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Abstract: To reduce air pollution, China adopted rigorous control mechanisms and announced the
Air Pollution Prevention and Control Action Plan (APPCAP) in 2013. Here, using OMI satellite, the
NASA Socioeconomic Data and Application Center (SEDAC), and Fifth ECMWF (ERA5) data at a
0.25◦ × 0.25◦ resolution, we explored changes in NO2, PM, SO2, and O3 and climatology over China
in response to the Action Plan between 2004 and 2021. This study attempts to investigate the long term
trend analysis of air pollution and climatic variations during two scenarios before (2004–2013) and
after (2013–2021) APPCAP. We investigated the climatic effects of air pollution in China before and
after APPCAP adoption using geographically weighted regression (GWR) and differential models to
assess the contribution of air pollution. The spatial representation analysis demonstrated how air
pollution affected climatic factors before and after the APPCAP. Several important findings were
derived: (1) the APPCAP significantly influenced air pollution reduction in China post-scenario
(2013–2021); (2) the Mann Kendall test investigated that all pollutants showed an increasing trend
pre-APPCAP, while they showed a decreasing trend, except for O3, post-APPCAP; (3) for climatic
factors, the MK test showed an increasing trend of precipitation and mean minimum air temperature
tmin post-APPCAP; (4) innovative trend analysis (ITA) showed a reduction in NO2, SO2, and PM,
although O3 showed no trend post-APPCAP; and (5) pre-scenario, NO2 contributed to an increase
in the mean maximum air temperature (tmax) by 0.62 ◦C, PM contributed to raising tmin by 0.41 ◦C,
while O3 reduced the tmax(tmin) by 0.15 ◦C (0.05 ◦C). PM increased tmax and precipitation with a
magnitude 0.38 ◦C (7.38 mm), and NO2 contributed to increasing tmin by (0.35 ◦C), respectively,
post-scenario. In particular, post-scenario led to an increase in tmin and precipitation across China.
The results and discussion presented in this study can be beneficial for policymakers in China to
establish long-term management plans for air pollution and climatological changes.

Keywords: air pollution; APPCAP; Geographically weighted regression (GWR); meteorology

Remote Sens. 2023, 15, 2084. https://doi.org/10.3390/rs15082084 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15082084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7295-0361
https://orcid.org/0000-0001-8972-706X
https://orcid.org/0000-0002-6800-1902
https://orcid.org/0000-0002-0726-1807
https://orcid.org/0000-0002-2152-6672
https://doi.org/10.3390/rs15082084
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15082084?type=check_update&version=2


Remote Sens. 2023, 15, 2084 2 of 24

1. Introduction

Climatic change is a worldwide phenomenon that has become more obvious in the
last three decades [1,2]. As a global phenomenon, there has been an increasing interest
in examining the effects of climatic changes. According to the Fifth Assessment Report
from the Intergovernmental Panel on Climate Change (IPCC), global land and ocean tem-
peratures increased by 0.85 ◦C during 1880–2012 [3,4]. GHGs, aerosols, and change of
land use patterns due to anthropogenic activities have altered the Earth’s radiative bal-
ance and albedo [5–8]. Alternations in the Earth’s radiative balance, through complex
mechanisms, are responsible for changes in temperature, precipitation, and other climatic
variables. Furthermore, significant climate crises can be attributed to the key drivers of
climate variations, which include solar irradiance and volcanic eruptions [9,10]. Solar
irradiance serves as the Earth’s primary energy source, directly impacting the climate
system by influencing ozone concentrations, which induce substantial changes in atmo-
spheric heating and circulation [11–13]. Volcanic eruptions are the most powerful natural
phenomena of the industrial era, with minor eruptions occurring worldwide and emitting
particles that remain confined in the troposphere for several weeks. On the other hand,
explosive eruptions emit a significant amount of ash and SO2 into the stratosphere, causing
short-term climatic effects [14,15]. Urbanization has modified the local climate through the
intensification of urban heat island (UHI) intensity effects, with UHI intensity continuously
increasing, particularly in megacities [16–19].

Environmental pollution has affected the ecosystem and climate directly and indirectly,
resulting in economic and social costs [20–22]. Air pollution is a prime global concern due
to human activities and severe meteorological conditions [23–25]. Multiple studies have
investigated the effects of air pollution impacts on human health, demonstrating reduced
life expectancy and well-being, particularly in urban and industrialized areas [26–29].
The public awareness of environmental pollution and its challenges varies across the
globe, with different stages of industrialization and urbanization in different countries.
During the initial stages of industrialization, local economies were boosted, it raised
prosperity, and people were less concerned with the negative effects of environmental
pollution on the ecosystem [30,31]. China’s rapid economic expansion has led to significant
pollution emissions and environmental devastation, with detrimental impacts on the local
and regional environment [32,33]. Climatic change and air pollution are intrinsically
linked, as air pollutants such as NO2, PM, SO2, and O3 interact with solar and terrestrial
radiation, contributing to climate perturbations [34,35]. SO2, in particular, is a significant
pollutant that causes severe health risks to individuals and environmental deterioration [36].
Changes in different atmospheric pollutants induce radiative forcing (RF), which perturbs
the atmospheric and climate system [37].

In the context of climatic change, air pollutants disturb the amount of incoming
sunlight that is absorbed or reflected by the atmosphere, resulting in significant impacts
on the climate. Anthropogenic emissions cause adverse meteorological conditions [38,39].
Some studies have explored the systematic relationship between air pollution and climatic
variables [40,41]. Moreover, air pollutants alter surface climates, including precipitation
and temperature patterns [42]. Ramanathan (2005) and Sillmann (2017) investigated how
aerosols could impact precipitation patterns and concluded that air pollution significantly
alters precipitation patterns, including the monsoon cycle worldwide [43–46]. Over the
last three decades, countries in Asia, such as China, India, Pakistan, and Nepal, have
experienced severe air pollution because of industrialization and urbanization. The history
of air pollution control shows that only increased awareness about the adverse impacts
of pollution on health makes the governments take strict control measures [47,48]. Global
industrialization, including in China today, has degraded ecosystems [49], depleted natural
resources, and has had adverse effects on ozone levels that may harm plants and impair
human health [30,50,51].

Due to the spatial scarcity of the consistent distribution of site stations, accurately
assessing air pollution and the distribution of meteorological factors and their relationships
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becomes challenging. Under such conditions, satellite and reanalysis data provide a
significant opportunity to assess these phenomena. Many studies have explored the long-
term variation of air pollutants and their interaction with climatic factors using ozone
monitoring instrument (OMI) satellite data [52,53]. OMIs have been used for a variety of
studies, such as analyzing the relationship between air pollutants (NO2, O3, SO2, CO) and
meteorological factors over Bangladesh [54], analyzing the trends in NO2 and SO2 [55–58],
evaluating the pollution emission inventory [59], as well as analyzing the long-term trends
of NO2 and SO2 over East China [60]. Reanalysis datasets are potential alternatives for
studying climate variability [61]. NASA SEDAC has provided high resolution PM data
to analyze trends and impacts [62–64]. The ERA-interim and its new version, ERA5, are
global reanalysis data made by the European Center for Medium Range Weather Forecasts
(ECMWF). These reanalysis datasets include many climate state variables and provide ideal
data for investigating climatic changes and improving water resource policies [65]. The
hydrological regime of the Gilgit Basin in Pakistan was studied using ERA5 [66].

In response to heavy pollution and related concerns, the Chinese government has
adopted certain measures to improve air quality and reduce environmental pollution [67].
China’s State Council has adopted three major action plans to control air, water, and
soil pollution. In comparison to water and soil pollution, air pollution has gained more
attention because it has significant spatial impacts and is highly visible [68,69]. To improve
air quality in China, on 12 September 2013, the China State Council issued an action plan
named APPCAP to guide the national efforts to prevent and reduce air pollution [70]. This
action plan demanded a reduction in the mean annual concentrations of PM2.5 between
15% and 25% across key regions. In this regard, the Chinese government has had the
goal of reducing emissions of PM2.5 and other pollutants since 2012 [71,72]. In 2013,
the National Environmental Monitoring Center (NEMC) and the National Ministry of
Environmental Protection (MEP) started monitoring public hourly and daily air quality
data. As a consequence of the Chinese government’s enforcement of policies and measures,
some types of pollution have been reduced over the last decade, such as smog, haze, and
acid deposition [73–75]. By adopting the clean air action plan in 2013, China has achieved
an average yearly reduction of 4.9%, 12.0%, and 5.3% for NO2, SO2, and CO, respectively,
during 2014–2015. These reductions are considered to make APPCAP the most promising
air pollution combat policy in China to date to improve air quality. To understand the
promising efforts of China, the current research divided the study period into two different
scenarios: before APPCAP (pre-scenario) and after APPCAP (post-scenario). The APPCAP
is a milestone in air pollution control efforts in China and encourages researchers to
evaluate the effect of air pollution management and its impacts at the national level in
China. However, there is still lack of a methodology framework to investigate the air
pollution association with the regional climatic variables under the context of air pollution
control management in China. The current study analyzed the role of air pollution during
the pre and post-scenarios based on APPCAP in regional meteorology changes (tmax, tmin,
and precipitation) and associated impacts over China, with important implications for
future air quality strategies in China. The climatic impacts of air pollution vary by location,
and the air pollution-driven changes can be comparable to, or even more significant than,
those caused by anthropogenic emissions [76]. Therefore, it is of great importance to identify
the most influential air pollutant (NO2, PM, SO2, and O3) for tmax, tmin, and precipitation
changes over the whole of China since clean air actions were adopted.

This study aimed to gauge the effectiveness of the APPCAP policy in China and
provide benchmarks and measurable implications for achieving air pollution mitigation
strategies. To fully understand the air pollution phenomenon and apply the policy ade-
quately, it would be helpful to clarify the aforementioned challenges, as shown in Figure 1.
The current study comprehensively estimated the climatic impact of the APPCAP from
2004 to 2021 in China by following these objectives:
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1. To identify the long-term variability of air pollutants (NO2, PM, SO2, and O3) under
the pre-scenario and post-scenario scheme to evaluate the comprehensive goal of
APPCAP;

2. To determine the long-term trend of climatic factors (tmax, tmin, and precipitation) in
compliance with the pollution control policy;

3. To evaluate the spatial climatic contribution of air pollution control management over
the past two decades at the national level in China.
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2. Materials and Methods
2.1. Study Area

China is a vast and diverse country located in East Asia, covering an area of approxi-
mately 9.6 million square kilometers. It has a population of over 1.4 billion people, making
it the most populous country in the world. China is divided into six major climate regions,
including the tropical, subtropical, warm, middle temperate, cold, and plateau zones [77].
The subtropical zone covers the largest area of China, while the northern part of the country
experiences year-round ice and snow. The eastern and southern regions of China are
influenced by the Pacific Ocean and are characterized by monsoon climates such as hot,
subtropical, and temperate monsoons [78]. These zones are further divided into sub regions
based on Figure 2, which shows the location of these different climate zones, providing a
useful reference for studying the climate and its impact on different aspects of life in China.
Air pollution is a major issue in China, with many cities experiencing high levels of PM,
SO2, NO2, and O3. Rapid industrialization, urbanization, and the extensive use of fossil
fuels have greatly contributed to China’s severe air pollution problem.

The northern parts of China, including Inner Mongolia and Xinjiang, experience a
continental climate, with very cold winters and hot summers. The western region of China,
such as Tibet and the Himalayas, has a plateau climate, characterized by low air pressure,
thin air, and a large daily temperature range. The eastern and southern regions of China
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are influenced by the Pacific Ocean, with the monsoon climate dominating the area. The
mountainous areas of China have a temperate climate, with cooler temperatures and lower
humidity than other areas at the same altitude.
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2.2. Data Description

Aura and Terra satellite-based OMI (https://giovanni.gsfc.nasa.gov/, accessed on
12 September 2022) measured the data of three air pollutants, including NO2, SO2, and
O3 [79–81]. PM data were collected from the NASA SEDAC, which provided global
annual PM grids from MODIS, MISR, and SeaWiFS aerosol optical depth, v4.03 [62].
Aerosol optical depth retrievals from multiple satellite algorithms were calibrated based on
Aerosol Robotic Network (AERONET) observations (https://sedac.ciesin.columbia.edu
(10 September 2022)) [63,64]. Three meteorological parameters (temperature maximum,
temperature minimum, and precipitation) were obtained from the Fifth generation (ERA5)
(https://www.ecmwf.int/en, accessed on 28 September 2022) [82–84] as in the description
written for Table 1. Ground measurements were used to compare the satellite-estimated
and NASA SEDAC data at some pollution monitoring stations as different locations as
indicated in Figure 1. The ground measurements for air pollutants were accessed from a
website (http://www.aqistudy.cn/, accessed on 20 February 2023) under the control of the
Ministry of Ecology and Environment, China available from 2013.

Only NO2, PM, and SO2 ground concentrations were used to compare the satellite
measurements and NASA SEDAC PM, and a high correlation was found between them, as
shown in Figure 3.

https://giovanni.gsfc.nasa.gov/
https://sedac.ciesin.columbia.edu
https://www.ecmwf.int/en
http://www.aqistudy.cn/
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Table 1. Detailed information on data used in the current study. Note: ** Data were averaged into
annual values.

Data Source Parameter Units Spatial Resolution Temporal Resolution

Ozone Monitoring
Instrument (OMI) +

NASA SEDAC

Nitrogen dioxide (NO2) Molecules/cm2 0.25◦ × 0.25◦ Daily **
Ozone (O3) Dobson Units (DU) 0.25◦ × 0.25◦ Daily **

Sulfur dioxide (SO2) Dobson Units (DU) 0.25◦ × 0.25◦ Daily **
Particulate Matter (PM) µgm−3 0.25◦ × 0.25◦ Annual

Fifth-generation
ECMWF (ERA5)

Temperature (max) ◦C 0.25◦ × 0.25◦ Monthly **
Temperature (min) ◦C 0.25◦ × 0.25◦ Monthly **

Precipitation mm 0.25◦ × 0.25◦ Monthly **
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2.3. Trend Analysis

In the present study, we used two non-parametric statistical approaches to determine
whether the meteorological and air pollutants time series were increasing, decreasing, or
showing no trend. ITA and MK tests were employed to identify trends in these variables.
In particular, the ITA test was used to signify efforts to control air pollution in China.
Traditional monotonic trend approaches detect trends using statistical calculations and
cannot depict trends in different subcategories of data values. The ITA is an intuitive
method for identifying trends in different time series subcategories, regardless of distri-
bution assumptions [85–87]. Meanwhile, the MK test assumes that time series have no
sequential correlation and is based on the assumption that all data are significant [88].
These techniques are widely used to analyze climatic parameters in particular [82,89].

2.3.1. ITA Trend Analysis

The ITA approach detects disparities in air pollution data time series using a non-
parametric approach. Using ITA, the time series is divided into equal halves, and each
subseries is sorted in ascending order separately. The first subseries is positioned (Xi; i = 1,
2, . . . , n/2) on the x-axis, and the second subseries is positioned (Xj; j = 1, 2, . . . , n/2) on
the y-axis based on the Cartesian coordinate system. Both axes must have the same range to
interpret the changed information. This approach provides a quick visual understanding of
the nature of time series trends. The data values lie on a 1:1 (45◦) straight line, indicating that
the time series has no trend. The data points that lie above or below the area of triangulation
show the increasing or decreasing trends of the time series, respectively [90,91]. The first
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half of the data points determines the trend change, and the trend indicator is determined
by the difference between the two subseries divided by the mean of the first subseries [92].

The longitudinal trend is computed by taking the arithmetic average of the Xj and
Xi values at every point in the time series. The vertical and horizontal distance from the
linear line is used to calculate the absolute difference. The indicator of the trend [88,91] is
computed using the following Equation (1):

S =
2
(
Xj − Xi

)
n

(1)

where “S” shows the indicator of the trend, and n is the number of data points at Xj and Xi,
represented as the second and first subseries arithmetic averages, respectively. The positive
and negative values of “S” show an increasing and decreasing trend. If the value of
observation data is found odd in the original time series, the first observation might
be discarded.

The significance of the slope was tested by the method proposed by Sen, and a
description of the method was shown in [89].

Confidence limits (CLs) define the significance of the slope of the time series such as if
the data points fall out of the CL, then it is statistically significant. To compute the CLs of
the slope, it follows a Gaussian probability density function with zero mean and standard
deviation as given below:

CL(1−α) = 0± scri × σs (2)

where α is the significance level at a 5% confidence that was used to evaluate the significance
of the ITA trend, and s_cri is the standard normal PDF; the value of “ s_cri” can be calculated
using the following equations:

s_cri =
Z− α

2
(3)

where α = 1 for confidence level. For example, if we have a 95% confidence level, then the
corresponding level of alpha is as follows:

α = 1− 0.95 = 0.05 (4)

where σs is defined as:

σs =
2
√

2
n
√

n
σ
√

1− ρxi,xj
(5)

where ρxi,xj
is the correlation coefficient between the two mean values.

ρxi,xj
=

E
(
XiX j

)
− E

(
Xi
)

E
(
X j
)

σxi σxj

(6)

2.3.2. Mann Kendall Trend Analysis

The aforementioned air pollution and meteorological data were evaluated to detect
the spatial-temporal variation over the China region using two methods: a non-parametric
MK test and Sen’s slope. The negative and positive magnitudes of trends were calculated to
find the slope value and detect the trend changes in air pollution and meteorological factors
in China. The MK test was used for the inhomogeneous time series data to illustrate the
spatial and temporal patterns, and the ZMK test statistic was used [93,94]. The following
mathematical equations were used to calculate the MK statistics V(S), S, and standardized
test statistic Z:

S =
n−1

∑
i=1

.
n

∑
j=i+1

sign
(
Xj − Xi

)
,
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sign
(
Xj − Xi

)
=


+1 if

(
Xj − Xi

)
> 0

0 if
(
Xj − Xi

)
= 0

−1 if
(
Xj − Xi

)
< 0,

V (S) =

[
n(n− 1)(2n + 5)−

q

∑
p=1

tp (tp− 1)(2tp + 5)

]
,

Z =


S−1√
VAR(S)

if S > 0

0 if S = 0
S−1√
VAR(S)

if S < 0,
(7)

n is length of time, tp is the tied values for the pth value, and q is the number of tied
values, while Xi and Xj are the data values in chronological order. In the current study, the
significance of the trend was tested at the Z-critical value > 1.96 with a significance level of
0.05. The null hypothesis of no trend must satisfy the condition if −1.96 > ZMK > 1.96.

2.4. Geographically Weighted Regression Model (GWR)

The GWR model was extensively used in this study to investigate the relationship
between the climatic parameters and air pollutants at the national scale of China. GWR
modeling is a type of regression modeling with geographically varying parameters (e.g.,
air pollutants), which differs from conventional regression modeling and was developed to
achieve a higher performance in geographical analysis. In general, the GWR model can be
expressed by the following Equations (8) and (9) [54,95]:

Ci = ∑k βk(XiYi)APk,i + εi (8)

where Ci is the spatial dependent variable at the location i; XiYi is the x–y coordinate of
the ith location. βk(XiYi) is the coefficient, a varying conditional at kth, and the respective
x-y location with the first coefficient by setting AP0,i = 1, that is β0(XiYi) defined as the
geographically varying intercept term. APk,i is the independent variable at kth and the
respective x-y location. εi is the Gaussian error at the x-y coordinate of the ith location:

Ci = β0(Xi, Yi) + β1(Xi, Yi) NO2 + β2(Xi, Yi)PM + β3(Xi, Yi)SO2 + β4(Xi, Yi)O3 + εi (9)

where Ci stands for the dependent climatic factors (precipitation, temperature maximum,
and temperature minimum). β0(Xi, Yi) is the geographical intercept. β1 to 4(Xi, Yi) are the
respective geographically varying coefficients, which are different from the coefficients of
conventional regression. NO2, PM, SO2, and O3 are the independent air pollutants at the
x–y coordinate of the ith location.

2.5. Impact Assessment of Air Pollution on Climate

The climatic impact of air pollution can be assessed using the following differential
Equations (10) and (11):

dClimi
dt

=
dClimi
dPM

× dPM
dt

+
dClimi
dSO2

× dSO2

dt
+

dClimi
dNO2

× dNO2

dt
+

dClimi
dO3

× dO3

dt
(10)

In the above Equation (10), Climi means different climatic parameters such as pre-
cipitation, temperature maximum, and temperature minimum. This equation is based on
the chain rule of calculus, which states that the derivative of a composite function (in this
case, “Climi” as a function of “PM, SO2, NO2, and O3” and “PM, SO2, NO2, and O3” as a
function of time) is equal to the product of the derivatives of the individual functions. The
equation suggests that the rate of change of a climate variable “Climi” can be influenced by
changes in an air pollutants “PM, SO2, NO2, and O3”. By understanding the relationship
between these variables and their rates of change over time, we can gain insights into how
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changes in one variable may influence the other. This equation is a simple representation
of the complex interactions between the atmosphere, land, and oceans that determine the
Earth’s climate. It can be used to investigate the impacts of various human activities, such
as emissions of air pollutants, on the climate system.

∆Climi = a× ∆PM + b× ∆SO2 + c× ∆NO2 + d× ∆O3 (11)

Equation (11) explains in general that ∆PM, ∆SO2, ∆NO2, and ∆O3 are the inter-
annual changes while a, b, c, and d mean coefficients.

3. Results
3.1. Trend Analysis of Air Pollution Variation under Pre- and Post-Scenarios

The current study presents the spatiotemporal characteristics of climatic variables and
air pollutants from 2004 to 2021 using OMI, SEDAC, and ERA5 data. To analyze the spatial
characteristics, we performed a trend analysis on the average annual concentrations of air
pollutants from 2004 to 2021. We divided our study period into two scenarios based on
APPCAP, namely pre- and post-scenarios, by accounting for the periods 2004–2013 and
2013–2021, respectively. We wanted to ensure the significance of the results of APPCAP
in China. During the pre-scenario, it was observed that PM, SO2, and NO2 showed
heterogeneous trends, whereas the trend for O3 was homogenous across the study area.
Figure 4 shows the most prominent increasing trend for NO2, which was 1.21 × 1015

molecules/cm2 per year. It is caused by anthropogenic emissions associated with economic
growth, including traffic flow and urbanization [60].
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In the case of PM and SO2, the increasing trend was 4 µgm–3/year and 0.1 DU/year,
respectively, during 2004–2013. In the pre-scenario group, the highest increasing trend for
PM was recorded in northeast, east, and southeast China. For O3, the trend over China
was increasing, with the maximum value being 1 DU/year. On the other hand, the highest
decreasing trend was recorded at 1.0× 1015 molecules/cm2 per year for NO2 cross ponding
to different hotspots in China.

The p values for PM and NO2 were highly significant over most of the parts of the
study region, as illustrated in Figure 5, whereas a mixed trend of p-value variation was
observed for SO2 and O3.After adopting the APPCAP (post-scenario), it was observed that
PM and NO2 showed a significantly decreasing trend in most of the part of China, whereas
the trend for O3 was still increasing in China.
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Figure 6 shows the most prominent decreasing trend, as the trend for NO2 was
1.21 × 1015 molecules/cm2 per year. In the northwest and north China, the trend was
mixed for NO2, while the northeast China PM trend increased after adopting the APPCAP.
In the case of O3, the trend decreased in the north part, while the rest of the area showed an
increasing trend. The decreasing trend of O3 was 2.0 DU/year during 2013–2021. In the
post scenario, the trend for SO2 was random, and a decreasing trend was found in central
China, including the Shandong and Beijing areas. The highest decreasing trend for SO2
was 0.10 DU/year, while the decreasing trend was recorded for PM in northeast, east, and
southeast parts of China, with a peak value of 6 µgm−3/year. In contrast, O3 showed an
increasing trend with a maximum value of 1.2 DU/year. The highest increasing trends
recorded were 0.05 DU/year and 1.21 × 1015 molecules/cm2 per year for SO2 and NO2 in
China. From Figure 7, the p values showed that the decreasing trend for PM and NO2 was
highly significant in the study region, whereas the increment in O3 pollution was highly
significant during the post-scenario period.

3.2. Trend Analysis of Climatic Factors Variation under Pre and Post Scenarios

Figure 8 shows the spatial variation in trends for climatic parameters, including tmax,
tmin, and precipitation. In general, all parameters showed an increasing trend across the
study region. During the pre-scenario, tmax and tmin showed a prominent increasing trend,
while precipitation showed a less significant increasing trend. tmax showed the maximum
increasing trend of 0.30 ◦C/year, while tmin represented 0.38 ◦C/year. The precipitation
trend also increased, but it was prominent in the north and southeast regions of China,
where it increased by value 253 mm/year. However, a prominent decreasing trend was
found along the Shandong region to the south part. The precipitation trend decreased by
72 mm/year. In the case of tmax, the trend did not significantly increase in the northern
region, whereas tmin showed a decreasing trend in the same region of China. The maximum
decreasing trend for tmax and tmin was 0.35 ◦C/year and 0.42 ◦C/year, respectively. The
trend variation in tmax, tmin, and precipitation was highly significant at p < 0.05 across the
study area, as shown in Figure 9. After adopting the APPCAP, the trend variation was in
contrast to the pre-scenario trend analysis results. Precipitation and tmax showed increasing
trends with maximum trend values of 246 mm/year and 0.54 ◦C/year, respectively. The
tmin trend seemed to slightly increase by 0.61 ◦C/year, especially in the north and southwest
parts of China. In contrast, the precipitation trend decreased by 135 mm/year, particularly



Remote Sens. 2023, 15, 2084 11 of 24

in the southeast part of China. Furthermore, tmax and tmin showed a decreasing trend over
2013–2021 with a magnitude of 0.26 ◦C/year and 0.37 ◦C/year, respectively.
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3.3. ITA Analysis for Air Pollution Variation under Pre and Post Scenarios

The annual variations in air pollutants were studied to analyze the impact of APPCAP
on air pollution reduction. The ITA analysis showed an increasing or decreasing trend over
two decades, during pre-scenario and post-scenario periods. A combination of increasing
and decreasing trends for data points above the 5% range from the 1:1 line exhibited a
significant trend. The results showed that, overall, NO2, PM, and SO2 decreased after
adopting APPCAP across China. Figure 10 suggests that air pollutants (NO2, PM, SO2,
and O3) significantly decreased. The results also showed that NO2 data points fell within
the −5% range, showing a decreasing trend during 2004 and 2021. The statistics for
NO2 exhibited significant negative values of ITA D. The O3 data points were mostly on
the diagonal line, indicating no trend/zero trends. The SO2 data points fell above −5%,
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indicating that it decreased after adopting APPCAP. However, it was concluded that the
decreasing trend of SO2 was not significant over the period.
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3.4. Impact Analysis of Air Pollutants on Climatic Factors before and after APPCAP

The impact analysis of air pollutants was investigated using the GWR model and
differential Equations (8)–(11). We performed a spatial distribution analysis on the outputs
from the differential equations to investigate the climatic impact of air pollution over two
scenarios based on APPCAP in China.

3.4.1. Air Pollutant’s Contribution to Temperature Maximum Patterns

The spatial characteristics of the contribution of air pollutants to tmax patterns for the
pre-scenario and post-scenario periods are represented in Figure 11. Higher positive values
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show a greater influence on increasing tmax over the study period. For the pre-scenario
period, NO2 had a higher value and increased tmax by 2.42 ◦C, while O3 had a lower
positive value of 1.10 ◦C over a decade. In the case of SO2, the contribution pattern was
random. In contrast, SO2 had higher negative values and decreased tmax by 2.07 ◦C, while
PM showed the lowest negative contribution with 0.55 ◦C over China. PM caused an
increase in tmax in central east and southeast parts of China, as shown in Figure 11a. After
adopting the APPCAP (post-scenario), PM showed the highest positive contribution to
increasing tmax by 1.80 ◦C, while O3 contributed the lowest positive value of 0.60 ◦C. SO2
showed random spatial patterns of increasing or decreasing tmax over the whole study
area. NO2 contributed more to decreasing tmax by 2.27 ◦C, and spatial patterns showed
that central east China was reducing tmax, as shown in Figure 11h.

1 
 

 Figure 10. ITA trend of the pollutants (NO2, PM, SO2, and O3). Note: Blue dotted line shows
significance at (p < 0.05).

O3 reduced tmax in the southern part of China. The contribution pattern of O3 indicated
the lowest negative contribution to decreasing tmax by 0.47 ◦C. In general, a comparison
of all air pollutant’s contributions indicated that, during the pre-scenario period, tmax
positively changed by 2.42 ◦C, followed by NO2, while in the post-scenario period, tmax
positively changed by 1.80 ◦C, followed by PM. In contrast, the highest negative tmax
change was by 2.07 ◦C, followed by SO2, and 2.27 ◦C followed by NO2, respectively. NO2
and PM particles can contribute to global warming by trapping the heat in the atmosphere.
They cause the warming effect on the atmosphere by absorbing the sunlight and re-emitting
it as heat, leading to a rise in the temperature. The current effect is more in urbanized areas,
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where there are high traffic and industrial emissions. Further, NO2 may also react with
chemicals in the atmosphere to form secondary pollutants such as O3, which can increase
warming. Moreover, O3 leads to an increase in temperature. SO2 is primarily released from
the burning process and volcanic eruption. It has harmful effects on human health as well as
the environment. However, SO2 emissions contribute to warming the atmosphere because
it can react with other chemicals in the atmosphere to form sulfate aerosols and lead to an
increase in temperature. This effect is more prominent in areas with high concentrations of
SO2, such as power and industrial plants. Overall, the pollutants significantly impact the
temperature maximum, particularly in areas with high concentrations. The effect of the air
pollutants on tmax depends on the concentration level, size of the particles, as well as other
factors such as location and weather conditions.
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3.4.2. Air Pollutant Contribution to Temperature Minimum Patterns

In this section, the spatial characteristics of the contribution to tmin changes for the
pre-scenario and post-scenario periods are represented in Figure 12, which shows the
spatially interpolated geographical air pollution contribution to climatic factors (tmin).
The northern, western, and southeastern parts of China indicated a position association
with air pollutants during the pre-scenario period (2004–2013). Figure 12a,d shows the
higher positive influence on increasing tmin by 2.19 ◦C, followed by SO2, while NO2 had the
second highest contribution to change in tmin by 1.96 ◦C during the pre-scenario period. The
northeastern and southern parts indicated the rise in tmin due to the variation in PM. NO2
caused higher tmin changes over the north, central, and southeast parts of China. In contrast,
NO2 contributed to a higher negative contribution to decrease tmin by 2.24 ◦C, while PM
had a lower negative contribution with a value of 0.43 ◦C over a decade. Figure 12d
indicates that NO2 was mainly responsible for decreasing tmin mainly in the central part of
China. O3 and SO2 had mixed patterns for changing tmin (Figure 12b,c).

In the post-scenario period, the west, north, and central parts of China showed an
increasing contribution to tmin changes. NO2 showed the highest positive contribution to
increasing tmin by 2.24 ◦C, while O3 had the lowest positive contribution with 0.60 ◦C. The
second highest positive contribution to increasing tmin was with PM (1.69 ◦C). SO2 and
O3 showed random spatial patterns to increase or decrease tmin over the whole study area.
NO2 had a positive contribution in central east China, as shown in Figure 12h. In contrast,
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NO2 had the highest negative contribution for reducing tmin by 1.53 ◦C in the northeast
and southeast parts of China.
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Moreover, O3 contribution patterns indicated the lowest negative contribution to
decreasing the tmin by 0.47 ◦C. O3 reduced tmin in the east-southeast part of China during
the post-scenario period. Overall, a comparison of all air pollutants contributions indicated
that, during the pre-scenario and post-scenario periods, the tmin changed the highest
positively by 2.19 ◦C followed by the SO2, while it was 2.44 ◦C followed by NO2 during the
pre-scenario period. In contrast, tmin has the highest negative change by 2.24 ◦C, while it
was 1.53 ◦C followed by NO2 in the case of the pre- and post-scenario periods, respectively.
NO2 has direct and indirect impacts on temperature minimum. It can have a warming
effect. NO2 absorbs sunlight and heat in the atmosphere that can lead to an increase
in temperature, especially at night. It is important to note that impacts of SO2 on tmin
depend on the different factors such as season and altitude. The sulfate aerosols reflect
solar radiation and reduce the energy on the Earth’s surface. This phenomena causes a
cooling effect on temperature, including tmin. Moreover, NO2 causes the urban heat island
effect, where cities experience higher temperatures than surrounding rural areas due to
human activity and the built environment. This effect can further increase the minimum
temperature in urban areas, leading to a range of health and environment impacts.

This warming effect can have several consequences, including the melting of snow
and ice, changes in precipitation patterns, and alternations in plant growth and ecosys-
tem functioning.

3.4.3. Air Pollutant Contribution to Precipitation Patterns

Figure 13 shows spatial maps of the contribution of air pollutants in changing pre-
cipitation patterns over China in the pre- and post-scenario periods. Figure 13b,c shows
the highest positive influence on precipitation, with an increase of 40 mm, followed by
SO2, while O3 had the second highest contribution to changes in precipitation, with an
increase of 39 mm during the pre-scenario period. The central-eastern part indicates the
rise in precipitation due to variations in SO2, while O3 caused higher precipitation changes
over the Southern part of China. In contrast, SO2 had a negative contribution to decreasing
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precipitation by 22 mm, while NO2 had lowest negative contribution, with a value of
0.01 mm over a decade. Figure 13b,d indicates the lower precipitation hotspots in the south
of China caused by SO2, while NO2 showed hotspots in the east of China, respectively.
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In the post-scenario period, the south, east, and central parts of China showed increas-
ing contributions to precipitation alteration. PM made the highest positive contribution
to increasing the precipitation by 27 mm, while NO2 had the lowest positive contribution,
with 0.007 mm. The second-highest positive contribution to raising precipitation was with
SO2 (24 mm). The PM contribution was positive in the central part of China, as shown in
Figure 13e. In contrast, SO2 had the highest negative contribution to reducing the precipita-
tion magnitude by 19 mm in the central east (Shandong) part of China. Moreover, NO2
contribution patterns indicated the lowest negative contribution to reducing precipitation
by 0.01 mm. NO2 reduced the precipitation in the north part of China during the post-
scenario (2013–2021). Overall, a comparison of all air pollutant contributions indicated that
during the pre-scenario period, the highest positive precipitation change was by 40 mm
followed by SO2, while it was 27 mm followed by PM in the case of the post-scenario period.
In contrast, the highest negative precipitation change was by 22 mm, while it was 19 mm
followed by SO2 during the pre- and post-scenario periods, respectively. SO2 and PM had
significant impacts on the precipitation pattern and environment. SO2 reacts with other
chemicals to produce sulfate aerosols that may affect precipitation in different ways. SO2
affects the precipitation pattern by altering the formation of clouds. Sulfate aerosols act as
cloud condensation nuclei, which are important for the formation of clouds. PM particles
promote the formation of clouds and change their properties through cloud condensation
nuclei. However, these particles may affect the properties of clouds, including droplet size,
their reflectivity, and the amount of precipitation they produce. As a result, the timing of
precipitation as well as the pattern is affected. Additionally, SO2 may impact precipitation
patterns through its interactions with other atmospheric chemicals.

As an example, SO2 reacts with nitrogen oxides to create fine PM particles that signifi-
cantly affect precipitation patterns, in particular, the areas with high concentrations of both
SO2 and NOx. PM emissions from urban and industrial areas can lead to forming urban
heat islands, which alter local wind patterns and precipitation by changing the moisture
content and temperature of the air.
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4. Discussion

The State Council issued an action plan, APPCAP, to combat air pollution in 2013,
which became the most ambitious policy to control air pollution concentrations [30,72].
APPCAP aimed to improve the following aspects: (1) control air pollution, (2) control
pollution substances, (3) diversify air pollution control strategies, and (4) optimize pollution
management mode [71,96,97]. The current study divided the entire study period into two
separate scenarios to better comprehend the promising efforts of China: the pre-scenario
(before APPCAP) and post-scenario (after APPCAP) periods. The APPCAP is a significant
development in China’s efforts to curb air pollution, and motivates researchers to assess
the implications of air pollution’s management at the national level. MK trend analysis
was performed before and after APPCAP implementation on mean annual data. ITA is an
intuitive method used to identify trends in different time series subcategories and can be
applied irrespective of distribution assumptions [85–87], while the MK test assumes that
time series have no sequence correlation and are least-based and all data are significant [88].
During the pre-scenario period, trend analysis results on PM, SO2, and NO2 showed
heterogeneous trends, whereas the trend for O3 was homogenous. The most prominent
increase in NO2 concentration was 1.21 × 1015 molecules/cm2 per year [64,98,99]. In
the case of PM and SO2, the increasing trend was 4 µgm−3/year and 0.1 DU/year [88].
Northeastern, eastern, and southeastern China showed the highest increasing trend for PM
in the pre-scenario period. For O3, the trend increased across the region with a maximum
value of 1 DU/year in the pre-scenario period.

In light of stringent clean air pollution actions, including APPCAP, adopted in China
since 2013 (post-scenario), data analysis showed that PM and NO2 had significantly de-
creasing trends in most of China, while the trend for O3 did not reduce considerably and is
still escalating [100,101]. In the post-scenario period, Beijing, Shandong, and other areas of
central China showed a random and declining tendency for SO2 [102], with the greatest
rate of decline for SO2 being 0.10 DU/year.

The spatial variation of the trend for the climatic parameters, including tmax, tmin,
and precipitation, increased across the study region. During the pre-scenario period,
tmax showed a decreasing mean annual trend of 0.025 ◦C/year, and tmin represented
0.02 ◦C/year, respectively, while precipitation had an increasing mean annual trend by
a value of 90 mm/year. After adopting the APPCAP, trend variation was in contrast to
the pre-scenario period for temperature trend analysis results. During the post scenario
period, precipitation, tmax, and tmin showed increasing mean annual trends by 55 mm/year,
0.14 ◦C/year, and 0.12 ◦C/year, respectively, and were highly significant at (p < 0.05).
Overall, tmax and tmin increased while the precipitation reduced.

A comparison of the effects of air pollution on climate between the pre- and post-
scenario periods was analyzed for a two-decade period using ITA to determine whether
there was an increasing or decreasing trend. The results showed that, when China adopted
the APPCAP, overall concentrations of NO2, SO2, and PM declined. Figure 10 indicates
that the levels of airborne pollutants (NO2, SO2, and PM) dramatically decreased. NO2
data values above the −5% range showed a declining trend between 2013 and 2021, and
NO2 statistics exhibited significant negative values for ITA. However, despite the massive
reduction in NOx emissions from power plants, vehicle emissions continued to increase.
Both on- and off-road vehicles significantly contribute to air pollution, and multiple studies
have revealed a strong correlation between rising vehicle traffic and air pollution in Chinese
megacities [103–106]. Since the 1990s, the central government has implemented integrated
emission control policies to reduce vehicle emissions, including emission standards for new
vehicles, emission controls for existing vehicles, modifications in fuel quality, the promotion
of advanced vehicles, sustainable transportation, and traffic management programs [107].

O3 data points mostly fall on the (1:1) line, indicating no trend/zero trends. According
to Liu [108], the sources of the ozone and its variation in concentrations in China, substantial
declines in PM, and SO2 emissions lead to a rise in urban O3 due to the dynamic interaction
between aerosols, radiation, and chemical reactions. O3 concentrations also increase in the
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southwest due to climatic factors [109]. Additionally, several studies found that reducing
the concentration of NOx increases the amount of O3. During the COVID-19 lockdown,
the transportation sector shutdown resulted in a reduction in NOx, which decreased the
neutralization of NO into O3, which raised the concentration of O3 [110,111].

The SO2 data points were above −5%, indicating that it started to decline after the
APPCAP was implemented. Additionally, it was determined that the decreasing tendency
of SO2 over the period was significant and it was in line with findings of [97]. China’s
environmental regulations resulted in significant reductions in SO2 emissions, but overall,
coal consumption has continued to rise. Since 1996, reducing SO2 emissions from major
industries, including coal-fired thermal power and iron/steel plants, has been top priority.
The installation and strict management of online monitoring equipment in the main indus-
tries have become mandatory, and different policies and programs have been implemented
during previous Five-Year Plans [107,112].

Our study has certain limitations. We examined the long-term changes in air pollutants
and climatic factors, as well as their association based on different statistical models. The
APPCAP adaptation resulted in an increase in tmin and precipitation. The rise in tmin may
result in local warming in China for the most part, which requires more efforts to combat
climatic change. To this end, there is a need to focus on the mechanisms underlying these
regional climate changes, based on seasonal variation. The climatic effect of air pollution
along seasonal variation remains unexplored, and coupling regional climate models to
analyze the radiative effects of China’s emission reductions.

Climatic Impact of Air Pollutants for Pre and Post Scenarios

The current study describes the climatic changes due to variations in air pollutants
in response to the adoption of the APPCAP. In the pre-scenario period, most of the air
pollutants showed positive contributions to changing the climate. For example, O3 played a
role in reducing tmax (tmin) with a value of 0.15 ◦C (0.05 ◦C) and increasing precipitation with
a value of 11mm, as shown in Table 2. PM showed a positive relationship with all climatic
parameters with values of 0.47 ◦C (tmax), 0.41 ◦C (tmin), and 0.31 mm (precipitation). The
analysis showed that NO2 had positive and negative relationships with tmax (precipitation)
0.62 ◦C (0.1mm) and tmin (0.14 ◦C), respectively. SO2 showed an increasing contribution
with tmin (precipitation) 0.41 ◦C (9mm), while decreasing with tmax (0.06 ◦C).

Table 2. An average value of climatic variation in response to air pollutant changes during (pre- and
post-) scenarios in the study area.

APPCAP Parameter Tmax
◦C Tmin

◦C Precp mm

Pre-Scenario

NO2 0.62 −0.14 0.0
PM 0.47 0.41 0.31
SO2 −0.06 0.41 9
O3 −0.15 −0.05 11

Post-Scenario

NO2 −0.33 0.45 0.001
PM 0.38 0.31 7.38
SO2 −0.09 0.02 2.27
O3 0.06 0.18 4.06

During 2013–2021 (post scenario), most of the air pollutants (PM, SO2) showed positive
contributions to alter the climatic pattern including tmax, tmin, and precipitation. The
analysis showed that PM had a positive relationship with tmax (tmin) 0.38 ◦C (0.31 ◦C), and
precipitation (7.38 mm). NO2 showed an increasing contribution with tmin (precipitation)
0.35 ◦C (0.001 mm), while decreasing with tmax (0.33 ◦C). Moreover, SO2 indicated an
increasing contribution to tmin (precipitation) 0.02 ◦C (2.2 mm), while decreasing with tmax
(0.09 ◦C).
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5. Conclusions

In summary, when China adopted the APPCAP, NO2, SO2, and PM concentrations
declined dramatically. According to ITA, NO2 data values above the –5% range showed
significant declining trend between 2013 and 2021. Although O3 concentrations have
gradually increased, the air quality in most cities has immensely improved as a result of
the stringent control measures by the State Council. The O3 data points are mostly on the
(1:1) line, which means that there is no trend/zero trends. The decreasing tendency of SO2
over the period is not significant. Despite the tremendous progress made in reducing air
pollution, PM and O3 concentrations continue to be considerably above WHO guidelines.
More efforts are required to focus on the research and development of new methods to
address these ongoing challenges in air pollution emissions. The MK test investigated that
all pollutants showed an increasing trend for pre-APPCAP, while showing a decreasing
trend, except for O3, during the post-APPCAP period. For climatic factors, the MK test
showed an increasing trend of precipitation and tmin for the post-APPCAP period.

We used GWR and differential equation models to identify the climatic impact of air
pollution before and after the implementation of APPCAP in 2013 to combat air pollution.
Two scenarios based on APPCAP were made to account for the air pollution variation
in China during 2004–2021. The contributions of the most influential air pollutants were
calculated using the GWR and differential equation models. In the pre-scenario period,
NO2 contributed to increasing the mean maximum air temperature (tmax) by 0.62 ◦C, PM
contributed to raising tmin by 0.41 ◦C, while O3 reduced tmax(tmin) by 0.15 ◦C (0.05 ◦C).
PM increased tmax and precipitation with magnitudes of 0.38 ◦C and 7.38mm, respectively,
while NO2 contributed to increasing tmin by 0.35 ◦C during the post-scenario period. In
particular, the post-scenario period led to increases in tmin and precipitation across the
country. The current study findings explain the significance of APPCAP and its role in
changing the regional climate of China. Policymakers must implement measures to reduce
emissions and maintain the climate warming level across the region. In the future, China
needs to introduce more renewable energy to dominate the coal energy system, which may
help with national and international climate mitigation measures.
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