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Abstract: Accurate tropical cyclone (TC) intensity estimation is crucial for prediction and disaster
prevention. Currently, significant progress has been achieved for the application of convolutional
neural networks (CNNs) in TC intensity estimation. However, many studies have overlooked the
fact that the local convolution used by CNNs does not consider the global spatial relationships
between pixels. Hence, they can only capture limited spatial contextual information. In addition, the
special rotation invariance and symmetry structure of TC cannot be fully expressed by convolutional
kernels alone. Therefore, this study proposes a new deep learning-based model for TC intensity
estimation, which uses a combination of rotation equivariant convolution and Transformer to address
the rotation invariance and symmetry structure of TC. Combining the two can allow capturing both
local and global spatial contextual information, thereby achieving more accurate intensity estimation.
Furthermore, we fused multi-platform satellite remote sensing data into the model to provide more
information about the TC structure. At the same time, we integrate the physical environmental
field information into the model, which can help capture the impact of these external factors on TC
intensity and further improve the estimation accuracy. Finally, we use TCs from 2003 to 2015 to
train our model and use 2016 and 2017 data as independent validation sets to verify our model. The
overall root mean square error (RMSE) is 8.19 kt. For a subset of 482 samples (from the East Pacific
and Atlantic) observed by aircraft reconnaissance, the root mean square error is 7.88 kt.

Keywords: tropical cyclone intensity; multi-platform remote sensing data fusion; remote sensing;
rotation equivariant convolution; attention mechanism and transformer

1. Introduction

Tropical cyclones (TCs) are catastrophic weather phenomena that can significantly
impact human life. The strong winds and heavy rainfall that accompany these systems can
cause substantial damage to property and hinder social and economic development in the
affected regions. Therefore, accurately estimating the intensity of TC is of great significance
for both theoretical research and practical applications.

The most widely used method for estimating TC intensity is the Dvorak technique [1],
which relates the rotation, eye shape, and thunderstorm activity of a TC to its strengthening
or weakening. This technique assumes that cyclones with similar intensities often have
similar patterns and requires expert analysis of visible and infrared satellite images of
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the TC’s cloud structures. Once relevant patterns are detected, the technique further
analyzes cloud organization characteristics, core features, curvature radius, and rainfall
rates to estimate the storm intensity [2,3]. As this method relies heavily on the experience
of professionals, it is highly subjective. Olander et al. [4] further improved the Dvorak
technique by creating a method called advanced Dvorak technique (ADT) version 9. ADT
reduces subjectivity by determining the storm center, using computer-based cloud feature
recognition algorithms and applying linear regression to estimate TC intensity. However, it
is not suitable for estimating the intensity of weak TCs. Due to the requirement for strong
vortical structures within the cyclone, the advanced Dvorak technique is not suitable for
accurately estimating the intensity of weak TCs, as their weak vortical structures make
accurate estimation difficult.

The deviation angle variance technique (DAVT) [5] is based on direction gradient
statistical analysis of infrared satellite images to estimate the TC intensity over the North
Atlantic [6] and North Pacific [7]. This method requires information about the TC center.
Although the DAVT technique can automatically locate the TC center, positioning errors
may lead to uncertainties in the intensity estimation.

Since the proposal of AlexNet in 2012 [8,9], deep learning algorithms have flourished.
Convolutional neural networks (CNNs) consist of convolutional layers and fully connected
layers, with the former extracting spatial features from input images and the latter having
simple computing units. By learning to recognize features that improve the prediction
of target phenomena without relying on experts in the relevant field to identify which
features are the most important [10], CNNs can be applied to extract features from satellite
infrared images, much like how meteorologists identify cloud patterns (e.g., hurricane
eyes) associated with TCs within certain intensity ranges. These features can then be
used as predictors to estimate TC intensity. Some researchers have applied CNNs for TC
intensity classification. Pradhan et al. [11] proposed a deep CNN TC intensity classification
model using a long time series of TC infrared cloud images, achieving an RMSE of 10.18 kt
for intensity level estimation. Wimmers et al. [12] summarized the advantages of high-
and low-frequency microwave bands in extracting structural information from TC, with
the 85–92 GHz (89 GHz) band capturing almost all important structural information at a
relatively low resolution (5 km) for the eye wall. They used a CNN model for TC intensity
estimation, achieving an RMSE of 14.3 kt. Dawood et al. [13] and Combinido et al. [14] used
CNN-based models as regression tasks to estimate TC intensity. However, the simplicity
and directness of the regression method make it difficult for these single models to fully
cover TC variability, especially when there is an imbalance in the samples of TCs of different
intensities. Existing CNN-based TC intensity estimation models only focus on basic and
relatively simple deep learning network structures.

Transformer is an attention-based encoder-decoder architecture and is the main
deep learning model for natural language processing (NLP). Inspired by this significant
achievement, some pioneering work has recently been done on applying Transformer-
like structures to the field of computer vision (CV). For example, Dosovitskiy et al. [15]
proposed a pure Transformer, using image patches as input for image classification and
achieving outstanding performance on many image classification benchmarks. In addi-
tion, Visual Transformers have achieved excellent performance in other computer vision
tasks such as detection [16], segmentation [17], tracking [18], image classification [19], and
augmentation [20].

The successful application of Transformers in image recognition [21] has led us to
apply Transformers to TC intensity estimation. TC intensity classification is different
from that of traditional rigid objects such as cars and animals. The structure of a TC
changes significantly at different development stages due to continuous rotation and
translation. The features of adjacent TC intensity categories are very similar, making
it difficult to distinguish between adjacent intensity categories. Additionally, TC cloud
images with different cloud band structures may belong to the same intensity category.
On the other hand, cloud images with similar structures may belong to two different
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intensity categories. For these reasons, a structurally simple CNN is insufficient to capture
TC structural features. Although the convolutional kernel continuously extracts abstract
high-level features, theoretically covering the entire image, many studies [22] have shown
that the actual receptive field is much smaller than the theoretical receptive field, which
hinders the network’s ability to fully utilize contextual information to capture TC features.
The Transformer network, based on self-attention mechanisms, can capture long-range
dependency relationships and global spatial relationships, and has stronger spatial context
modeling capabilities. Compared to traditional CNNs, the Transformer network can capture
more spatial context information, thereby improving the accuracy and generalization ability
of intensity estimation. Furthermore, the self-attention mechanism of the Transformer
network can help the network better understand the dependencies and differences between
TCs, leading to more accurate intensity estimates.

This study proposes a model that combines rotation equivariant convolution with
Transformer and incorporates environmental factors to estimate TC intensity using multi-
platform remote sensing data fusion. Multi-platform remote sensing data fusion [23,24]
can provide more structural features to TC. While CNN have been successful in estimating
TC intensity, they have some limitations, particularly in terms of spatial context modeling.
By combining convolution with Transformer networks, the limitations of using CNN
alone for TC intensity estimation can be overcome. Additionally, rotation equivariant
convolution can handle the rotational invariance and symmetry of TC, as they should
have the same intensity regardless of their orientation. At the same time, multi-platform
remote sensing satellite data fusion was used to input into the model to provide more
comprehensive TC feature information. This type of convolution can detect the same
features in different orientations and generate features unaffected by rotation. Finally,
incorporating environmental factors such as the R35 knot wind radius (R35), sea surface
temperature (SST), and TC center position can help capture the influence of external factors
on TC intensity, further improving the accuracy of the estimation.

The remainder of the paper is organized as follows. Section 2 introduces the dataset
and data preprocessing. Section 3 presents the methodology, and Section 4 provides the
experimental setup and analysis. Section 5 presents the conclusion.

2. Data and Preprocessing

The satellite data used in this study are a fusion of multi-platform remote sensing data
obtained from the publicly available Tropical Cyclone for Image-to-intensity Regression
dataset (TCIR; [25]). The dataset contains satellite data from four platforms, namely infrared
(IR), water vapor (WV), visible light (VIS), and passive microwave rainrate (PMW). IR,
WV, and VIS data can be obtained from GridSat [26,27], which has been collecting data
at a temporal resolution of 3 h and a spatial resolution of 0.07° since 1981. PMW channel
data were obtained from the CMORPH [28] open source data through low-orbit microwave
satellites, with a time resolution of 3 h and a spatial resolution of 0.25°. The details are
shown in Table 1. To make all channels the same size, the PMW channels are rescaled
to be about four times larger by linear interpolation. The IR channel contains the most
useful features for TC intensity estimation, the PMW channel can address convective
features under cold cloud shielding, and the WV channel can reflect the overall structure
and features of TC. The VIS channel is not considered because it is only available during
daylight hours. In this study, we fused three satellite remote sensing data from different
platforms as input data to the model. Fusing the satellite remote sensing data from different
platforms allowed for obtaining more comprehensive and specific information on TC
features, which can improve the accuracy of TC intensity estimation.

The satellite remote sensing data of different platforms correspond to different depths
of TC in space, and more vertical and three-dimensional atmospheric information of TC
can be extracted through the fusion of satellite remote sensing data of different platforms
in space, especially the structural information of the low-level atmospheric convection area.
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This has an important effect on the intensity, and the cloud image fusion of multi-platform
remote sensing data is shown in Figure 1.

Table 1. Detailed description of the four channels of the benchmark dataset.

Channel Wavelength Temporal
Resolution (h)

Spatial
Resolution (°) Sorce Temporal

Coverage

IR 11 µm 3 0.07 GridSat 2003–2017
WV 6.7 µm 3 0.07 GridSat 2003–2017
VIS 0.6 µm 3 0.07 GridSat 2003–2017

PMW 85 Ghz 3 0.25 CMORPH 2003–2017

Figure 1. Multi-platform remote sensing data fusion.

The data labels used in the study are obtained from the Joint Typhoon Warning
Center [29] and the revised Atlantic hurricane database (HURDAT2). The labels are deter-
mined by experienced meteorologists from various institutions using the Dvorak method,
ground observations, scatterometry, depth-based intensity estimates, objective and subjec-
tive passive microwave and infrared techniques, and SAR data in subsequent years and are
continuously revised based on the entire life cycle of the TC.

We train our model using TC data from 2003 to 2014 and 2016 to avoid the influence
of time-series correlation on the independent validation set. We use the Saffir–Simpson
Hurricane Wind Scale (SSHWS) [11] for intensity classification (Table 2). TC data from
2003 to 2014 and 2016 are divided into training and validation datasets at a ratio of 9:1.
The TC data from 2015 and 2017 are used as an independent test dataset. Reconnaissance-
assisted best-track intensity in 2017 is available for TCs from the Eastern Pacific (EP) and
Atlantic (AL) basins. The specific number of each dataset is shown in Table 3. The training
dataset is used to fit the weights that best match the track intensity in the CNN model.
The validation dataset is used to identify the best hyperparameters in the model. Finally,
the best performance scheme determined using the validation dataset is applied to the
independent test dataset for independent performance evaluation. Before training the input
model, three processing steps are performed, namely center cropping, random rotation,
and normalization. Random rotation relative to the TC center is used to prevent overfitting.
Then, z-score normalization is applied to improve computational efficiency. Finally, the
images of TCs in the southern hemisphere are horizontally flipped to train with the same
TC rotation direction as in the northern hemisphere.
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Table 2. Saffir–Simpson Hurricane Wind Scale and associated categories.

Category Symbol Wind Speed (kt)

No Category NC ≤20
Tropical depression TD 21–33

Tropical storm TS 34–63
One H1 64–82
Two H2 83–95

Three H3 96–112
Four H4 113–136
Five H5 ≥137

Table 3. TC sample sizes for different dataset in different basins.

DataSet Frame Years Basins

Training 58,447 2003–2014, 2016 Global
Validation 6495 2003–2014, 2016 Global

Testing 10,118 2015, 2017 Global
Reconnaissance assistance 482 2017 East Pacific, Atlantic

3. Methodology

TCICVIT is an improvement of CeiT [30], which has demonstrated good performance
in intensity estimation. The CNNs use local convolutions, which do not consider the global
spatial relationships between pixels. Therefore, they can only capture limited spatial context
information. In contrast, Vision Transformers can process spatial and temporal information
through self-attention mechanisms, allowing them to capture remote dependencies and
global spatial relationships.

TC can be viewed as tropical mesoscale convective systems with rotational invariance.
Rotational invariance is important for identifying arbitrarily oriented objects. Sending
rotated images to conventional CNN results in different feature maps than those from the
original images. Compared to traditional CNNs, group equivariant CNNs (GECNNs) [31]
have stronger rotational equivariance and can better handle object recognition in any
direction. This is because GECNNs extend the convolution operation from only having
translational equivariance to having rotational equivariance, while CNNs can only handle
translational equivariance. This extension is achieved by introducing the concept of group
theory, using a group to act on the input data so that while the input data undergoes
group operations, the output data can also undergo corresponding group operations, thus
ensuring equivariance. Given a transformation group G and a function Φ: X → Y, the
equivalence can be expressed as follows.

Φ
[

Tx
g (x)

]
= TY

g [Φ(x)] ∀(x, g) ∈ (X, G) (1)

where Tg represents a group action in space. The CNN translational equivariance can be
represented as:

[[Tt f ] ∗ ψ](x) = [Tt[ f ∗ ψ]](x) (2)

where Tt represents the action of the translation group
(

R2, +
)

in space, which we apply
to a K-dimensional feature map f : Z2 → Rk. The convolutional filter can be represented as
ψ: Z2→ Rk, and ∗ denotes the convolution operation. The rotation equivariant layer is based
on the cyclic group CN with discrete rotations with 2π

N angles. The rotation equivariant
convolution can be defined as follows:[[

Tg f
]
∗ ψ
]
(g) =

[
Tg[ f ∗ ψ]

]
(g) (3)

where g is the semidirect product of the translation and rotation groups. We improve
the convolution in the CeiT model to a rotation equivariant convolution to extract TC
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symmetry structural features. A very important component in CeiT is the locally enhanced
feed-forward layer, which promotes the correlation between adjacent tokens in the spa-
tial dimension. We improve this component based on TC characteristics, replacing the
depth-wise separable convolution with rotation equivariant convolution. The improved
component plays an important role in TC intensity estimation. First, it allows the model to
capture finer local features, which may be important for identifying small-scale features
related to TC intensity. Secondly, it selectively focuses on different input regions to better
process spatial information, which is useful for capturing the three-dimensional structure
of TCs. This component is called linear–rotational convolution–linear (LRCL) in our model,
and its process formula is shown as:

xh
c , xh

p = Split
(

xh
t

)
(4)

xl1
p = GELU

(
BN
(

Linear1(xh
p)
))

(5)

xs
p = SpatialRestore

(
xl1

p

)
(6)

xd
p = GELU

(
BN
(

RTConv(xs
p)
))

(7)

x f
p = Flatten

(
xd

p

)
(8)

xl2
p = GELU

(
BN
(

Linear2(x f
p)
))

(9)

xh+1
t = Concat

(
xh

c , xh
p

)
(10)

xh
c represents the class token, xh

p denotes the patch token, xl1
p indicates the patch token

projected to a higher dimension, xs
p represents the patch token on the spatial dimension

relative to the original image, xd
p refers to the patch token with enhanced correlation

achieved by performing rotation equivariant convolution, and x f
p is the flattened sequence.

xl2
p is the linear projection of the patch token to the initial dimension, which is finally

concatenated with the class patch token. BatchNorm and GELU are added after each
linear projection and rotation equivariant convolution. BatchNorm can normalize and
regularize the network, avoid the occurrence of gradient vanishing and exploding problems,
accelerate network training, and improve model performance and generalization ability.
Meanwhile, GELU can improve the model’s non-linear expression ability and generalization
performance, adapt to deep network training, and enhance model stability and accuracy.

The training process of the model is as follows. First, features are extracted through
rotation equivariant convolutions and increased in channels before being segmented into
patches for vectorization. These patches are extracted from the feature maps rather than
the original input image. The learned feature maps are extracted as a sequence of patches
in the spatial dimension, fully utilizing the advantages of rotation equivariant convolutions
in extracting low-level features while reducing the number of parameters. Secondly, the
token generated by the multi-head self-attention (MSA) module is split into corresponding
patch tokens and a class token. MSA can perform global information interaction and
adaptive feature extraction on various meteorological elements, thereby improving the
accuracy and stability of intensity estimation. The patch tokens are projected into higher
dimensions and, based on their position relative to the original image, the patch tokens
are restored to an “image” in the spatial dimension and subjected to rotation equivariant
convolution operations, enhancing the correlation between adjacent tokens and learning
the three-dimensional structure features of TCs. Finally, the class token undergoes the same
mapping and is concatenated with the patch token. This is shown in the LRCL module in
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Figure 2. The specific parameter settings for the model are shown in Table 4, where one
block consists of one MSA and one LRCL.

In addition to multi-platform satellite image data, we incorporate environmental
factors, including SST and TC center position and size, into the model. These factors are
shown to have a significant impact on TC intensity. We add these factors as additional
inputs to the model, allowing it to capture the influence of external factors on TC intensity.
SST provides information on the energy required for TC growth, while the TC center
position and size can provide insights into the structure and features of the system.

Figure 2. Overall architecture of the model used in this study.

Table 4. Parameters of the TCICVIT model. “k3s2” represents a convolutional kernel size of 3 and a
stride of 2; “REConv” rotation equivariant convolution; “e” represents the expansion ratio, and “k”
represents the kernel size of the REConv in the corresponding module.

Model
Convolution Layers

Heads
LRCL

REConv1 REConv2 REConv3 Maxpool Channels Encoder
Blocks e k

TCICVIT K3s2 K3s2 K3s2 K3s2 32 8 3 4 3

For the predicted values, mean squared error (MSE) is used to estimate the loss
function. MSE is commonly used to determine the deviation between the predicted values
of a regression task model and the best-track intensity (label data), as shown below:

MSE =
1
n

n

∑
i=1

(Yi − Ypredict) (11)
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where n is the number of samples, Ypredict is the predicted value, and Yi is the corresponding
“best track” value. In this study, root mean square error (RMSE) is used to evaluate the
model performance, as shown below:

RMSE =

√
1
n

n

∑
i=1

(Yi − Ypredict)
2 (12)

4. Experiments and Discussion
4.1. Experimental Settings and Analysis of Ablation Study

Chen et al. [25] showed that the combination of IR, PMW, and WV was only slightly
better than that of IR and PMW, possibly because the network was not deep enough.
However, our network design is deep enough to capture the combination of three channels.
Therefore, in this study, we conduct a series of ablation experiments to investigate the
effects of fusion combinations of satellite remote sensing data from different platforms and
environmental factors on the performance of the TC intensity estimation. Specifically, we
use the TCICVIT model (with the first layer being a regular convolution) as the baseline
and test the following combinations of input fused data: IR; IR and PMW; and IR, PMW,
and WV. We also test the impact of incorporating rotation equivariant convolution and
three environmental factors (SST, TC center position, and R35) on model performance. The
specific results are shown in Tables 5–7. Figure 3 shows the loss function curves of the best
results for the three funsion data settings.

Our results show that adding rotation equivariant convolution and environmental
factors significantly improves the performance of deep learning models for TC intensity
estimation. The model combining IR, PMW, and WV fusion with rotation equivariant
convolution and all three environmental factors achieves the best performance. WV channel
data reflects the distribution of water content in the atmosphere and, therefore, can reflect
the overall structure and characteristics of TC. In the WV channel data, TCs typically
exhibit a symmetrical bending structure, which is distinct from that of their surrounding
environment and helps improve the accuracy and reliability of the model.

This suggests that combining local and global spatial context information along with
environmental field information is crucial for accurately estimating TC intensity. At the
same time, it also shows that multi-platform remote sensing data fusion can further improve
the accuracy of intensity estimation. The fusion of satellite remote sensing data from three
different platforms enables the model to obtain more comprehensive TC characteristic
information. The IR channel contains the most useful features for TC intensity estimation,
the PMW channel can distinguish convective features under cold cloud cover, and the WV
channel can reflect the overall structure and characteristics of TC. The above data can be
combined to solve the problem of limitations using only one type of satellite remote sensing
data. Incorporating environmental field information helps capture the impact of external
factors on TC intensity. SST is a key environmental factor that affects TC intensity. High SST
provides more energy for TC growth, while low SST leads to a decrease in TC intensity. By
incorporating SST into the model, we can capture the impact of this environmental factor
on TC intensity, thereby improving the model’s accuracy. In addition, the TC intensity and
position may be influenced by various factors such as SST, atmospheric humidity, and wind
shear. Among them, the center position and R35 of a TC can provide useful information
about its structure and characteristics. The center position can tell us the direction and
rotation of the cyclone, while the wind radius can reflect its size and structure, which are
essential for correctly estimating the intensity of a TC.
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Traditional CNNs often only consider local spatial information in images when esti-
mating TC intensity and cannot effectively utilize TC structure and environmental features.
However, rotation equivariant convolution and Vision Transformer (VIT) can simultane-
ously consider local and global spatial information in images, further extracting TC struc-
ture and environmental features, thus improving the accuracy of TC intensity estimation.

Table 5. Impact of using rotation equivariant convolution (REConv) and different combinations of
environmental factors on estimation performance for IR remote sensing data, where ∆ indicates
improvement relative to the baseline network.

Model Module Input Channel RMSE (kt) ∆ (%)

M1 TCICVit (Baseline) IR 9.14 -
M2 +REConv IR 8.92 2.41
M3 +REConv/SST IR 8.66 5.25
M4 +REConv/R35 IR 8.81 3.61
M5 +REConv/Center position IR 8.84 3.28
M6 +REConv/Center position/R35 IR 8.79 3.83
M7 +REConv/Center position/SST IR 8.63 5.58
M8 +REConv/R35/SST IR 8.60 5.91
M9 +REConv/R35 /SST/Center position IR 8.43 7.77

Table 6. Same as Table 5 but for fusion of IR and PMW remote sensing data.

Model Module Input Channel RMSE (kt) ∆ (%)

M1 TCICVit (Baseline) IR, PMW 8.93 -
M2 +REConv IR, PMW 8.79 1.57
M3 +REConv/SST IR, PMW 8.52 4.59
M4 +REConv/R35 IR, PMW 8.64 3.25
M5 +REConv/Center position IR, PMW 8.69 2.69
M6 +REConv/Center position/R35 IR, PMW 8.72 2.35
M7 +REConv/Center position/SST IR, PMW 8.59 3.91
M8 +REConv/R35/SST IR, PMW 8.57 4.03
M9 +REConv/R35 /SST/Center position IR, PMW 8.21 8.06

Table 7. Same as Table 5 but for fusion of IR, PMW, and WV remote sensing data.

Model Module Input Channel RMSE (kt) ∆ (%)

M1 TCICVit (Baseline) IR, PMW, WV 9.02 -
M2 +REConv IR, PMW, WV 8.83 2.11
M3 +REConv/SST IR, PMW, WV 8.61 4.55
M4 +REConv/R35 IR, PMW, WV 8.75 2.99
M5 +REConv/Center position IR, PMW, WV 8.78 2.66
M6 +REConv/Center position/R35 IR, PMW, WV 8.73 3.22
M7 +REConv/Center position/SST IR, PMW, WV 8.49 5.88
M8 +REConv/R35/SST IR, PMW, WV 8.51 5.65
M9 +REConv/R35 /SST/Center position IR, PMW, WV 8.19 9.20
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Figure 3. Learning curves of the best-performing model in the three ablation experiments in terms
of RMSE.

4.2. Performance Analysis

In this study, we propose a new method for estimating TC intensity using the TCI-
CVIT model, which combines environmental field information and rotation equivariant
convolution with VIT. Our model achieves satisfactory results in estimating TC intensity.
Figure 4a,b show the scatter plots of the best-track and estimated intensity for 2015 and
2017, with RMSE values of 8.21 and 8.18 kt, respectively. The red lines represent the lin-
ear fits of the estimated and best-track intensity, with equations y = 0.9092x + 3.813 and
y = 0.922x + 2.815, respectively, and R2 values of 0.92 and 0.94, demonstrating the high
accuracy and stability of our model. Finally, we analyze the overall estimation performance
for these two years. From Figure 4c, we obtain satisfactory results with an RMSE value
of 8.19 kt, a linear fit equation of y = 0.9488x + 2.044, and an R2 value of 0.92. Figure 4d
shows the reconnaissance assistance data, with an RMSE of 7.88 kt, R2 of 0.93, and a fitting
curve of y = 0.9364x + 6.186. We discuss these years separately because meteorological
data have unique properties such as seasonality and yearly variations, which often require
consideration of correlation and trend. Moreover, different years may have significant
differences in the data. Therefore, we need to analyze data from different years to ensure
the robustness and stability of the model in estimating TC intensity. Additionally, from the
perspective of deep learning, discussing the results of different years separately can help
us better understand the model’s learning and generalization abilities. We can observe the
model’s performance on different years of data, identify possible overfitting or underfitting
problems, and further optimize the model’s architecture and parameters. Furthermore,
by estimating the data from 2015 and 2017 together, we can further examine whether the
model can capture the correlation between time-series data and its generalization ability on
multi-year data. Therefore, for time-series problems such as estimating TC intensity, dis-
cussing the results of different years separately and the overall performance on multi-year
data can help us better understand the model’s performance advantages.

Integrating environmental field information can provide a more comprehensive un-
derstanding of the TC surroundings, which helps to better understand their behavior and
evolution. At the same time, the combination of rotation equivariant convolution and VIT
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can effectively capture the symmetric structure of TCs and local and global features, thus
enhancing the model’s ability to extract and represent information from input data and
achieving better performance than traditional CNNs. Therefore, our TCICVIT model shows
great potential in the field of TC intensity estimation.

Figure 4. Scatter plot of the best-track intensity versus estimated intensity using the TCICVIT model
in (a) 2015; (b) 2017; and (c) 2015 and 2017. (d) Scatter plot of best-track intensity and estimated
intensity using the TCICVIT model for reconnaissance assistance data.

4.3. Different Categories of Tc Intensity Estimation Analysis

Figure 5 shows the results of TCICVIT on eight TC categories, with RMSE, Bias, and
standard deviation (i.e., error bars) presented for each category. The standard deviation
reflects the degree of difference between the estimated and actual values. A larger standard
deviation indicates a greater degree of difference between the estimated and actual values
(i.e., lower accuracy), while a smaller standard deviation indicates a smaller degree of
difference (i.e., higher accuracy).

The performance of TCICVIT varies across different intensity levels. The model
performs best at the TD level with an RMSE of 4.63 kt, Bias of 1.36 kt, and standard
deviation of 4.43 kt. The model performs worst at the H5 level with an RMSE of 9.91 kt,
Bias of −6.09 kt, and standard deviation of 7.70 kt. H5 is the highest TC intensity level.
These extremely intense storms are relatively rare and often exhibit complex and irregular
structures in their cloud patterns. Transfer learning methods could be used to optimize the
model’s performance at this level. At other levels, the RMSE ranges from 6.61 to 9.46 kt,
the Bias ranges from −2.54 to 6.89 kt, and the standard deviation ranges from 2.23 to
7.70 kt. Figure 5 shows the uncertainty in the distribution of estimation results and the
variability between the estimated values of each level using error bars, providing a more
comprehensive description of the experimental results. Overall, TC intensity estimation
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based on the TCICVIT model shows satisfactory results across all intensity levels. The
specific values are shown in Table 8.

Figure 5. RMSE and Bias with different TC categories.

Table 8. RMSE, Bias, and Std for different TC categories.

Category All Samples RMSE (kt) Bias (kt) Std (kt)

NC 704 8.61 6.89 3.43
TD 2621 4.63 1.36 4.43
TS 3952 6.61 −2.54 2.23
H1 1147 8.94 −2.09 5.72
H2 679 9.15 −1.35 5.84
H3 465 9.30 −1.14 6.13
H4 455 9.46 −1.96 6.26
H5 95 9.91 −6.09 7.70

4.4. Tc Environmental Factor Correlation Analysis

Figure 6 shows the correlation coefficient matrix of TC intensity and three environ-
mental factors, including SST, R35, and the TC center location, using the TC intensity and
environmental information data in 2015 and 2017. By observing the correlation coefficient
matrix, we can understand the correlation between different variables. Incorporating the
TCICVIT model with these three environmental factors shows that SST has a positive corre-
lation with TC intensity, with coefficients of 0.35 and 0.34 for 2015 and 2017, respectively,
indicating that SST is one of the main factors affecting TC intensity. On the other hand,
R35 has a negative correlation with TC intensity, with coefficients of −0.51 and −0.42,
respectively. R35 is an important environmental factor that can reflect the size and struc-
ture of the TC. Finally, the TC center location positively correlates with TC intensity, with
coefficients of 0.1 and 0.42. As the center of the TC moves and is more precisely located, the
TC intensity is usually accordingly increased. This is because the environmental conditions
around the center of the TC, such as temperature, humidity, and pressure, can affect the
TC intensity. These environmental conditions usually change with the movement and TC



Remote Sens. 2023, 15, 2085 13 of 19

center location. Therefore, the TC center location is also an important environmental factor.
By incorporating these three environmental factors, the TCICVIT model can estimate the
TC intensity more comprehensively and accurately.

Figure 6. Correlation matrix of environmental factors and TC intensity values in (a) 2015 and (b) 2017.
Each cell in the matrix represents the correlation coefficient between two variables, and the color
of the cell indicates the magnitude of the correlation coefficient. The diagonal cells represent the
correlation coefficient between the variable and itself, which is always 1.

4.5. Hierarchical Analysis of Tcicvit Model Performance

In this study, we conduct a hierarchical analysis of the TCICVIT model performance
from two aspects: latitude range and TC intensity, in order to explore its performance.
Latitude range (Figure 7b,d,f) refers to the range of latitude where the TC occurs, which
may lead to differences in model performance. We evaluate the model performance in the
latitude range of 0–47°. The results show that the RMSE and MAE are the lowest in the
range of 2–7° but are higher in the ranges of 12–17° and 32–47°. The possible reason is that
in these two latitude ranges, the TC path may be more affected by interference, resulting
in increased uncertainty of TC intensity estimation, which affects the training effect of the
model. There may also be insufficient training data in these two ranges. Transfer learning
techniques can be implemented to utilize data from other latitude ranges to improve the
model’s generalization ability and prediction accuracy. The bias level is not significant
and remains nearly 0 (Figure 7d). Overall, the results are satisfactory. We also analyze the
model performance for different TC intensities (Figure 7c). TCs with intensities between 15
and 30 kt have a positive bias, while those with intensities between 30 and 180 kt have a
negative bias. The importance of SST, TC center location, and R35 wind radius features
may differ across different intensity ranges, resulting in different impacts on the prediction
results. In the 15–30 kt range, the environmental field information may have a greater effect
on the prediction results, while in other ranges, the impact may be less significant, resulting
in negative biases. In the 15–45 kt range, where the sample size is large (Figure 7a), the
RMSE and MAE are low (Figure 7e), while in the 90–180 kt range with a small sample
size (Figure 7a), the RMSE and MAE are high (Figure 7e). From a feasibility perspective,
transfer learning can also be used to address this issue.

It can be seen that the TCICVIT model can maintain satisfactory performance in differ-
ent latitude ranges and TC levels, but its performance slightly declines at high latitudes and
strong TC levels, although the error is still within the acceptable range. These analytical
results can help us better understand the model performance characteristics and thus better
apply the model for TC intensity estimation.
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Figure 7. (a) Sample size at 15 kt intervals; (c) box plots at 15 kt intervals, and (e) RMSE and MAE
of TCICVIT at 15 kt intervals. (b) Sample size at 5° latitude intervals, (d) box plots at 5° latitude
intervals, and (f) RMSE and MAE of TCICVIT at 5° latitude intervals.

4.6. Individual Case Analysis

In this study, we evaluate the TCICVIT model performance on TC cases in different
ocean basins. We randomly select five TC cases from different ocean basins in 2015,
including 201501C, 201501L, 201503E, 201506S, and 201506W, and use the TCICVIT model
to estimate their intensities, comparing the results with the ground truth. The experimental
results (Figure 8a) show that the TCICVIT model can accurately estimate the intensity
even for strong TCs with intensities greater than 100 kt. We observe that TC 201506S is
overestimated in the early stages and overall unstable. We further analyze the reasons
for this. Figure 9 shows the time evolution of estimated and best-track intensities for TC
201506S, with RMSE and MAE of 5.819 and 4.751 kt, respectively. We further observe
satellite cloud images at two time points of overestimation and find that one has quality
loss while the other has blurred features, making it difficult to distinguish the TC center eye
and cloud layers. These factors may have contributed to the inaccurate intensity estimation.
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At the same time, we conduct a case study of the TCICVIT model on five different
ocean basins in 2017, including 201701L, 201703E, 201704S, 201706W, and 201712L. The TC
intensity estimation results are compared with the true values. The experimental results
show that (Figure 8b) the TCICVIT model could also accurately estimate the intensity in
these cases. The meteorological environment and features vary in different ocean basins,
which also affects the formation and development of TCs. However, our model still
achieves satisfactory performance, indicating that our model could also adapt to different
ocean basins.

Figure 8. TC cases in 2015 and 2017, with the intensity on the y-axis and the TC names on the x-axis.
The blue line represents the best track, and the red line represents the TCICVIT model estimates.

4.7. Comparison to Other Satellite Estimation Methods

In this study, satellite data from three global channels are used, making the TCICVIT
model more widely applicable than other methods. Compared to previous studies (Table 9),
the TCICVIT model has a lower RMSE of only 8.43 kt when using only the IR channel
data, showing a more precise performance than other methods using only IR channel data.
In addition, in the combination of IR and PMW, its performance exceeded that of Chen’s
method, which was still subjected to smoothing, whereas our model achieves even better
accuracy without smoothing (RMSE of 8.21 kt). The optimal accuracy is obtained with the
combination of IR, PMW, and WV channels, where the RMSE reaches 8.19 kt, indicating that
the depth of the TCICVIT model is sufficient to capture the features of all three channels
and achieve higher accuracy. Figure 10 shows a homogenous comparison with ADT and
SATCON, indicating that our model outperforms ADT and SATCON. Overall, the TCICVIT
model performs well, with higher accuracy and broader applicability.
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Figure 9. (a) Evolution of TC 201506S’s estimated and best-track intensity; (b) satellite cloud image at
2015011603; and (c) satellite cloud image at 2015011609.

In this study, satellite data from three global channels were used, making the TCI-
CVIT model more widely applicable than other methods. Compared to previous studies
(Figure 10), the TCICVIT model had a lower RMSE of only 8.43 kt when using only IR
channel data, showing more precise performance than other methods that also use only
IR channel data. In addition, in the combination of IR and PMW, its performance ex-
ceeded that of Chen’s method, which was still subjected to smoothing, whereas our model
achieved even better accuracy without smoothing, with an RMSE of 8.21 kt. The optimal
accuracy was obtained with the combination of IR, PMW, and WV channels, where the
RMSE reached 8.19 kt, indicating that the depth of the TCICVIT model is sufficient to
capture the features of all three channels and achieve higher accuracy. Figure 10 shows a
homogenous comparison with ADT and SATCON, indicating that our model outperforms
them, as ADT and SATCON may fail to estimate at times. Overall, the TCICVIT model
performs well, with higher accuracy and broader applicability.
Table 9. Comparison of RMSE and MAE for TC intensity estimation for TCDBNet and other satellite-
based models. Performance metrics are directly taken from the corresponding.

Models Data Year RMSE

DeepMicroNet [12] MINT 2007, 2012 10.60
FASI [32] IR 1989–2004 12.70

Y. Zhao [3] IR 2008, 2009 12.01
TI index [33] IR 2011 9.34

CNN(VGG19) [14] IR 2015 10.49
Deep CNN [11] IR 1999–2014 10.18

Improved DAV-T [26] IR 2007 12.70
CNN classification and regression [34] IR 2017–2019 9.59

TCICVIT IR 2015, 2017 8.43

ADT (smooth)[25] IR, VIS, PMW 2018 11.79
SATCON (smooth) [35] ADT, AMSU, SSMIS, ATMS 2017 9.21

TCIENet model [36] IR, WV 2017 9.98
CNN-TC (nosmoothed) [37] IR, PMW 2015–2016 10.38
CNN-TC (nosmoothed) [37] IR, PMW 2015–2016 8.39

TCICVIT IR, PMW 2015, 2017 8.21

TCICVIT IR, PMW, WV 2015, 2017 8.19
TCICVIT (reconnaissance assistance) IR, PMW, WV 2017 7.88
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Figure 10. Comparison of TC intensity from best-track data and TCICVIT, ADT, and SATCON.

5. Conclusions

This study proposes a novel TCICVIT model for TC intensity estimation using fusion
of IR, PMW, and WV satellite data. The fusion of satellite remote sensing data from
three different platforms can enable the model to obtain more comprehensive and specific
TC characteristic information. The IR channel contains the most useful features for TC
intensity estimation, the PMW channel can resolve the convective features under the cover
of cold clouds, and the WV channel can reflect the overall structure and characteristics
of the TC. By comprehensively using these three remote sensing data, the limitations of
using a single type can be compensated for and the estimation accuracy improved. The
model combines environmental field information with rotation equivariant convolution
and Transformer networks to improve the accuracy of TC intensity estimation. Compared
with traditional CNN, the TCICVIT model can capture more spatial contextual information,
thus improving the accuracy and generalization ability of intensity estimation. At the same
time, rotation equivariant convolution can handle the rotational invariance and symmetric
structure of TC, improving the model’s ability for detecting TCs. Finally, incorporating
environmental factors into the model can help capture the impact of external factors on TC
intensity, further improving estimation accuracy. We also conduct experiments using IR
and IR/PMW channel combinations and compare them with other methods that also use
these channel combinations. The results show that our TCICVIT model outperforms other
methods in estimation accuracy. Therefore, our research has significant implications for
improving the accuracy and reliability of TC intensity estimation and can provide strong
support for related fields such as meteorological forecasting and disaster prevention.
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