-fold cross-validation
using a randomized segmentation technique. For the purpose of evaluating and comparing
the SOC prediction accuracy of the models, three commonly used indices were employed,
including the root-mean-square error (RMSE), the mean absolute error (MAE) and the
coefficient of determination (R2). The indices were calculated using the following equations:

RMSE =

√
1
n

n

∑
i=1

(Pi −Mi)
2 (1)

MAE =
1
n

n

∑
i=1
|Pi −Mi| (2)

R2 =

 ∑n
i=1
(

Mi −M
)(

Pi − P
)√

∑n
i=1
(

Mi −M
)2
√

∑n
i=1
(

Pi − P
)2

2

(3)

where Mi and Pi are the measured and predicted values of SOC content (g/kg), M and P
indicate the mean of the measured and predicted SOC content, n represents the number of
soil sampling points.

3. Results
3.1. Descriptive Statistics

The SOC content varied greatly between the farmland and the forest areas (the average
values of SOC were 12.68 and 18.15 g/kg), with standard deviation values of 5.30 and
11.48, respectively. A more skew distribution was observed in the overall SOC content
(the skewness value was 2.12) than in that of farmland and forest areas (Table 4). The SOC
content decreased as soil depth increased. The degree of data discretization also decreased
with increasing soil depth (Table 5).
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Table 4. SOC content statistics for farmland and forest.

Sample Type Minimum
(g/kg)

Maximum
(g/kg)

Average
(g/kg)

Standard
Deviation Kurtosis Skewness Coefficient of

Variation (%)

Overall 0.12 63.66 16.03 9.92 6.26 2.12 61.88
Forest 0.12 63.66 18.15 11.48 3.77 1.78 63.25

Farmland 1.89 27.43 12.68 5.30 0.57 0.47 41.80

Table 5. SOC content statistics for different soil depths.

Soil depth
(cm)

Minimum
(g/kg)

Maximum
(g/kg)

Average
(g/kg)

Standard
deviation Kurtosis Skewness Coefficient of

Variation (%)

0~10 2.97 67.14 16.32 10.06 6.5 2.01 61.64
10~20 0.82 53.96 13.3 8.34 5.99 2.02 62.71
20~30 0.66 57.92 11.95 7.93 12.28 2.77 66.36

3.2. Correlation of SOC with Driving Variables

Correlation matrices were constructed between Sentinel-1 polarization data, Sentinel-
2A data (both bands and derived indices) and SOC to determine the level of significance
between soil organic carbon (SOC) content and its drivers, both positive and negative, and
to identify the key spectral bands or indices for predicting SOC (Figure 2).

For the whole area, high correlation was observed between SOC and CI, CI1, B12,
BI, B4, B5, B3, TU, B2 and Rain. For the forest areas, B12, B11, B5, BI, B4, B3, Rain, CI, B2,
Temperature and CI1 were significantly correlated with SOC. For the farmland areas, only
Pop-density displayed a significant correlation with SOC.
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Note: SOC, soil organic carbon; DEM, elevation; TU, terrain undulation; TWI, to-
pographic wetness index; Rain, mean annual precipitation; Temperature, mean annual
temperature; Popdensity, population density; B2, B3, B4, B5, B11, B12 are band 2, band 3,
band 4, band 5 and band 12 of Sentinel-2A image.

3.3. Variable Importance and Feature Selection

During the modeling process, the RF model is able to determine the importance
of each variable. This importance is related to how much individual variables affect the
prediction accuracy. By analyzing these factors, the model can identify which variables have
a greater impact on the outcome. The importance of each driving variable is demonstrated
in Figure 3, where their relative contributions are depicted. To allow for a comparative
analysis between variables, the significance of each variable was normalized to 100%. The
normalization of the variables makes it easier to assess their relative importance.
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Figure 3. Comparison of the variables in terms of their relative importance using the RF model for
the overall study area (left), forest area (middle) and farmland (right).

The five main driving variables for the whole study area were CI1, B3, DEM, Rain and
B12, with relative importance values of 9%, 7%, 6%, 6% and 5%, respectively. For the forest
area, they were B3, B5, B2, B12 and BI 2, with relative importance values of 9%, 7%, 7%,
7% and 6%, respectively. For farmland, they were Popdensity, B11, B5, CI and BI 2, with
relative importance values of 8%, 7%, 6%, 6% and 6%, respectively.

Combining the results of the correlation coefficient and the variable importance anal-
yses, the modeling variables chosen were B3, B5, B12, BI, CI, CI1, Rain and DEM for the
whole study area. For the forest area, B2, B3, B4, B5, B11, B12, BI, CI1, Rain and Temperature
were selected as modeling variables. For the farmland area, Popdensity and B11 were
selected as the modeling variables.

3.4. Model Performance

Three models were used to predict SOC content for the overall area, farmland and
forest areas. Among all the models tested on the overall samples, the model utilizing the
RF technique displayed the greatest precision, which was evidenced by the lowest RMSE
(7.35) and MAE (5.74) values, as well as the highest R2 value (0.17). For the forest area,
the RF model exhibited superior performance in comparison to the XGBoost model. For
the farmland area, the XGBoost model demonstrated superior performance in terms of
predicting accuracy, with an R2 value of 0.28, an RMSE value of 4.03, and a MAE value
of 3.27. In general, the XGBoost and RF models exhibited notably superior predictive
accuracy in comparison to the SVM model, regardless of where the samples were collected.
The prediction model based on different land use types could obtain a higher simulation
accuracy than that based on the whole study area (Table 6).
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Table 6. SOC prediction accuracy using different simulation models for different land use types.

Sample Type Models
Verification

RMSE R2 MAE

Overall
SVM 8.15 0.12 9.56
RF 7.35 0.17 5.74

XGBoost 7.83 0.14 5.99

Forest
SVM 12.46 0.11 10.58
RF 6.81 0.32 5.63

XGBoost 8.81 0.25 6.86

Farmland
SVM 5.8 0.15 5.01
RF 4.14 0.23 3.40

XGBoost 4.03 0.28 3.27

Based on the accuracy results of the SOC content simulation, RF was used as the
simulation model for the forest area, while XGBoost was selected for farmland.

3.5. Predicted Spatial Distribution of SOC Content

In the forest, the distribution of SOC content was mapped using the RF model, while
the XGBoost model was used for agricultural areas. This allowed the spatial variation
of SOC content in both land cover types to be accurately depicted (Figure 4). Through
the analysis conducted, a strong correlation was identified between the elevation and the
spatial distribution of SOC content, whose distribution pattern showed similarities to that
of the DEM. In the lower valleys, SOC content was notably lower compared to that found in
the higher mountainous regions on both sides. This reflected the dominance of the terrain
as a driving factor affecting SOC content and its spatial distribution. At higher altitudes,
the light conditions are better, and with increased sunshine duration, plant photosynthesis
is promoted, thus increasing the input of SOC. At the same time, the higher altitude forms
a lower temperature environment, which reduces the decomposition reaction rate of SOC
by microorganisms and increases the solid stock of SOC [53,54]. The higher altitude also
reflects the relationship between land use and SOC. Dense forests are mostly distributed in
higher altitude mountains. The favorable geographical conditions of the forest and its high
capacity for carbon sequestration cause their soil organic carbon to increase.
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Table 7 presents the statistical analysis for the predicted SOC content. The predicted
SOC content was obtained from the cropland and forest areas, and the mean and standard
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deviation were calculated. In the agricultural areas, the average predicted SOC content was
11.54, with a standard deviation of 3.69, while the forest areas had an average predicted
SOC content of 21.85, with a standard deviation of 5.64. These results indicated a significant
contrast in predicted SOC content between agricultural and forest plots. Using the XGBoost
model, the mean and standard deviation of the predicted SOC content were found to be
lower than those of the measured SOC content on the farmland. The result indicated that
the estimated level of SOC content had less variability compared to the measured SOC
content in agricultural regions. Moreover, the lower valleys are mainly distributed within
farmland. Due to the high degree of interference from human activities in these areas, the
SOC content may be irreversibly damaged. In this way, the decomposition rate of SOC is
accelerated, resulting in a lower SOC content in the low valley areas.

Table 7. Descriptive statistics of predicted SOC content using the RF and XGBoost models for forest
and farmland.

Sample Type Minimum
(g/kg)

Maximum
(g/kg)

Average
(g/kg)

Standard
Deviation

Forest 11.28 39.53 21.85 5.64
Farmland 2.99 25.81 11.54 3.69

4. Discussion
4.1. Model Performance

The RF and XGBoost models achieved better SOC prediction accuracies than the SVM
in this study. This is in line with previous studies [55,56], which found that the BRT and
RF models were superior to SVM in prediction accuracy in semi-arid Australia and the
Heihe River Basin in China. Similarly, in comparing the simulation accuracy of different
models for predicting SOC, evaluating the RF, SVM, Cubist and GLM performances,
Gomes et al. [16] concluded that the RF model provided the highest prediction accuracy.
Taghizadeh-Mehrjardi et al. [12] employed six machine learning methods to predict SOC
content and found that the DNN performed better than the RF and XGBoost models and
achieved the average of the neural network, ANN, and Cubist models for arid and sub-
humid regions in Iran. Additionally, Zhou et al. [12] found that the BRT and RF models
exhibited comparable predictability in estimating the SOC content in the Heihe River Basin
in China. Based on the above studies, there is no unique machine learning model which is
most suitable for all landscapes. Meanwhile, in this study, we built a prediction model of
SOC content based on overall sampling as well as on sampling from the specific land types
of forest and farmland. Our results showed that XGBoost performed better (R2 = 0.77) than
RF (R2 = 0.66) and SVM (R2 = 0.20) in farmland areas, while RF obtained higher accuracy
than XGBoost and SVM in the forest areas and in the overall sampling area (). These results
underscore the significance of evaluating and contrasting the predictive power of different
models in different landscapes.

4.2. The Driving Factors of SOC Content Prediction Models

A variety of optical remote sensing images have been employed for predicting and
mapping soil properties, including Landsat, Sentinel-2A, and others. In this study, the
top five driving variables in forest and farmland were band 3, band 5, band 2, band 12
of Sentinel-2A and BI 2, and pop-density, band 11, band 5 of Sentinel-2A, CI and BI 2,
respectively. This is in line with the results of a previous study [57], which also found
that the explanatory power of variables derived from optical remote sensing was higher
than that of climatic and topographic variables. However, for the whole sampling area,
the five most important predictor variables were CI1, band 3, DEM, Rain and band 12.
These results highlight the significance of the type of land use among the driving factors
in predicting SOC. However, some previous studies reported success using SAR data,
especially the backscatter coefficients of polarization data derived from multi-temporal
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Sentinel-1 imagery to predict soil properties [56,58]. In contrast, in the present study,
Figure 2 shows that the VV and VH polarization data were weakly correlated with SOC,
with a correlation coefficient of less than 0.1. Therefore, we believe that Sentinel-1 imagery
was not significantly correlated with SOC content and was not selected as a driving factor
for predicting SOC. Factors affecting radar backscatter in agricultural fields include crop
biomass, crop structure and soil conditions. Previous research established that the backscat-
ter signal detected by C-band radar is a convolution of the ground backscatter modified by
the canopy layer and the backscatter from the canopy itself, involving single and multiple
scattering mechanisms and vegetation–ground interactions [59]. The observed soil returns
at VH polarization were likely due to the phenomenon of double scattering, with the
scattering of waves within the soil medium occurring twice, from the soil and the stem
components. This mechanism is thought to exceed the direct backscatter from the soil
surface alone. The study area with complex topography and surface landscape destruction
made the information obtained from Sentinel-1 image retroreflection cumbersome, and
the effective image information underwent interference. Previous studies also observed
that high surface roughness and plant type difference increased the difficulty of soil and
vegetation scattering simulation [60,61]. Therefore, the spatial heterogeneity of surface
roughness and crop planting may increase backscattering in karst areas.

The distribution of soil characteristics is closely associated with geographic features,
which are often utilized as a primary predictor in DSM [62,63]. Specifically, in a previous
study, elevation had the highest relative importance [10] and was also the most effective
driving factor in DSM [64]. This is likely because the local microclimate can be affected by
changes in elevation, which in turn can have an indirect effect on the activity of microorgan-
isms, thereby influencing the transformation and decomposition of the soil nutrients [65].
Meanwhile, an obvious significant correlation was observed between elevation and mean
annual temperature and precipitation in this study (Figure 2), further suggesting that
elevation can affect the regional climate. In addition, other factors such as slope and to-
pographic undulation were significantly related to SOC content and have also frequently
been employed in previous studies for the prediction of SOC content [13,66].

As the main climatic factors, precipitation and temperature affect SOC content and its
spatial distribution. On the one hand, precipitation and temperature affect crop growth
and the net primary productivity of plants [21], while on the other hand, the decomposition
and accumulation of SOC is strongly influenced by the hydrothermal conditions of the
climate. Above all, the warming climate contributes to the accelerated decomposition
of SOC by microorganisms [67]. For the whole study area and forest areas, significant
correlations between temperature and precipitation and SOC content were observed, but
no significant correlation was observed for farmland. However, population density was
significantly correlated with SOC content in farmland, which indicates that the dominant
driving factors are different for different land use types. Human farming methods and
management measures are significantly different in the southwest of China, where the
planting area of the field is small, and fields are trapezoidal and planted along slopes.
These factors together likely led to the observed difference in driving factors between
farmland and forest areas. Therefore, in future studies, different site conditions should be
considered more closely, and more sampling sites and social-economic factors should be
collected to facilitate the prediction of SOC content and the accurate characterization of its
heterogeneous spatial distribution.

4.3. Comparison to Other Existing Products

The predicted map of SOC content was compared to those obtained with three other
SOC products, including the SoilGrids with 1 km resolution [68], SoilGrids with 250 m
resolution [28] and harmonized world soil database (HWSD) [69] (Figure 5). Generally, the
carbon concentration of the SG250 m exhibited a similar trend to that of our predicted map
in spatial distribution. On the contrary, the results of HWSD and SG1 km substantially
differed from those of our map. In most study areas, the difference between our SOC
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predictions and those of SG250 m was significantly smaller than the difference between our
predicted values and those predicted with HWSD or SG 1km. Here, the biggest difference
was the range of the SOC predictions. Specifically, the HWSD and SG1km products seemed
to underestimate the SOC content. These products also reported relatively low values in
the forest where high SOC content was observed based on our field investigation. We also
verified the SOC estimated values of these data products using our soil sampling data
(Figure 6) and found a general overestimation of SOC content by the SG250m product. In
contrast, both the HWSD and the SG1 km severely underestimated the SOC content. In
the current study area, the topography is highly undulating and exhibits a high spatial het-
erogeneity. Therefore, global models such as SoilGrids are likely to be unsuitable for areas
with a high spatial heterogeneity, and instead a local model would be more appropriate.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 17 
 

 

As the main climatic factors, precipitation and temperature affect SOC content and 
its spatial distribution. On the one hand, precipitation and temperature affect crop growth 
and the net primary productivity of plants [21], while on the other hand, the decomposi-
tion and accumulation of SOC is strongly influenced by the hydrothermal conditions of 
the climate. Above all, the warming climate contributes to the accelerated decomposition 
of SOC by microorganisms [67]. For the whole study area and forest areas, significant cor-
relations between temperature and precipitation and SOC content were observed, but no 
significant correlation was observed for farmland. However, population density was sig-
nificantly correlated with SOC content in farmland, which indicates that the dominant 
driving factors are different for different land use types. Human farming methods and 
management measures are significantly different in the southwest of China, where the 
planting area of the field is small, and fields are trapezoidal and planted along slopes. 
These factors together likely led to the observed difference in driving factors between 
farmland and forest areas. Therefore, in future studies, different site conditions should be 
considered more closely, and more sampling sites and social-economic factors should be 
collected to facilitate the prediction of SOC content and the accurate characterization of its 
heterogeneous spatial distribution. 

4.3. Comparison to Other Existing Products 
The predicted map of SOC content was compared to those obtained with three other 

SOC products, including the SoilGrids with 1 km resolution [68], SoilGrids with 250 m 
resolution [28] and harmonized world soil database (HWSD) [69] (Figure 5). Generally, 
the carbon concentration of the SG250 m exhibited a similar trend to that of our predicted 
map in spatial distribution. On the contrary, the results of HWSD and SG1 km substan-
tially differed from those of our map. In most study areas, the difference between our SOC 
predictions and those of SG250 m was significantly smaller than the difference between 
our predicted values and those predicted with HWSD or SG 1km. Here, the biggest dif-
ference was the range of the SOC predictions. Specifically, the HWSD and SG1km prod-
ucts seemed to underestimate the SOC content. These products also reported relatively 
low values in the forest where high SOC content was observed based on our field investi-
gation. We also verified the SOC estimated values of these data products using our soil 
sampling data (Figure 6) and found a general overestimation of SOC content by the 
SG250m product. In contrast, both the HWSD and the SG1 km severely underestimated 
the SOC content. In the current study area, the topography is highly undulating and ex-
hibits a high spatial heterogeneity. Therefore, global models such as SoilGrids are likely 
to be unsuitable for areas with a high spatial heterogeneity, and instead a local model 
would be more appropriate. 

 
Figure 5. SOC content map by HWSD (a), SoilGrids 1 km (b) and SoilGrids 250 m (c). Figure 5. SOC content map by HWSD (a), SoilGrids 1 km (b) and SoilGrids 250 m (c).

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 17 
 

 

   

Figure 6. Validation of the measured SOC with (a) HWSD, (b) SG1k m and (c) SG250m. 

5. Conclusions 
In this study, we generated a map detailing the spatial distribution of the predicted 

SOC levels in northwest Chongqing, China, by evaluating and comparing the SVM, RF 
and XGBoost models. In order to predict the SOC content of different types of land use, 
different driving factors were selected. Optical remote sensing bands and derived indices, 
precipitation and mean annual temperature were the main driving variables associated 
with the variation of SOC content in both the forest areas and the entire sampling area, 
while in the farmland area, they were optical remote sensing band11 and Pop-density. In 
contrast to previous studies, SAR remote sensing data were not applicable for predicting 
SOC content in karst areas. In predicting SOC content, the RF and XGBoost models 
showed superior performance and effectiveness compared to the SVM model. Meanwhile, 
for the forest and farmland, the RF and XGBoost algorithms showed a correspondingly 
be er performance. The prediction model based on different land use types could obtain 
higher simulation accuracy than the model based on the whole study area. In the future, 
more field sampling and other remote sensing sensors should be considered as predictor 
variables for SOC content modeling. 

Author Contributions: Conceptualization, W.Z.; Data curation, L.Y.; Formal analysis, J.X. and K.W.; 
Investigation, H.L.; Methodology, T.W. and W.Z.; Project administration, L.Y.; Resources, H.L. and 
K.W.; Software, T.W.; Supervision, W.Z.; Validation, J.X.; Visualization, L.X.; Writing—original 
draft, T.W.; Writing—review & editing, L.X. All authors have read and agreed to the published ver-
sion of the manuscript. 

Funding: This work and article processing charge were funded by the Project of Chongqing Science 
and Technology Bureau (cstc2021jcyj-msxmX0384), the Fundamental Research Funds for the Central 
Universities (SWU020015, SWU2209225), the National Natural Science Foundation of China 
(41930647, 41501575), the Strategic Priority Research Program (A) of the Chinese Academy of Sci-
ences (XDA20030203), the Innovation Project of LREIS (O88RA600YA). We would like to thank the 
HighEdit company for assistance with English language editing of this manuscript. 

Data Availability Statement: The data presented in this study are available on request from the 

corresponding author. 

Conflicts of Interest: There is no conflict of interest for the authors of this article. 

References 
1. Tifafi, M.; Guenet, B.; Ha é, C. Large Differences in Global and Regional Total Soil Carbon Stock Estimates Based on SoilGrids, 

HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data from USA, England, Wales, and France. Glob. Bioge-
ochem. Cycle 2018, 321, 42–56. 

2. Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. 
3. Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. 
4. Conant, R.T.; Ogle, S.M.; Paul, E.A.; Paustian, K. Measuring and monitoring soil organic carbon stocks in agricultural lands for 

climate mitigation. Front. Ecol. Environ. 2011, 9, 169–173. 
5. Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. 

Figure 6. Validation of the measured SOC with (a) HWSD, (b) SG1k m and (c) SG250m.

5. Conclusions

In this study, we generated a map detailing the spatial distribution of the predicted
SOC levels in northwest Chongqing, China, by evaluating and comparing the SVM, RF
and XGBoost models. In order to predict the SOC content of different types of land use,
different driving factors were selected. Optical remote sensing bands and derived indices,
precipitation and mean annual temperature were the main driving variables associated
with the variation of SOC content in both the forest areas and the entire sampling area,
while in the farmland area, they were optical remote sensing band11 and Pop-density. In
contrast to previous studies, SAR remote sensing data were not applicable for predicting
SOC content in karst areas. In predicting SOC content, the RF and XGBoost models showed
superior performance and effectiveness compared to the SVM model. Meanwhile, for the
forest and farmland, the RF and XGBoost algorithms showed a correspondingly better
performance. The prediction model based on different land use types could obtain higher
simulation accuracy than the model based on the whole study area. In the future, more field
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sampling and other remote sensing sensors should be considered as predictor variables for
SOC content modeling.
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