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Abstract: Human activity recognition plays a vital role in many applications, such as body falling
surveillance and healthcare for elder’s in-home monitoring. Instead of using traditional micro-
Doppler signals based on time-frequency distribution, we turn to another way and use the Relax
algorithm to process the radar echo so as to obtain the required parameters. In this paper, we aim
at the multi-view idea in which two radars at different views work synchronously and fuse the
features extracted from each radar, respectively. Furthermore, we discuss the common estimated
time-frequency features and time-varying spatial features of multi-view radar-echo and then for-
mulate the parameters matrix via principal component analysis, and finally transform them into
the machine learning classifiers to make further comparisons. Simulations and results show that
our proposed multi-view parameter fusion idea could lead to relative-high accuracy and robust
recognition performance, which would provide a feasible application for future human–computer
monitoring scenarios.

Keywords: multi-view feature fusion; millimeter-wave radar; parameters estimation; Relax algo-
rithm; neural network

1. Introduction

Human activity recognition plays a vital role in many applications, such as surveil-
lance, and healthcare [1]. Especially, with the aging population worldwide, intelligent
equipment for eldercare and healthcare monitoring has been badly needed. As discussed
in [2], about one-third of elderly people suffer severe lesions and half of them suffer fall
events repeatedly. How can sensors be used to detect or monitor fall events? The em-
ployed sensors can be categorized into wearable and contactless ones [3]. Wearable ones,
such as bracelets and ankle sensors, must be worn or carried constantly, which might be
inconvenient and easily broken or forgotten with high false alarm rates [4]. Given these
limitations, contactless ones have gained wide research interests, which include cameras,
microphones, and micro-radar systems. Cameras are vulnerable to lighting conditions and
blind spots, and microphones are sensitive to ambient noise. Furthermore, these sensors
might all infringe on privacy especially when deployed in private homes.

Based on the rapid development of low-cost frequency-modulated continuous-wave
(FMCW) radars (such as TI 1443 mm-wave radar), the exploitation and extraction of radar-
echo data are utilized to detect, identify, and recognize motion [5–7]. Authors in [8] address
the problem of radar-based human gait recognition by the dual-channel deep convolutional
neural network (DC-DCNN). Meanwhile, a multidimensional principal component analysis
(MPCA) was proposed to combine features of time, Doppler, and range information to
achieve fall detection [9]. Authors in [10] tried to extract phase information contained in
the complex high-resolution range profile to derive instantaneous velocity, acceleration,
and jerking of the human body for fall detection and monitoring. Gurbuz and Amin [11]
introduced deep learning (DL)-based data-driven approach for motion classification in
indoor monitoring areas. Le Kernec et al. [12] proposed radar signal processing approaches
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for assisted living through three typical applications, i.e., human daily activity recognition,
respiratory disorders, and sleep stages classification.

Typically, Chaccour et al. [13] summarized the existing fall-related systems and di-
vided them into three categories, i.e., the wearable method, the nonwearable method, and
the fusion method. Among these nonwearable methods, ones based on micro-Doppler
signatures have been the hot-topic [14,15]. Authors in [16] focus on the feasibility of clas-
sifying different human activities based on micro-Doppler signatures where six features
are extracted from the Doppler spectrogram and a support vector machine (SVM) is then
trained using the measurement features to classify the activities. Other than the classical
machine learning mechanisms (such as SVM), deep convolutional neural networks (DC-
NNs) have also been proposed to tackle the micro-Doppler signatures. One issue must
be considered wherein the design of handcrafted features might affect the conventional
supervised learning paradigm, and also limit the scalability of the proposed schemes. Au-
thors in [17] try to apply the DCNN directly to a raw micro-Doppler spectrogram for both
human detection and activity classification problems, which can jointly learn the neces-
sary features and classification boundaries without employing any explicit features on the
micro-Doppler signals. Obviously, most researches focus on either the use of micro-Doppler
signatures or different CNN models and might ignore the fact that practical applications
often incorporate multi-view monitoring conditions. However, almost all these methods
above (supervised or unsupervised ones) do not make full use of the spatially distributed
radars that are realistically available. In addition, the non-ideal quality of radar echo would
also affect the micro-frequency extraction even with much more computation.

Instead of using micro-Doppler features based on time-frequency distribution (TFD) [18],
we turn to another way and use the Relax algorithm to analyze the radar echo. The Relax
algorithm is an effective super-resolution spectrum estimation method, which estimates
the signal parameters by minimizing the nonlinear least squares with strong adaptability.
Most importantly, it does not make any restrictive assumptions about noise or clutter
and achieves instantaneous frequency estimation in an iterative manner. Compared with
traditional TFD features, radar-echo features by the Relax algorithm are equipped with
higher time-frequency resolution and relative-low noise sensitivity. In this paper, as shown
in Figure 1, we mainly focus on chirp-parameter estimation of the multi-view framework,
which could separate the radar-echo contributions of each individual activity in a continu-
ous recording way, and further process these parameters into a fusion matrix. Therein, we
also discuss both the common estimated time-frequency features and time-varying spatial
features, formulate the feature image after principal component analysis, and finally input
them into the machine learning classifiers to make further comparisons. Our proposed
multi-view parameter fusion estimation idea could lead to relative-high accuracy and ro-
bust recognition performance even in various conditions of distance, view angle, direction,
and individual diversity.

The rest of this paper is organized as follows: Section 2 introduces the theory and
algorithm of the parameter estimation method. In Section 3, the neural network structure
has been discussed. Section 4 introduces the experimental methods and presents analyses
and discussion of the recognition results. Section 5 is the conclusion.
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2. Materials and Methods
2.1. Radar Echo Analysis and Discussion

For human activity recognition using a prevalent 77 GHz Mm-wave radar, the micro-
Doppler characteristic could reflect the target’s geometric structure and motion properties
and has been widely used in the classification and recognition of human activity [19,20]. Ex-
isting methods for instantaneous Doppler frequency exploitation can be broadly classified
into two categories, i.e., non-parametric methods and parametric methods [21], but most
ignore the multi-view effect. Therein, non-parametric methods do not need any parame-
terized model or equation, they only need to calculate the time-frequency distribution of
echo signal, and extract the peak value of time-frequency distribution over time. Note that
the Time-Frequency Distribution (TFD) usually equips low time-frequency resolution and
noise sensitivity. To tackle this, a series of instantaneous Doppler frequency estimations
based on parametric models are presented [22]. Parametric methods need to establish a
multi-parameter model by using prior information and then using the original data to
estimate the model parameters.

In this paper, we mainly adopt the parametric idea rather than TFD to extract obvious
spatial-time-Doppler features of human activity, especially the falling of elders. When
using the LFMCW radar, for any moment of activity monitoring, the echo signal of the body
could be seen as the linear superposition of several parts (such as legs or arms). Assuming
that the radar-echo signal is a linear superposition of M Linear Frequency Modulation
(LFM) signal components, the echo model can be expressed as

S(t) =
M

∑
i=1

Ai exp[j · 2π( f0i t +
1
2

mit2)] (1)

where Ai denotes the complex amplitude of the i-th LFM signal component, and f0i , mi, M
denote its initial frequency, the chirp rate, and the number of components, respectively.

Different from the conventional dechirp methods [23], here we introduce the FM
Relax algorithm to estimate the initial frequency, chirp rate, and amplitude of each LFM
signal component, where the Relax algorithm tries to estimate the signal parameters by
minimizing the nonlinear least-squares (NLS) idea and has some strong adaptability [24,25].
Suppose that the radar echo of the human body could be constituted by M parts (such as
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torso, legs, or arms), which corresponds to the M signal component of (1), then the discrete
echo signal model could be expressed as

S(n) =
M

∑
i=1

Ai exp[j · 2π( f0i n +
1
2

min2)] + e(n), n= 0, 1 . . . N−1 (2)

where N is the sample number, and Ai exp[j · 2π( f0i
n + 1

2 min2)] denotes the i-th LFM
component, e(n) is the additive noise. Furthermore, if the noise part follows the Gaus-
sian version, we can minimize the following nonlinear least square problem to obtain{

Âi, f̂0i , m̂i

}
,

C(
{

f0i , Ai, mi
}M

i=1) =

∣∣∣∣∣
∣∣∣∣∣S− M

∑
i=1
ω( f0i , mi)Ai

∣∣∣∣∣
∣∣∣∣∣
2

(3)

S = [S(1) S(2) . . . S(N − 1)]T (4)

ω( f0i , mi) =

[
1 exp[j · 2π( f0i +

1
2

mi)] . . . exp[j · 2π( f0i (N − 1) +
1
2

mi(N − 1)2)]

]T
(5)

where C(
{

f0i , Ai, mi
}M

i=1) represent the cost function of nonlinear least square problem.
Let A = [A1 . . . AM]T , Ω = [ω( f0i , mi) . . . ω( f0M, mM)], then the problem in (3) can

be rewritten {
Âi, f̂0i , m̂i

}
= arg min

Ai , f0i ,mi
‖S−ΩA‖2 (6)

To obtain the estimation value of
{

Âi, f̂0i , m̂i

}
, we first define the k-th LFM signal

component as

Sk = S−
M

∑
i=1,i 6=k

Âiω( f̂0i , m̂i) (7)

and assuming that the estimation values of
{

f̂0i , Âi, m̂i

}
(i = 1, 2, . . . , M, i 6= k) have been

obtained, we can use Equations (8) and (9) to obtain
{

Âk, f̂0k , m̂k

}
[26],

( f̂0k , m̂k) = arg min
f0k

,mk

∣∣∣∣∣
∣∣∣∣∣[I − ω( f0k , mk)ω

H( f0k , mk)

N
]Sk

∣∣∣∣∣
∣∣∣∣∣
2

= arg max
f0k

,mk

∣∣∣ωH( f0k , mk)Sk

∣∣∣2 (8)

Âk =
ωH( f0k , mk)Sk

N

∣∣∣∣∣
f0k

= f̂0k

(9)

The parameter estimation mechanism based on Relax algorithm has been listed below:
Step 1: Suppose the number of pre-estimated signal component M = 1, we could use

the dechirp method to get Â1, f̂01 , m̂1;
Step 2: Suppose the number of pre-estimated signal component M = 2, based on the

results of step 1, we could obtain S2 by (7);
Step 3: Once S2 has been obtained, we could obtain the Â2, f̂02 , m̂2 by using (8) and (9);
Step 4: Use Â2, f̂02 , m̂2 to compute S1 by (7) again, and recompute Â1, f̂01 , m̂1;
Step 5: Repeat steps 2–4, until the convergence threshold has been satisfied, which

means the difference between two adjacent iterations is less than a certain threshold.
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Step 6: Reiterate these steps until LFM signal component number M is equal to the
total number of signal components.

Note that when solving the problem in (8), the step size of the modulation frequency
should be sufficiently small. Typically, when using FFT to carry out the computation of the
Fourier transform, the signal component would be supplemented by a sufficiently-long
zero. In order to reduce the amount of calculation, a rough estimation can be obtained by
using a larger frequency step size, and the smaller step size can be further used to optimize
around the estimated value. As shown in Figure 1, in this paper, the Relax algorithm is
used to process and estimate parameters of multi-view of radar A and B, respectively. To
evaluate the effect of different signal components, for example, we could select 3 LFM
components to make an analysis. Here, the estimated parameters of Radar A can be defined
as Radar A-1~3, and Radar B can be defined as Radar B-1~3. Thus, these parameters vs.
duration times of 6 human activities have been collected in Figure 2, where the horizontal
axis represents the duration time of action, and the vertical axis represents the instantaneous
frequency estimation at each moment.
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20̂f , 2m̂  by using (8) 

and (9); 

Step 4: Use 2Â , 
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2.2. Feature Image Formulation Based on Relax Algorithm

Radar echo data can be divided into many time slices to perform further data process-
ing. Radar echo in each time slice can be approximated as the superposition of M LFM
signal components. Here, the Relax algorithm is first used to estimate the initial frequency
of LFM components in each time slice, which corresponds to the instantaneous Doppler
frequency. The index moment of the corresponding time slice and its estimated initial
frequency are recorded in the form of a special matrix. In this matrix, each column repre-
sents the corresponding time slice of radar echo, and each row records their instantaneous
Doppler frequencies for the sub-LFM component. Namely, the element in i-th row and
h-th column of the matrix represents the instantaneous estimated Doppler frequency of
the i-th LFM component at the h-th time slice. In this way, the estimated micro-Doppler
information can be extracted and stored in this matrix.
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Typically, as the human body falls, different parts of the body have different character-
istics. When only one radar is used to detect the fall action, the characteristics of the human
body might be occluded, and the limited perspective would also lead to incomplete fall
characteristics and affect the sequential classification. To tackle this, the dual-view radar
detection idea is introduced in this paper, and two radars in different directions would
be used to achieve detection synchronously. Therein, the echo data from two radars are
processed, respectively, and their characteristic matrices are recorded simultaneously and
spliced together as shown in Figure 3.
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Furthermore, after matrix splicing, we also use the principal component analysis
(PCA) method to refine the characteristic matrices according to [27]. This is because
the data from the two radars are not independent of each other, that is, there must be
duplicate or closely related parts between the features extracted by the forward radar and
the lateral radar. Moreover, simple matrix splicing doubles the input dimension of the
neural network, greatly increasing the computational complexity of the network. PCA is
a data dimensionality reduction method that aims to replace more variables with fewer
variables and can reflect the majority of information from multiple variables. Using PCA
can integrate data features from the two radars, preserving the most significant features
and filtering out repetitive and interfering parts, which can improve the accuracy of fall
monitoring.

For a sample Xn×p containing p variables and n data, the covariance matrix is ∑p×p.
The p eigenvalues of the covariance matrix ranging from large to small are λ1, λ2 . . . λp
and the corresponding eigenvectors are T1, T2 . . . Tp. Then the i-th principal component
can be obtained by using the following formula:

Yi = XTi , 1 ≤ i ≤ p (10)

The cumulative contribution rate of the first m principal components is:

ψm =

m
∑

k=1
λk

p
∑

k=1
λk

(11)

If the cumulative contribution rate reaches over 90%, we believe that selecting m
principal components can well preserve the information of the original sample. Then,
update the original characteristic matrix with the newly obtained m principal components
as shown in Figure 4. The updated matrix is called a dual-view fusion matrix.
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Our proposed characteristic refining mechanism based on Relax algorithm has been
listed below:

Step 1: For multi-view monitoring (such as two radars), once the radar-echo data are
received, simultaneously divide them into 64 time slices, save each moment of the time
slice, and name single frames.

Step 2: Use the Relax estimating method to obtain the initial frequencies of each time
slice of these two radars, and store the frequency parameters that correspond to different
LFM components.

Step 3: Formulate the characteristic matrix of Figure 3 and align each row and each
column.

Step 4: Utilize the PCA method to refine the representative components.
Step 5: Transform the fusion feature matrix into a version of the color map, i.e., feature

images, which would be further compared with TFD images.
The flow of the whole fusion process can be seen in Figure 5.
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Since these principal components might have some relations mapping to the torso,
legs, arms, or head, the fusion matrix containing a series of information about human
activity would be fed into a neural network that effectively judges whether it is a fall or not.
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3. Neural Network Structure

For the neural network structure, as shown in Figure 6, the basic convolutional neural
network (CNN) provides an end-to-end processing model in which their weights can be
trained by the gradient descent method, and the trained CNN could learn the features of
the image, and obtain the relative-high classification results.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 21 
 

 

Forward radar 
echo data

Segmented 
processing

Segmental splicing 
and Matrix arrange

Relax 
algorithm

Martix Splice Dual-view fusion matrix Feature ImagePCA Refine

Lateral radar 
echo data

Segmented 
processing

Segmental splicing 
and Matrix arrange

Relax 
algorithm

 
Figure 5. Fusion process of dual-view feature image. 

Since these principal components might have some relations mapping to the torso, 
legs, arms, or head, the fusion matrix containing a series of information about human ac-
tivity would be fed into a neural network that effectively judges whether it is a fall or not. 

3. Neural Network Structure 
For the neural network structure, as shown in Figure 6, the basic convolutional neural 

network (CNN) provides an end-to-end processing model in which their weights can be 
trained by the gradient descent method, and the trained CNN could learn the features of 
the image, and obtain the relative-high classification results. 

W12
…
…

Input Convolution Layers Rasterization Softmax Output

pooling pooling full 
connection

full 
connection

Feature Extractor Classifier

 
Figure 6. Basic structure of convolution neural network. Figure 6. Basic structure of convolution neural network.

Furthermore, we try to discuss three CNN models and evaluate their performance for
our feature images. The typical VGG model focuses on stacking multiple 3 × 3 convolution
kernels to replace the large-scale convolution kernels so as to ensure the same receptive
fields while reducing network parameters and increasing the network nonlinear expression
capability [5,15]. The structure of VGG is shown in Figure 7.
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The Inception model replaces the fully connected layer with GAP and uses auxiliary
classifiers to accelerate the convergence of the network [28]. The Inception structure uses
the convolution layer of three convolution cores for parallel feature extraction, which can
increase the width of the network model. The structure of Inception is shown in Figure 8.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 21 
 

 

Furthermore, we try to discuss three CNN models and evaluate their performance 
for our feature images. The typical VGG model focuses on stacking multiple 3 × 3 convo-
lution kernels to replace the large-scale convolution kernels so as to ensure the same re-
ceptive fields while reducing network parameters and increasing the network nonlinear 
expression capability [5,15]. The structure of VGG is shown in Figure 7. 

Convolution+ReLU

Max pooling

Fully connected+ReLU

Softmax  
Figure 7. Basic structure of VGG. 

The Inception model replaces the fully connected layer with GAP and uses auxiliary 
classifiers to accelerate the convergence of the network [28]. The Inception structure uses 
the convolution layer of three convolution cores for parallel feature extraction, which can 
increase the width of the network model. The structure of Inception is shown in Figure 8. 

Previous layer

1×1 convolutions 3×3 convolutions 5×5 convolutions 3×3 max pooling

Filter concatenation
 

Figure 8. Basic structure of Inception model. 

The ResNet model proposes “skip connection” to solve the problem of model degra-
dation [29]. The structure of Resnet is shown in Figure 9. 

Figure 8. Basic structure of Inception model.

The ResNet model proposes “skip connection” to solve the problem of model degra-
dation [29]. The structure of Resnet is shown in Figure 9.
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In this paper, we mainly propose the multi-view parameter estimating mechanism
to achieve human activity classification. Here, we use these three different kinds of CNN
above to train the dataset and further evaluate their training performance.
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4. Experimental Setup and Result Analysis
4.1. Experimental Environment Construction and Scene Setting

In this section, we use the TI’s IWR1443-BOOST mm-wave radar sensor, which has
2 transmitters and 4 receivers and a DCA1000 board to collect data. Here, we only used
1 transmitter and 4 receivers of them. The PC configuration is based on Windows 10,
NVIDIA Quadro P620 graphics, and 12-core Intel i7-8700 CPU. Table 1 has listed the
detailed parameters of radar configuration.

Table 1. Parameters of two radar configuration.

Radar Parameters Value

Start Frequency 77 GHz
Frequency Slope 33 MHz/µs

Idle Time 100 µs
Bandwidth 1.981 MHz

ADC Start Time 6 µs
ADC Samples 256
Sample Rate 5 MHz

Number of Chirps 128
Number of Frames 64

The experimental scenarios have been shown in Figures 10 and 11, where radar A
is the forward radar and radar B is the lateral radar. The angles of the two radars are
90 degrees and 45 degrees, respectively. Both radars are placed at the same level. The
height of them from the ground is about 80 cm, and these radars are placed on the edge
of the test area to ensure that the radars’ beam is not occluded. Moreover, a cushion is
placed in the experimental area directly in front of radar A which acts as a buffer in case
the volunteer falls. The size of the cushion was 1.9 m × 0.9 m × 0.2 m, and the volunteer
is about 2.5 m away from the forward radar A. There is no dynamic interference near the
experimental area, and two radars start to collect data synchronously.
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4.2. Dataset Production

Here, our experiment mainly collects six different action data including falls, bending,
turning, etc., where falls have been further divided into fast falls and slow ones. Obviously,
bending, turning and other actions are not truly falls. The detailed actions are shown in
Table 2. To enlarge the data’s scope and improve the generalization, 10 volunteers with
different body shapes are selected whose ages are ranging from 19 to 40 years old, their
heights are 160–185 cm and their weights are 55–85 kg. Each volunteer has performed all
6 actions in Table 2, and each action has been repeated 30 times where the admission time
of each action is 6.4 s. In the end, a total dataset of 1800 action files has been stored.

Table 2. Different actions performed by volunteers.

Actions Classification

Fall Fast Fall
Fall Slowly Fall

Bend Not Fall
Turn Around Not Fall

Walk Not Fall
Step in Situ Not Fall

It is worth noting that it would be very dangerous to have the elderly themselves
finish the fall actions. Therefore, we use young volunteers aged 19–40 to replace them in
the experiment. Naturally, the production of the dataset should eliminate the bias between
the fall of the elderly and the fall of young volunteers. Therefore, we carefully study the
real scene of the fall of the elderly and request all volunteers to strictly imitate the fall of
the elderly to eliminate this bias. Moreover, from the perspective of radar echo, there are
common physical characteristics of fall actions for both elderly and young subjects.

4.3. Dataset Processing and Feature Image Generation

Once the echo data of the two radars are obtained, the Relax algorithm is used to extract
and estimate the parameters of each time slice. The estimated instantaneous frequency
values are arranged by the time order to formulate the feature matrices of two perspectives,
i.e., dual-view. The fusion feature matrix after PCA refining corresponding to different
action files is transformed into a color mapping version, thus the feature images of different
actions can be shown in Figure 12.
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Figure 12. Characteristic images obtained by the Relax estimation for different actions. 

Additionally, to carry out further comparison and analysis, we also present the tra-
ditional Micro-Doppler characteristic spectra of the TFD idea. As discussed in [30], the 
micro-motion of the target, such as vibration, rotation, and acceleration, will modulate the 
echo frequency and reveal some micro-Doppler characteristics. By using one-dimensional 
FFT and two-dimensional FFT on radar-echo data, respectively, micro-Doppler character-
istic spectra of different actions were obtained and shown in Figure 13. 

Figure 12. Characteristic images obtained by the Relax estimation for different actions.

Additionally, to carry out further comparison and analysis, we also present the tra-
ditional Micro-Doppler characteristic spectra of the TFD idea. As discussed in [30], the
micro-motion of the target, such as vibration, rotation, and acceleration, will modulate the
echo frequency and reveal some micro-Doppler characteristics. By using one-dimensional
FFT and two-dimensional FFT on radar-echo data, respectively, micro-Doppler characteris-
tic spectra of different actions were obtained and shown in Figure 13.



Remote Sens. 2023, 15, 2101 13 of 20Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 21 
 

 

Fall fast

Fall slowly

Bend

Turn around

Walk

Step in situ

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

Time:s

−6

0

−4

−2

2

4

6

0 1 2 4 5 63

V
el

oc
ity

:m
/s

 
Figure 13. Traditional Micro-Doppler characteristic spectra of different actions. 

4.4. Experimental Results and Analysis 
Once the feature images were generated, these images were input into different neu-

ral networks for training. The dimensions of the input images are all 224 × 224 × 3. The 
framework used for training is Pytorch. The train-test ratio of the dataset was set to 7:3. 
The other detailed training parameters set during the training process are shown in Table 
3.  

  

Figure 13. Traditional Micro-Doppler characteristic spectra of different actions.

4.4. Experimental Results and Analysis

Once the feature images were generated, these images were input into different neural
networks for training. The dimensions of the input images are all 224 × 224 × 3. The
framework used for training is Pytorch. The train-test ratio of the dataset was set to 7:3.
The other detailed training parameters set during the training process are shown in Table 3.
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Table 3. Training parameters of three CNN.

Training Parameters Value

Optimizer Adam
Train-test Ratio 7:3
Learning Rate 0.0001

Batchsize 32
Iterations 300

Epoch 60

The loss function used for training is Cross Entropy Loss. Assume that the approximate
probability distribution of sample x is Q(x), the true probability distribution is P(x), and
the number of categories output by the model is n. The cross entropy can be defined
as follows:

H(P, Q) = −
n

∑
i=1

P(xi) log(Q(xi)) (12)

If batchsize is m, the Cross Entropy Loss function is defined as follows:

loss = − 1
m

m

∑
j=1

n

∑
i=1

P(xij) log(Q(xij)) (13)

The training results obtained through different methods and different networks are
shown in Table 4.

Table 4. Comparison of different ideas for elder fall monitoring.

Method Network Accuracy Prediction Time Average Accuracy

Single-view-based
Relax mechanism

(90◦)

Resnet 81.90% 0.3424 ms
78.83%VGG 76.15% 0.2004 ms

Inception 78.45% 0.5313 ms

Dual-view-based
Relax mechanism

Resnet 93.36% 0.3543 ms
92.34%VGG 90.36% 0.2122 ms

Inception 93.30% 0.5591 ms

Traditional
micro-Doppler

spectrum mechanism

Resnet 77.66% 0.3562 ms
74.75%VGG 71.56% 0.2141 ms

Inception 75.04% 0.5869 ms

In Table 4, for different CNN models, such as Resnet, VGG, and Inception model, the
dual-view-based Relax estimation mechanism achieved the best performance in average
accuracy. The Resnet and Inception models outperformed VGG, irrespective of it being the
dual-view case, singe-view case, or micro-Doppler spectrum case. From the second and
third rows of Table 4, it can be seen that the accuracy of the dual-view Relax method was
improved by 15.7%, 18.8%, and 18.26%, respectively, compared with the traditional micro-
Doppler spectrum method. Meanwhile, for the metric of prediction time, the proposed
dual-view characteristic matrix incorporated less data to be processed, so it consumes
less time than the traditional micro-Doppler spectrum manner. Furthermore, comparing
the first and third rows of Table 4, applying the Relax algorithm to extract fall features
is significantly better than the traditional micro-Doppler spectrum one. Meanwhile, the
accuracy of the single-view Relax method is higher than that of the traditional micro-
Doppler method, with an average improvement of 4.08%. In terms of prediction time, the
Relax method is significantly lower than that of the traditional micro-Doppler method,
enabling a faster judgment of fall. Comparing the first and second rows of Table 4, the
method with dual-view monitoring significantly improved the accuracy of fall detection
compared to single-view monitoring. The accuracy of three CNNs improved by 15.46%,
12.21%, and 18.85%, respectively, and the average accuracy improved by 15.51%. In
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addition, it can be seen in Figure 14 that the training loss of the dual-view data input
network clearly converges to a lower value than that of the single-view. This indicates
that the dual-view point could extract the feature information of the falling process more
effectively.
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Confusion matrices are widely used in the assessment of classification problems.
To further illustrate the effectiveness and advancement of the dual-view fusion Relax
parameter estimation method proposed in this paper, a two-dimensional confusion matrix
is first established, as shown in Figure 15.
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Based on the two-dimensional confusion matrix in Figure 15, we establish the follow-
ing evaluation metrics and evaluate the experimental results accordingly. The evaluation
results are shown in Table 5.

• Recall (R):

R =
TP

TP + FN
(14)

• Precision (P):

P =
TP

TP + FP
(15)
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• F1-score (F1):

F1 =
2×P×R

P + R
(16)

• Matthews correlation coefficient (Mcc):

Mcc =
TP× TN − TP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(17)

• True Positive Rate (TPR):

TPR =
TP

TP + FN
(18)

• False Positive Rate (FPR):

FPR =
FP

FP + TN
(19)

Table 5. Comparison of classification performance of different ideas.

Method Network F1 Mcc

Single-view-based
Relax mechanism (90◦)

Resnet 0.8021 0.7988
VGG 0.7663 0.8864

Inception 0.7286 0.7766

Dual-view-based
Relax mechanism

Resnet 0.8842 0.9769
VGG 0.9247 0.9654

Inception 0.8654 0.9887

Micro-Doppler
spectrum mechanism

Resnet 0.5889 0.6672
VGG 0.6077 0.6474

Inception 0.6285 0.6988

In Table 5, compared with the traditional micro-Doppler spectrum method, the values
of F1 and Mcc of the proposed dual-view Relax mechanism are obviously higher. Both
the Relax parameter estimation method and the introduction of the dual-view idea greatly
improve the accuracy of the model prediction. Furthermore, based on two metrics of TPR
and FPR, we can also evaluate them by using the Receiver Operating Characteristic curve
(ROC) and Area Under roc Curve (AUC). Generally, the ROC curve of an effective classifier
should be above the line (0,0) and (1,1), and a larger AUC represents better performance.
ROCs and its corresponding AUC of three different mechanisms can be seen in Figure 16
and Table 6.

Table 6. AUC obtained from three different mechanisms.

Method AUC

Single-view-based
Relax mechanism (90◦) 0.7071

Dual-view-based
Relax mechanism 0.8163

Micro-Doppler
spectrum mechanism 0.6438
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In Figure 16 and Table 6, the ROC of the dual-view Relax mechanism can completely
wrap around the other two ROCs and thus has the largest AUC, showing optimal classifi-
cation performance. In addition, we also listed the confusion matrix of classification results
from different actions as shown in Figure 17. We compared the confusion matrix of the
traditional micro-Doppler method and the dual-view Relax method. It is obvious that the
classification effect of the confusion matrix obtained by the latter is noticeably better.
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Figure 17. Confusion matrix of classification results from different actions: (a) Dual view based Relax
mechanism; (b) Traditional micro-Doppler spectrum mechanism.

In Figure 17b, typically, we could see that for the traditional micro-Doppler case, “fall
fast” and “fall slowly” have led to some obvious confusion while the dual-view-based
case in Figure 17a has achieved this discrimination absolutely. Although the actions of
“fall fast” and “fall slowly” have similar motion characteristics, there also exist spatial
differences when using the dual-view idea. Compared with Figure 17a,b, the dual-view
case has demonstrated better performance to judge “fall fast” and “fall slowly”. Especially,
by analyzing the confusion matrix of Figure 17b, we can conclude that the traditional
micro-Doppler case might lose its performance with a relative-high alarm leakage rate.
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Furthermore, we discuss the effect of a pre-defined number of LFM components, which
affects the performance of the Relax mechanism. As we know, the pre-defined number also
decides the radar-echo components of the human body. We made comparisons as shown in
Figure 18.
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In Figure 18, we list the average accuracy when different numbers of LFM components
are predefined. The introduction of the dual-view idea makes a significant improvement
in accuracy. As we are mainly focusing on the multi-view (i.e., dual-view) case, we omit
the comparison with the traditional micro-Doppler spectrum case. With the number n in-
creasing, the phenomenon would demonstrate that some typical components have affected
the final average accuracy, namely, the predefined appropriate number corresponding to
different body parts such as legs, head, and torso would also decide the final classifica-
tion results.

5. Conclusions

This paper proposes a novel fall detection method based on the dual-view fusion
idea, where the dual-view-based Relax mechanism combined with different CNN has
achieved better classification results for fall detection than traditional ways. Therein, the
instantaneous frequency estimation of time slices for dual-view radar-echo data has been
estimated by the FM Relax algorithm, which makes full use of the characteristics of radar
original data. In experiments, volunteers of different ages and body types are selected to
perform a series of actions and further recorded into the training dataset where results
and analysis have demonstrated some obvious performance. In addition, considering that
the actual work scenarios of fall detection are more sophisticated, the anti-interference
ability should be strengthened in our future work, so as to further improve the practical
application for the elderly at home.
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