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Abstract: The Interferometric Synthetic Aperture Radar (InSAR) has been widely used as a power-
ful technique for monitoring land surface deformations over the last three decades. InSAR obser-
vations can be plagued by atmospheric phase delays; some have a roughly linear relationship with
the ground elevation, which can be approximated using a linear model. However, the estimation
results of this linear relationship are sometimes affected by phase ramps such as orbital errors, tidal
loading, etc. In this study, we present a new approach to estimate the transfer function of vertical
stratification phase delays and the transfer function of phase ramps. Our method uses the idea of
multi-scale spatial differences to decompose the atmospheric phase delay into the vertical stratifica-
tion component, phase ramp component, and other features. This decomposition makes the corre-
lation between the vertical stratification phase delays and topography more significant and stable.
This can establish the correlation between the different scales and phase ramps. We demonstrate
our approach using a synthetic test and two real interferograms. In the synthetic test, the transfer
functions estimated by our method were closer to the design values than those estimated by the full
interferogram–topography correlation approach and the band-pass filtering approach. In the first real
interferogram, out of the 9 sub-regions corrected by the proposed method, 7 sub-regions were outper-
formed the full interferogram–topography correlation approach, and 8 sub-regions were superior to the
band-pass filtering method. Our technique offers a greater correction effect and robustness for coseismic
deformation signals in the second real interferogram.

Keywords: InSAR; interferogram; troposphere delays; multi-scale spatial difference; Sierra Nevada
mountains; Menyuan earthquake

1. Introduction

The Interferometric Synthetic Aperture Radar (InSAR), with the advantages of sat-
isfactory spatial resolution (decameters), comprehensive coverage (thousands of square
kilometers), and competitive accuracy (millimeters to centimeters), has proven to be an
effective means and method for ground deformations [1,2], volcanic deformation monitor-
ing [3], seismic deformation inversion [4,5], surface building and infrastructure deformation
monitoring [6–8], and landslide collapse disaster monitoring [9]. A Synthetic Aperture
Radar (SAR) is a microwave sensor; its observations are frequently affected by atmospheric
phase delays between the radar platform and the ground. According to previous stud-
ies, atmospheric phase delays significantly impact InSAR observations, which can lead
to errors of 10 cm in deformations or hundreds of meters in elevations under particular
circumstances [10].

Atmospheric phase delays include ionospheric delays and tropospheric delays. The
spatial anisotropy of the ionosphere is very weak. Ionospheric delays can be omitted for
short wavelength SAR data (C and X bands) [11]. Compared with the ionospheric delay,
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the tropospheric delay is more significant, which is related to the atmospheric pressure,
temperature, and water vapor content in the troposphere and cannot be neglected [12].
Spatially, atmospheric pressure and temperature change slowly, while water vapor content
changes dramatically. Regarding vertical distribution, tropospheric delay can be divided
into vertical stratification phase delays and turbulence delays. The vertical stratification
phase delay is the static topographically correlated delay that results from different vertical
refractivity profiles during the two SAR acquisitions. In mountainous areas, the vertical
stratification delay has more impact on InSAR observations due to the large relief of
the terrain. Turbulence delay results from turbulent processes in the atmosphere, i.e.,
turbulence in the atmospheric motion causes atmospheric delay errors in both the horizontal
and vertical directions [13].

Since atmospheric phase delay is a critical error source in differential interferograms,
there is a need to find the most straightforward and robust measures to quantify and
mitigate the delay signal. One way to minimize the tropospheric phase delay is based on
auxiliary data from sources such as the global navigation satellite system (GNSS) [14] or
medium-resolution imaging spectrometry (MERIS/MODIS) [15,16] and other atmospheric
reanalysis data (such as Modern Era Retrospective-Analysis for Research and Applications
(MERRA), etc.) [17,18]. The monitoring network density of GNSS is sparse, and spatial
interpolation processing is required between networks, which reduces the accuracy of
atmospheric delay correction. MODIS data only works in the daytime and is easily affected
by clouds. Atmospheric reanalysis data are difficult to synchronize with the time obtained
from SAR images and have insufficient spatial resolution. The second method to mitigate
the tropospheric delay is to average N-independent interferograms. This is due to the
fact that the neutral atmospheric signals are uncorrelated over timescales longer than one
day [19]. Hence, we can use the filtering techniques in the time series. The second method
requires many interferogram pairs and considers that the atmospheric tropospheric delay
is Gaussian, but this is not the case [20]. Another way is based on the spatial statistical char-
acteristics of atmospheric phase delays to estimate and remove the effects of atmospheric
delays. The efficacy of modeling-based approaches is still debated, especially the extent to
which they consistently reduce or add noise to interferometric observations [21].

In mountainous areas or areas with sizeable topographic reliefs, the empirical function
model between atmospheric phase delay and terrain elevation is established to mitigate
atmospheric delay by analyzing the relationship between them. The atmospheric phase
delay exists in multiple spatial scales. In addition, orbit errors cause a nearly linear ramp
over the whole interferogram. Because of long-wavelength scale signals such as fault stable
slip behavior [22], ocean tidal loading [23], and seasonal hydrological loading [24], the
transfer function estimated by the empirical function model will have some deviation. In
order to reduce the impact of such deviation, Lin et al. [21] and Shirzaei et al. [25] proposed
techniques based on band-pass filtering and wavelets. These methods only consider the
impacts of long-wavelength scale signals and ramps to improve the stability of the transfer
function between vertical stratification delays and topographic elevation. Still, the transfer
function parameters of long-wavelength scale signals and ramps are not estimated.

Our approach focuses on mitigating the effects of vertical stratification component
delays in atmospheric phase delays and has a specific estimation ability for the impact of
other linear long-wavelength scale signals and ramps. The approach proposed in this study
is relatively simple and effective for correcting vertical stratification component delays
without the need for other external auxiliary data. In our study, a phase component model
is established based on the atmospheric phase delay characteristics of a single differen-
tial interferogram. For this purpose, a multi-scale spatial difference (MSSD) approach
is proposed to estimate the transfer functions of vertical stratification component delays
and ramp signals. Our method considers the spatial variability of both elevation and
horizontal space of atmospheric phase delays. The MSSD method can estimate the vertical
stratification component delays more significantly and stably. We tested our approach with
160 synthetic interferograms containing different ramps and turbulence. Using the synthetic
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experimental results, we show how our method is insensitive to linear long-wavelength
scale signals. Next, we demonstrate our approach with examples from the Sierra Nevada
Mountains in the western United States and the Menyuan earthquake in Qinghai Province,
China. In both examples, compared with the full interferogram–topography correlation
approach and band-pass filtering approach, the interferogram corrected by the MSSD ap-
proach shows more improvement in sub-regions. The ramp of the phase is also significantly
modified. We show that most of the remaining signals are mainly due to turbulence delays,
which require more complex correction methods than those described here.

The rest of this article is organized as follows. Section 2 introduces the model for
decomposing the atmospheric phase and the proposed approach for estimating the transfer
function of vertical stratification phase delays and the transfer function of phase ramps.
Sections 3 and 4 describe a synthetic test and two real interferograms to analyze the
reliability of the proposed method, respectively. Finally, Section 5 discusses the proposed
approach and concludes this article.

2. Model and Estimation Approach
2.1. Model

The atmospheric phase delay has a multi-scale spatial distribution, with some being
the component with a larger wavelength scale, some being the turbulence component and
some vertical stratification component delays. Our model decomposes the atmospheric
phase delay into three major features: the vertical stratification component delay, the
long-wavelength scale signal and ramp, and the turbulence and noise signal. The transfer
function and bias term of the vertical stratification component delays in the atmospheric
phase delay is stable, not affected by spatial changes, and approximate to a simple linear
relationship [26,27]. The phase of long-wavelength scale signals changes approximately
linearly in the horizontal space and does not change with topography. We also considered
the influence of phase ramps across the scene. Here, we combine the linear long-wavelength
scale and ramp signals into a “ramp”. Turbulence signals are correlated in a short range
(a few km) [28]. Furthermore, the noise signals have random characteristics. Hence, the
atmospheric phase delay can be expressed as follows:

φ =


φtrop = K1h + φc

φline = K2x
φother = φtur + φnoise

(1)

where K1 and φc are the transfer function and bias term between the vertical stratification
component delays φtrop and the topographic elevation h in the interferogram, respectively.
K2 is the transfer function of the ramp component delays φline, x is the position, and φother
includes turbulence signals φtur and noise signals φnoise.

2.2. Estimation Approach

In the interferogram, the phase difference between the two points i and j in the ramp
gradient direction is as follows:

φij =


∆φtrop = K1hij
∆φline = K2S

∆φother = ∆φtur + ∆φnoise

(2)

where φij = φj − φi is the phase difference between points i and j; hij = hj − hi is the
topographic height difference between points i and j, which can be calculated from the
digital elevation model (DEM). S = xj − xi is the distance between points i and j in
the ramp gradient direction, which is called the scale factor of difference. ∆φother is the
phase difference of the φother. After the difference, ∆φtrop is linearly correlated with the
topographic height difference of the two points i and j. ∆φline is linearly correlated with the
scale factor S. When S is fixed, ∆φline is a constant. In addition, φtur can weaken each other
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in the case of short-distance differences since the atmospheric phase delays have a strong
correlation in a short range [19]. The noise component has random characteristics, and
its average value is approximately zero. Here, we omit ∆φother and simplify Equation (2)
as follows:

φij = K1hij + K2S (3)

Equation (3) shows that a new linear equation can be obtained after the difference of
interferogram, where K1 is the transfer function and K2S is the bias term. In this equation,
the phase difference φij and the topographic height difference hij are linearly related, and the
transfer function K1 of this linear relationship is the same as that of the atmospheric phase
delay and topographic height relationship of the original interferogram. In Equation (3),
K1 is independent of the spatial scale factor S, while the bias term K2S is proportional to
the spatial scale factor S. Therefore, K2 remains unchanged before and after the difference.
We use Equation (3) to fit the phase difference φij and topographic height difference hij
on the difference of multiple spatial scale factors to obtain K1 and K2S and then fit K2S
of different spatial scale factors to estimate K2. The transfer functions K2 of the ramp in
different directions are unequal, and the absolute value in the ramp gradient direction is
the largest. Here, we estimate K2 through eight directions (i.e., azimuth angles 0◦, 45◦,
90◦, 135◦, 180◦, 225◦, 270◦, and 315◦, respectively) with an interval of 45◦. The maximum
absolute value is taken as the transfer function of the ramp, and the corresponding direction
is taken as the ramp gradient direction.

Due to the symmetry of the eight directions, it is only necessary to estimate K2 in the
four directions of 0◦, 45◦, 90◦, and 135◦. Under these circumstances, the difference between
the ramp gradient direction and the estimated direction is 22.5◦ at most, and the resulting
deviation is K2(1− cos(22.5◦)) ≈ 0.08K2, which can be ignored (See the Appendix A for
the calculation process). To decrease the effect of turbulence on the estimation, we adjusted
the difference scale factor to no more than 5 km.

Figure 1 shows the results of the partial difference processed by our approach. Due to
the influence of atmospheric turbulence and ramp, it is difficult to observe the relationship
between atmospheric phase and topography from the original interferogram. The K1 value
calculated using the full interferogram–topography correlation is 1.81 rad/km, which
considerably differs from the designed value of 2.5 rad/km (Figure 1). The correlation
coefficient R of phase difference and topographic height difference is about 0.6, while the R
of phase and topography in the original interferogram is 0.34. An evident correlation can
also be observed between phase difference and topographic height difference. Compared
with the scatter plot (phase vs. topography) of the original interferogram, the difference
scatter plot (phase difference vs. topographic height difference) is more concentrated, and
the estimated K1 value is close to the design parameters.

Figure 2 depicts the correlation coefficient of phase difference (R), the topographic
height difference of multiple spatial scales in four directions, and the estimated values
of K1 and K2S. With the increase in the difference scale, K2S in the four directions keeps
a linear change, among which the absolute gradient of 0◦ azimuth is the largest. This is
consistent with the actual parameter (see Section 3 synthetic test). Even in other directions,
the estimated K1 value after the difference is closer to the actual parameter than the full
interferogram–topography correlation approach. Figure 2 also shows that the correlation
coefficient generally presents a gradually decreasing trend with the increase in the difference
scale, and the estimated K1 moderately deviates from the actual value. As a result, when the
correlation coefficient is at its highest, K1 may be used as the final estimation. However, due
to the influence of unwrapping errors and other errors, in the case of real interferograms,
the correlation coefficient R is not the maximum when the difference scale is small (see
Section 4.1. Sierra Nevada Mountains). Finally, the transfer function estimated by the
minimum scale (i.e., the distance between two adjacent pixels) is taken as the final K1.
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Figure 1. Original (top) and differential topography (first column) and interferogram (second col-
umn) with scale factors of 1 km, 2 km, 3 km, 4 km, and 5 km, respectively. The last column is the
scatter plots of phase differences and topographic height differences. The scatter plots are diluted
300 times, and the direction of difference is azimuth 0◦. The estimated values of K1, K2S, and cor-
relation coefficient R for each scale factor are shown at the bottom right corners of the scatter plots.
The final estimate values of K1 and K2S are 2.50 rad/km and 0.1 rad/km, respectively, which are
equal to the values set in the synthetic test (2.5 rad/km and 0.1 rad/km). In comparison, the K1 value
calculated using full interferogram–topography correlation is 1.81 rad/km.
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Figure 2. Values of the correlation coefficient R (column 1), K1 (column 2), and K2S (column 3, blue
dots, the red line is the fitting line of the blue dots) after the difference of multiple scales in four
directions; the final K1 is estimated according to the proposed method. The interval of the difference
scale factor is 0.25 km, and the first scale factor is 0.025 km. The maximum absolute value of K2 is
0.10 rad/km (A), the corresponding azimuth is 0◦, and the related K1 is 2.50 rad/km. The K2 values
of other azimuth (B–D) are all less than 0.1 rad/km.

3. Synthetic Test

In our experiment, we selected the DEM of the Sierra Nevada Mountains in the
western United States to synthesize the interferogram. An ancient saline lake named Mono
Lake is located at the eastern edge of the Sierra Nevada. The altitude of this area ranges
from 140 m to 4.13 km. The topography is flat in the southwest, with a mountain range
extending northwest to southeast in the middle (Figure 3). The components considered in
the synthetic interferogram include vertical stratification component delays, turbulence,
and ramp signals. We also simulated a simple deformation to verify the robustness of our
method to deformation signals. In this section, we examine the efficacy of the suggested
method by varying the turbulence signal intensity, amplitude, and ramp direction.
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The blue frames are the coverage of the Sentinel-1A data.

As for turbulence signals, we chose the modified von Karman (MVKS) phase turbu-
lence model. The power spectrum density of the von Karman Spectrum (also called the
modified von Karman spectrum) is given by [29]:

Φn(k) = 0.033C2
n

exp(− k2

k2
m
)

(k2 + k2
0)

11
6

, 0 ≤ k ≤ ∞ (4)

where C2
n is the medium structure parameter, km = 5.92/l0 is an equivalent wavenumber

associated with the inner scale l0, k0 = 2π/L0 is a wavenumber related to the outer scale L0,
and k is the unbounded non-turbulent wavenumber in the medium. In the above equation,
Φn(k) represents the so-called power spectral density (PSD) of the refractive medium index.
In standard atmospheric turbulence literature, it is known that the numerical ranges of the
structure parameter C2

n define strong, intermediate, and weak turbulence. While the above
represents the necessary values of the structure parameter defining a specific turbulence
regime. It also needs to specify the so-called Fried parameter r0 corresponding to the chosen
C2

n. This is obtained via the following formula [30]:

r0 = 0.185
[

4π2

k2LC2
n

]3/5

(5)

where L is the propagation distance. The Fried parameter means the diameter of a circular
area, over which the root mean square (RMS) of the wavefront aberration due to passage
through the atmosphere, equals 1 rad.

The second parameter is the amplitude of the ramp. Here, we assume a ramp that varies
bilinearly in space. A small ramp parameter is set to 1 rad, equivalent to 0.01 rad/km, close
to the amplitude of tectonic signals [21]. A large ramp is set to 10 rad, equal to 0.1 rad/km.
The gradient direction of the ramp is set to 0◦ and 112.5◦, respectively. The last parameter is
the Fried parameter r0 of turbulent signals, which is set to 5 km and 50 km, corresponding
to turbulence amplitude of about 9 and 1.5 rad, respectively. The other parameters are kept
constant during the simulation process. These parameters consist of the number of sample
points (grid resolution) = 4000× 4000, the size of grid = 25 m× 25 m, the inner scale l0 = 10 m,
and the outer scale L0 = 30 km, respectively. The transfer function of vertical stratification
component delays and topographic elevation is set to 2.5 rad/km. In the synthesis test, we
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also construct the deformation signals by using a point source of inflation in an elastic half
space [31] to demonstrate the robustness of our proposed approach. The surface deformation
generated by the tectonic signal is 7.57 rad, and the range is about 2000 × 2000.

In total, we generated eight categories of interferograms regarding different Fried r0
and ramp parameters, and each category corresponded to 20 interferograms. We expressed
delay results in terms of phase (unit rad). Figure 4 illustrates one realization of our synthetic
interferograms.
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Figure 4. A schematic description of the construction of the synthetic interferometry: (A) Topogra-
phy; (B) Topographically correlated tropospheric delays; (C) Large bilinear ramp are computed as
described in the text; (D) Turbulent signals; (E) deformation signals that we project them to phase
and combine them to form the (F) final synthetic interferogram. In this example, the Fried parameter
r0 is 5 km, the inner scale l0 is 10 m, the outer scale L0 is 30 km, the K1 is 2.5 rad/km, and the ramp
amplitude (K2) is 0.1 rad/km.

Next, we estimated K1 and K2 values from each synthetic interferogram using the
MSSD approach. For comparison, we also estimated the K1 from the full interferogram–
topography correlation approach and band-pass (BP) filtering approach [21] (Figure 5). We
used the average value and measures of dispersion (standard deviation) to evaluate the
results of the three processes (Table 1) regarding different parameters. Different r0 could
be used to compare the impact of turbulence on the transfer functions estimated by the
three approaches. The dispersion of K1 predicted using the full interferogram–topography
correlation technique was more significant in solid turbulence (r0 = 5km) than in weak
turbulence (Figure 5A 0.200 vs. Figure 5E 0.031, Figure 5B 0.192 vs. Figure 5F 0.032,
Figure 5C 0.268 vs. Figure 5G 0.033, and Figure 5D 0.252 vs. Figure 5H 0.024). Although
the same situation exists for the K1 value estimated by the MSSD method (Figure 5A 0.016
vs. Figure 5E 0.002, Figure 5B 0.013 vs. Figure 5F 0.002, Figure 5C 0.016 vs. Figure 5G 0.003,
and Figure 5D 0.019 vs. Figure 5H 0.003), the dispersion of the K1 value estimated by MSSD
was significantly smaller than that of the K1 value estimated by the full interferogram–
topography correlation approach. The results of the BP filtering approach were closer



Remote Sens. 2023, 15, 2115 9 of 20

to those of the MSSD approach. It can also be concluded from Figure 5 and Table 1 that
the K1 value calculated by the full interferogram–topography correlation had an overall
deviation. The size of the deviation was proportional to the amplitude of the ramp. In
the study area of the test, the land surface showed a general trend in high in the northeast
and low in the southwest. We believe that such trend in land surface slope and the ramp
affected the K1 value calculated by the full interferogram–topography correlation. Both
MSSD approach and BP approach were less affected by the ramp, and the estimated K1
value was more stable and closer to the design value of the experiment. The ramp direction
in Figure 5 BDFH was 112.5◦, having a 22.5◦ difference from the estimated direction, while
the predicted K1 values remained relatively accurate. The K2 values have a relatively small
deviation in Figure 5B,F (0.095 and 0.093, respectively), which was consistent with the
design of our approximate calculation.
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Figure 5. Comparison of the transfer functions estimated by using full interferogram–topography
correlation, BP, MSSD, and the K2 estimated by our method. There are 20 realizations of synthetic
interferograms in each plot, with different turbulence signals, amplitudes, and ramp directions. The
input K1 is 2.5 rad/km (first column, blue dashed lines). The input K2 is 0.1 rad/km (A,B,E,F) and
0.01 rad/km (C,D,G,H) respectively (second column, blue dashed lines).
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Table 1. Statistical values of transfer functions estimated by three approaches: average value (AVG)
and standard deviation (S.D.).

Group A B C D E F G H

K1
(MSSD)

AVG 2.503 2.505 2.500 2.492 2.500 2.499 2.500 2.500

S.D. 0.016 0.013 0.016 0.019 0.002 0.002 0.003 0.003

K1
BP

AVG 2.499 2.507 2.498 2.507 2.500 2.500 2.500 2.500

S.D. 0.025 0.019 0.023 0.019 0.000 0.000 0.000 0.000

K1
(Full-Igram)

AVG 1.603 3.734 2.426 2.569 1.665 3.656 2.413 2.620

S.D. 0.200 0.192 0.268 0.252 0.031 0.032 0.033 0.024

K2
(MSSD)

AVG 0.101 0.095 0.011 0.011 0.100 0.093 0.010 0.010

S.D. 0.005 0.003 0.008 0.003 0.001 0.000 0.001 0.000

The results showed that our approach gave a stable estimate of K1 and K2 values
regardless of the turbulence signal strength, the amplitude, and the direction of the ramp.
To summarize the results from the synthetic test, our approach provided a more robust
way to estimate the transfer function. This method was less sensitive to phase ramps
and more adaptable to turbulence, resulting in a more accurate calculation of K1 in the
presence of orbital inaccuracy or significant turbulence signals. There may have been
a slight fluctuation of transfer functions depending on the characteristic amplitude of
turbulent signals.

4. Correcting Real Interferogram

We tested the MSSD approach in two study areas. Our first example was in the Sierra
Nevada Mountains, California. It was assumed that there was no deformation signal in this
area during the observation period, only the turbulence signal. We used this example to
emphasize the effectiveness of our algorithm in the presence of large-amplitude turbulence
noise. Our second example was the 2016 Menyuan earthquake (Qinghai Province, China).
This example presented a relatively simple tectonic source combined with complicated
atmospheric turbulent signals. Next, we tested the robustness of K1 and K2 by removing
the tectonic signals from the interferogram.

4.1. Sierra Nevada Mountains

We apply the MSSD approach to a 12-day interferogram generated by SAR images ac-
quired in descending track of the Sentinel-1A TOPS (Terrain Observation with Progressive
Scans) mode (path 144) over the Sierra Nevada Mountains in the western United States
(Figure 3). The master and slave images of this interferogram were acquired on the 9 June
2020 and 21 June 2020. Therefore, we assumed no deformation during this period and the
phase change was mostly due to atmospheric delay. SRTM DEM with a 1-s resolution and
AUX_POEORB precise orbits with an accuracy of 5 cm were used to flatten the interfero-
gram. The interferogram was obtained by the InSAR Scientific Computing Environment
(ISCE) [32]. The interferogram was multi-looked by factors of 19 and 7 along range and
azimuth to improve the coherence and reduce the unwrapping error. The unwrapped
interferogram was obtained by applying the SNAPHU approach [33]. After masking the
low-coherence points (i.e., coherence less than 0.3), the interferogram was obtained, as
shown in Figure 6B, which clearly indicates that there was a complex phase. Furthermore,
there was a ramp from northwest to southeast, which was evidently inconsistent with the
terrain of the region. Although we adopted large multi-look parameters to reduce the
unwrapping errors and mask the interferogram with coherence of less than 0.3, there were
still some noises and unwrapping errors in the interferogram. These errors were due to the
influences of lake, vegetation, and layover in the study area, which may lead to incoherence
or unwrapping errors [34], as shown in Figure 6C–E.
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Figure 6. (A) The topography of the Sierra Nevada mountains; (B) the original interferogram; (C) the
Interferogram of the Mono Lake area (Despite the mask processing, a large number of noise signals
remain in this area); (D) the layover area in the interferogram; (E) the layover area in SAR image.

Figure 7 depicts the correlation coefficient R of phase difference and topographic
height difference in four directions, as well as the estimated values of K1 and K2S. It shows
that the estimated K1 of the minimum difference scale (0.035 km, azimuth = 135◦) is about
−0.2 rad/km in four directions. With the increase in the difference scale, the estimated K1
absolute value shows a gradually increasing trend, which is close to the situation of the
synthetic test. The absolute value of correlation coefficient R gradually increases with the
increase in the difference scale, which is different from the condition of the synthetic test.

Figure 8 shows the scatter plots under various difference scales at 135◦. When the
difference scale is 0.035 km (Figure 8A), the phase difference is concentrated between
the fitted value ±1 rad within the 95% confidence band, and the elevation difference is
concentrated in the range ±0.05 km. The correlation coefficient R is significantly affected
by the interferogram unwrapping error and other errors, and the calculation result of R
is small (−0.05). With the increase in the difference scale, the distribution of the elevation
difference increases significantly. When the difference scale is 5 km (Figure 8F), the phase
difference is concentrated between the fitted value ±2 rad, and the elevation difference is
concentrated between ±1.5 km. The influence of the error on the correlation coefficient R
tends to decrease, and the R result becomes larger (−0.36). In this case, it is not appropriate
to use the correlation coefficient R to select the K1 value, thus we choose the K1 value
estimated by the minimum spatial scale.
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Figure 7. The values of the correlation coefficient R (column 1), K1 (column 2), and K2S (column 3,
blue dots, the red line is the fitting line of the blue dots) after the difference of the interferogram
in four directions, and the final K1, estimated according to the method described in the text. The
maximum absolute value of K2 is 0.070 rad/km (D), the corresponding azimuth is 135◦, and the
related K1 is −0.200 rad/km. The K2 values of other azimuth (A–C) are all less than 0.070 rad/km.

We used three methods to estimate the atmospheric phase delay. The first was the
full interferogram–topography correlation approach, by which the estimated K1 value was
−0.22 rad/km. The second was the BP approach, by which the estimated K1 value was
−0.776 rad/km. The third was our MSSD approach, by which the estimated K1 value
was −0.20 rad/km. The K2 value of the ramp estimated by our method was 0.07rad/km,
and the direction of the ramp was 135◦. Next, we used the estimated transfer functions
to correct the original interferogram. By using the K1 parameters estimated from the full
interferogram–topography correlation approach and BP approach, it still had an area of
significant change from northwest to southeast (Figure 9B,C). By using the K1 and K2 pa-
rameters, estimated through the proposed approach, the phase distribution of the corrected
interferogram acquired more uniform, and even a significant portion of the gradient was
reduced (Figure 9C). The correlation coefficients between the corrected interferogram and
topography were the criteria for the effectiveness of the chosen approach. Accordingly, the
most suitable correction technique was the one that reduced this correlation significantly.
To demonstrate the advantage of our approach, we divided the interferogram into nine
sub-regions and then calculated the correlation coefficients of these regions, respectively.
Figure 9B–D show the nine sub-regions, and the nine obtained correlation coefficients are
illustrated in Figure 10 and Table 2. In theory, the better the correction effect is the smaller
the absolute value of the correlation coefficients of each sub-region. It can be seen that the
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absolute values of the correlation coefficient corrected by our approach in seven out of the
nine sub-regions were smaller than those of the full interferogram–topography correlation
approach and BP approach.
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Table 2. Correlation coefficients of 9 sub-regions.

Sub
Region 0 1 2 3 4 5 6 7 8

Original −0.878 −0.416 0.391 −0.545 −0.111 0.183 1.808 0.234 0.153
Full-Igram −0.743 −0.280 0.532 −0.406 0.024 0.319 2.030 0.374 0.284

BP −0.710 −0.249 0.513 −0.416 0.058 0.345 2.589 0.361 0.352
MSSD −0.128 0.044 0.528 −0.052 0.026 −0.001 2.151 −0.004 −0.248
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Figure 9. Comparison between the interferograms in the Sierra Nevada mountains before and after
correction using the MSSD approach; (A) the original interferogram (B) the corrected interferogram
obtained through the full interferogram–topography approach (C) the corrected interferogram obtained
through the BP approach and (D) that obtained by MSSD; (E,F) the ramp component and the sum of
topography-related component and ramp component, both acquired by the MSSD approach. Notice that
the phase gradient in (D) is reduced after correction. Correlation coefficients of 9 sub-regions(0–8) are
shown in Table 2.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 10. Correlation coefficients of 9 sub-regions; only the absolute values of the coefficients 
corrected by MSSD in the sub-regions 2, 4, and 6 are larger than those corrected by the full 
interferogram–topography correlation approach or BP approach (Table 2). 

Table 2. Correlation coefficients of 9 sub-regions. 

Sub  
Region 

0 1 2 3 4 5 6 7 8 

Original −0.878 −0.416 0.391 −0.545 −0.111 0.183 1.808 0.234 0.153 
Full-Igram −0.743 −0.280 0.532 −0.406 0.024 0.319 2.030 0.374 0.284 

BP −0.710 −0.249 0.513 −0.416 0.058 0.345 2.589 0.361 0.352 
MSSD −0.128 0.044 0.528 −0.052 0.026 −0.001 2.151 −0.004 −0.248 

4.2. 2016 Menyuan Earthquake 
An Mw = 5.9 earthquake struck Menyuan county, Qinghai (101.641°E, 37.67°N) on 21 

January 2016. A moment–tensor solution from teleseismic data suggests that the Menyuan 
earthquake occurred on a 43° southern dipping thrust fault at about 10 km depth with a 
strike of 134° [35,36]. The hypocenter was located at the intersection of the Lenglongling 
fault and the Tuolaishan fault. This region is one of the most tectonically active areas [37] 
(Figure 11). 

 
Figure 11. Reference map of the 21 January 2016 Menyuan Earthquake superimposed on 
topographic relief, with maximum elevation up to 5.17 km. The star shows the location of the 2016 
Menyuan event. The red lines denote the active faults. The blue frames are the coverage of the 
Sentinel-1A data. 
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interferogram–topography correlation approach or BP approach (Table 2).

4.2. 2016 Menyuan Earthquake

An Mw = 5.9 earthquake struck Menyuan county, Qinghai (101.641◦E, 37.67◦N) on
21 January 2016. A moment–tensor solution from teleseismic data suggests that the Menyuan
earthquake occurred on a 43◦ southern dipping thrust fault at about 10 km depth with a strike
of 134◦ [35,36]. The hypocenter was located at the intersection of the Lenglongling fault and
the Tuolaishan fault. This region is one of the most tectonically active areas [37] (Figure 11).
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Figure 11. Reference map of the 21 January 2016 Menyuan Earthquake superimposed on topographic
relief, with maximum elevation up to 5.17 km. The star shows the location of the 2016 Menyuan
event. The red lines denote the active faults. The blue frames are the coverage of the Sentinel-1A data.

The coseismic deformation due to the 2016 Menyuan earthquake was mapped using
the ascending track of the Sentinel-1A TOPS mode (path 128). Next, the ascending coseismic
interferogram was generated from 13 January 2016 to 6 February 2016. The method and
parameters of obtaining the interferogram were the same as those of the Sierra Nevada
Mountains case. The temporal and spatial baselines were relatively small (15 m), and
limited vegetation coverage existed in the epicenter region. Thus, the coherence was
high, and the low-coherence points with coherence of less than 0.2 were masked. The
interferogram is shown in Figure 12A, which clearly indicates a complex phase in this
interferogram and a ramp from north to south. The patterns of the earthquake epicenter
were smooth and distinct. Moreover, the interferogram made from these two SAR scenes
was assumed to be dominated by coseismic deformation signals. In addition, we used the
Okada elastic dislocation model [38] to construct the fault plane and then removed the
modeled displacement field from the interferogram.
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Figure 12. Comparison between the interferograms (wrapped) in the 2016 Menyuan coseismic dis-
placement example before and after correction using the MSSD approach; (A–D) the model-retained
interferograms before and after correction; (E–H) the local view of the epicenter area; (I–L) the
model-removed interferograms before and after correction.
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Our estimated K1 values with the model-retained and model-removed interferograms
using the proposed approach were very close: 0.11 and 0.12 rad/km (Figure 12). The
K2 values estimated by our method were −0.030 and −0.031 rad/km, respectively. In
comparison, the K1 values calculated by the full interferogram–topography correlation
approach were −0.004 and 0.512 rad/km, and the K1 values calculated by the BP approach
were −0.950 and −0.946 rad/km. According to the findings, the derived K1 and K2 values
by our approach were more stable. The phase gradient in the interferogram clearly decreased
after correcting both the topographically correlated tropospheric and ramp signals with the
K1 and K2 values (Figure 12D,L). Eventually, the full interferogram–topography correlation
approach and BP approach reduced less gradients than the MSSD correction method. In
the local view of the epicenter region (Figure 12E,F), the boundary of the earthquake
region after atmospheric delay correction in our method was clearer than that in the other
two methods.

We also calculated the correlation coefficients of nine sub-regions of the interferograms
(Figure 13, Tables 3 and 4). In the model-retained interferogram, the correlation coefficients
corrected by the MSSD method in eight sub-regions were better than the full interferogram–
topography correlation approach. In contrast, the correlation coefficient in sub-region
4 could not be correctly estimated due to the influence of seismic deformation. In the
model-removed interferogram, the correlation coefficients corrected by our approach in
seven sub-regions were better than the full interferogram–topography correlation approach.
In the two interferograms, the correlation coefficients of the seven sub-regions corrected by
MSSD method were better than those of BP method.
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Table 3. Correlation coefficients of 9 sub-regions before model-removed.

Sub Area 0 1 2 3 4 5 6 7 8

Orignal 2.138 2.320 2.431 1.975 1.538 1.976 1.856 1.824 1.802
Full-Igram 0.219 0.198 0.068 0.064 −0.158 0.119 −0.103 −0.180 −0.178
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Table 4. Correlation coefficients of 9 sub-regions after model-removed.

Sub Area 0 1 2 3 4 5 6 7 8

Orignal 2.138 2.315 2.430 1.966 1.717 1.974 1.855 1.825 1.802
Full-Igram 0.191 0.190 0.093 0.027 −0.033 0.082 −0.127 −0.195 −0.199

BP 0.184 0.206 0.136 0.019 −0.064 0.069 −0.129 −0.193 −0.198
MSSD 0.083 0.049 −0.086 0.032 −0.004 0.095 −0.008 −0.079 −0.083

5. Discussion and Conclusions

In this study, a simple approach using multi-scale spatial difference was used to
analyze and correct the vertical stratification component delays. In this approach, the
atmospheric phase delays were decomposed into the uncertainties of the vertical stratifica-
tion component, ramp component, and other turbulent components. Next, we used our
approach to estimate the transfer parameters of vertical stratification component delays and
ramp components. The main idea of the approach is that the transfer function of the vertical
stratification component delays will not change after the difference, while the difference
value of ramp component will increase with the increase in spatial scale. In the actual
algorithm implementation, we conducted multi-scale spatial differences in four directions,
which may have had little influence on the K1 and K2 estimations, but we assume that can
be ignored. The results of synthetic testing with various turbulence signals and ramps,
along with a real interferogram encompassing the Sierra Nevada Mountains and the 2016
Menyuan earthquake, revealed that our method could more precisely estimate the transfer
function. In the synthetic test, the multi-scale spatial difference approach offered a satis-
factory insensitivity to approximate linear phase gradient, which had a good effect when
there were orbital errors or long-wavelength scale signals. The actual example in the Sierra
Nevada Mountains showed that it was more reasonable to choose the K1 value estimated
by the minimum spatial scale than to use the correlation coefficient due to the influence of
noise and unwrapping error. The example of the Mengyuan earthquake showed that our
method was more robust to deformation signals.

Our method assumed that the ramp signal was linear and independent of elevation.
The usefulness of this strategy has to be carefully addressed if the ramp is not roughly
linear. The approach proposed in our study was to obtain the optimal global transfer
functions of the interferogram. In the analysis of real interferograms, due to the influence
of local turbulence, after the multi-scale spatial difference approach, this may lead to the
over-correction of short-wavelength signals. Therefore, we could not correct turbulence at
all scales.

In conclusion, our multi-scale spatial difference approach should be considered a fast
and handy tool when another method is not available. Still, it cannot cure all challenges
posed by tropospheric delays.
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Appendix A

In Figure A1, let the ramp gradient direction of the interferogram be the OB direction,
and then its corresponding K2 value is:

K2 = tan(β) =
AB
OA

(A1)

while the approximate calculation direction is OB′, the estimated gradient value K′2 is:

K′2 = tan(β′) =
A′B′

OA′
(A2)
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Figure A1. Error caused by approximate calculation of K2 direction.

Let the angle between OB and OB′ in the horizontal projection be α, and then we
can get:

K′2
K

=
A′B′

OA′
OA
AB

(A3)

Since A′B′ = AB, Formula (3) can be sorted as follows:

K′2
K

=
OA
OA′

= cos(α), (A4)

or
K′ = Kcos(α). (A5)

The maximum α is π/8, and the error of K′2 is:

K′2 = K2cos(π/8) ≈ 0.92K2 (A6)

Then, the estimated error of K2 is 0.08K2, which can be ignored.
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