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Abstract: A new algorithm for detecting branch attachments on stems based on a voxel approach
and line object detection by a voting procedure is introduced. This algorithm can be used to evaluate
the quality of stems by giving the branch density of each standing tree. The detected branches were
evaluated using field-sampled trees. The algorithm detected 63% of the total amount of branch
whorls and 90% of the branch whorls attached in the height interval from 0 to 10 m above ground.
The suggested method could be used to create maps of forest stand stem quality data.
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1. Introduction

The advanced management of forest resources requires methods for the estimation of
not only biomass and volume but also tree quality. Methods to extract more tree information
are expected to become increasingly important during the transfer to a bio-based economy.
Airborne laser scanning methods now make it possible to create treemaps for large areas
[1]. This opens up for a new precision forestry in which the positions of individual trees
are known [2]. However, operational remote sensing methods are still using manual
measurements on the ground as reference. Tree stem quality variables are rarely captured
in operational forest inventories due to the inefficiency of manual measurement methods.

In recent years, there has been a rapid development of algorithms that use Terrestrial
Laser Scanning (TLS) data to extract forest variables from field plots. Stem maps, diameter
at breast height (1.30 m height, DBH), stem curves, and tree allometry models can now be
automatically extracted using the latest remote sensing techniques [3]. This opens up new
possibilities to build automatic, fast, and reliable inventory tools that can be utilized in the
forest industry; and one such application could be to measure and analyze the branching
pattern of trees in order to assess the stem characteristics. This is because the branches of
the trees have a direct effect on the wood quality in sawn timber, distorting the wood grain
orientation and thereby decreasing the wood stiffness and strength [4].

There are some existing algorithms in literature that today can build tree models from
TLS data and many of them use skeletonization of point clouds saved in 3D-based volume
elements (voxels) to find the branching structure of trees [5–10]. However, there are also
other types of methods, for instance using a bifurcation recognition process [11–13]. Models
of the branching structure can also be found using eigenvector analysis [14], the laplacian
algorithm [15], a spherical iterative method [16], or by using 3D convolutional networks [17].
A semi-automatic method for extracting branching and stem structure has also been used
since an operator can facilitate the measurements. Examples of such methods are by using
equirectangular projections [18] or by the random sample consensus method [19]. There
are also other forestry parameters that have been extracted from TLS data such as the wood
volume for stems and branches [20].

Remote Sens. 2023, 15, 2082. https://doi.org/10.3390/rs15082082 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15082082
https://doi.org/10.3390/rs15082082
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2836-2316
https://orcid.org/0000-0002-7112-8015
https://doi.org/10.3390/rs15082082
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15082082?type=check_update&version=2


Remote Sens. 2023, 15, 2082 2 of 10

These algorithms usually detect the branching pattern quite well with, for instance, a
detection accuracy of 65–70% as reported by Pyörälä et al. [4]. However, the lack of evalua-
tions of the algorithms using detailed data has been one limitation for a successful transfer
of the research findings into industrial inventory tools. A question to answer is: how far up
in the canopy can the branches be detected and how reliable are the detection methods?

In this study, we present a new algorithm for detecting the branch attachments to the
stems, based on a voxel approach and line object detection by a voting procedure. This
approach can be used to evaluate the quality of the stems by giving the branch density of
each standing tree. We also evaluate the detected branches using field sampled trees.

2. Materials and Methods
2.1. Field Data

Ten Scots pine trees of different quality (different branch densities along the stem) were
measured at the Siljansfors research park established in 1921. The field site is located 18 km
southwest of Mora in Sweden (lat: 60◦52′–60◦55′N, long: 14◦19′–14◦25′E), 210–425 m above
sea level. The annual average temperature is 3.3 ◦C and the annual mean precipitation
is 674 mm. The mean snow coverage is 150 days/year. The minimum measured annual
precipitation was 338 mm in 1947 and the maximum measured annual precipitation was
888 mm in 2000. The tree species composition is 60% Scots pine, 35% Norway spruce, and
5% deciduous trees in 1520 ha. The site has suffered from at least 24 considerable storms
since establishment.

The samples were selected to represent both young and old forests, and trees with
different amounts of branch densities (Figure 1). Trees 1–4 were located at a site with a
stand age of 108 years and were a few of the remaining trees after harvesting. Stem density
was 100 stems/ha. Trees 5–8 were located at a site with a stand age of 37 years. Stem
density was 700 stems/ha. Trees 9 and 10 were located at a site with a stand age of 50 years
and stem density of 800 stems/ha. Scots pine was selected since it is an important tree
species in Scandinavian forestry.

Figure 1. Examples of young and old sample trees with different branching patterns. (Left) Pine tree
from a stand of age 37 years. (Middle) Pine from a stand of age 50 years, with thick branches from
ground to tree top. (Right) Pines from a stand of age 108 years. A large part of the stems only have
small branches. The tree crowns at the top have thicker branches.

The ten trees were first laser scanned and then felled. The height from the ground
to the branch whorls was measured manually. The field sampled trees had a DBH of
19.2–38.5 cm and a tree height of 13.5–24.4 m, Table 1. The mean distances between branch
whorls are 41 cm and the minimum and maximum distances between branch whorls are
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10 cm and 120 cm, respectively. The branch diameters from the sample trees were in the
range 0.24–9.27 cm.

Table 1. Field-sampled trees used in the study. DBH is the stem diameter at breast height.

Tree DBH [cm] Height [m] Height to First Green Branch [m]

1 27.3 21.9 13.0
2 32.0 21.0 12.4
3 38.5 24.4 11.4
4 29.2 21.8 14.1
5 20.9 14.9 5.9
6 22.9 15.7 4.8
7 19.2 13.5 4.9
8 21.4 14.4 2.6
9 20.0 16.5 6.5

10 30.4 20.8 11.2

2.2. Terrestrial Laser Scanning Data

The ten trees were scanned with a terrestrial laser instrument, Trimble TX8, to obtain
a detailed measurement of the stem and branches of each tree. The field of view was:
360◦ × 317◦, beam divergence 0.34 mrad, 1 million laser points per second, and wavelength
1.5 µm (near-infra–red). One scan takes three minutes to complete. A multiscan setup was
used with three instrument positions surrounding each tree. The first instrument position
was set approximately 3 m south of the stem (180◦ azimuth). The other two instrument
positions was set at 60◦ azimuth and 300◦ azimuth to cover all sides, both approximately
3 m from the stem. At each instrument position a tripod was placed. For every scan, one of
the tripods had the TLS instrument fixed to it and the other two had white spherical targets
attached to them. This was performed three times so that the TLS instrument scanned the
trees from three directions. The TLS instrument had the zero coordinate at the center of
the equipment, for each scan, so the spherical targets were used to co-register the data into
a common coordinate system. The positions of the targets were detected in each of the
scans in the TLS data. The three different datasets were then merged into one by using the
detected coordinates of the targets. Trees were visible from all sides in the new merged
point cloud data, Figure 2.

Figure 2. Terrestrial laser scanner experimental setup. The white spheres are targets used when
co-registering laser datasets from different scan angles. The black and white sheet on the tree is a
target used when co-registering laser data and manually sampled data.
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2.3. Branch Detection Algorithm

The outline of the branch attachment detection algorithm is as follows. The TLS data
are saved in 3D-volume cells (voxels) of 3 cm size for easy access and data management.
Voxels with fewer than 100 data points are not used. Stem profiles of the trees and ground
models are detected using algorithms described in [21]. The output from the stem profile
algorithms is a list of consecutive cylinders for each sample tree and by interpolating the
cylinder list it is possible to achieve an estimated stem diameter at any height along the
stem. After detecting the ground model and the stem profile models, the laser data can be
classified into low vegetation points, near stem branch points, and unclassified points as
a preprocessing step. The criteria for selecting classes is as follows. Data points that are
closer than 50 cm from the height of the ground model are classified as low vegetation and
not used. The remaining data points that are positioned within a radial distance interval
from 5 cm to 50 cm from a stem are classified as near stem vegetation and kept for further
processing, Figure 3.

Only the data points that are classified as near stem points are used after the prepro-
cessing step and saved in voxels. Filled near-stem voxels that are neighbors are clustered
into groups, Figure 4A. These clusters are classified as possible branches. For each cluster,
the voxels that have a radial distance from the stem profile that is less than 7 cm are classi-
fied as possible attachment points and kept for further processing. These attachment voxels
are grouped into subclusters. Note that there can be more than one attachment subcluster
per branch cluster but the most common is that each possible branch only has one attach-
ment point. Several branches growing close together might sometimes be clustered as one
big branch and would therefore have several attachment points. Arranging attachment
points into subclusters is a way of finding each separate branch in cases like these. Clusters
without attachment points are considered to be foliage or other noise and removed.

Figure 3. Preprocessing of pointcloud. Ground vegetation class in blue, near stem branches class in
red, and unclassified points in gray.

The voxel closest to the centroid in each attachment subcluster is chosen as the center
position of the branch attachment, Figure 4A. From this position, a number of cylinder axes
are tested in different directions. For each direction, the laser data points that are within
a preselected radius of size 3 cm, from the current cylinder axis, are added to the voting
for that particular direction. The votes for each direction are saved in a voting raster with
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coordinates u and v. To obtain an evenly distributed number of directions, the u and v
coordinates are mapped to spherical coordinates using Equations (1).

u = θ cos(φ)
v = θ sin(φ)


r = 1
θ =

√
u2 + v2

φ = arctan(v/u)
(1)

where r is the radial distance, θ is the angle in radians from the z-axis, and φ is the angle
in radians from the x-axis in the x–y plane. Equations (2) are used to map spherical to
Cartesian coordinates.

r =
√

x2 + y2 + z2

θ = arccos(z/r)
φ = arctan(y/x)


x = r cos φ sin θ
y = r sin φ sin θ
z = r cos θ

(2)

where x, y, and z are the Cartesian coordinates.
The cylinder axis with the highest number of votes for each branch attachment, in the

u–v voting raster, is selected as the center line of the selected cluster. The branch radius is
modeled as the radial median of the data points to the center line of the selected cluster,
Figure 4B.

Figure 4. (A) Sketch of the branch detection algorithm. Laser data as red dots, stem profile as a
large grey rectangle, near stem zone marked with thin lines, 3D cluster cells as small squares, stem
attachment cells as black squares, selected start cell for branch detection in blue, estimated stem
axes as arrows. (B) Estimated branch attachments to pine in the field data were measured with a
terrestrial laser scanner. White dots are laser data. Red cylinders are the branch attachment estimates.
The weakly colored cylinders are the stem profile estimate.

2.4. Data Processing

The data processing was performed using software developed by the authors. The pre-
and post-processing of the text-based data was performed using the Python scripting
language. The algorithm for detecting stem profiles in TLS data and the new code for
detecting branches in classified point cloud data were implemented using the C-programing
language. Output from the stem profile and branch detection algorithms were saved in
text files for post-processing and analysis. Stem profile detection of 15 m plots takes about
1–3 h to process depending on the stem density and average tree heights of the plot. Branch
detection processing takes less than 5 min for one tree. An Intel Xeon E5-2690v4 2.6 GHz,
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128 GB compute node was used for the main processing tasks. The Python script was used
on various pieces of office PC equipment.

2.5. Evaluation

The height of every estimated branch cylinder from the TLS data was compared to
the manually measured height of each branch whorl. If at least one estimated branch
was positioned within an interval of ±10 cm from the manually measured whorl, it was
considered to be a detected whorl. This interval was reduced if two consecutive manually
measured branch whorls were positioned closer than the interval. If no TLS-estimated
branch was found within this interval, it was set to be an omission error εo. TLS-estimated
branches outside these intervals were set to be commission errors εc.

The accuracy of the algorithm was evaluated using the detection rate Dr, Equation (3),
the omission rate Or, Equation (4), and the commission rate Cr, Equation (5)

Dr =
nd
nw

(3)

Or =
no

no + nd
(4)

Cr =
nc

nc + nd
(5)

where

nw = number of whorls
nd = number of detected whorls
no = nw − nd number of undetected whorls (omission errors)
nc = number of false whorls (commission errors).

The results were evaluated for each individual sample tree and for all trees. The num-
ber of detected whorls at the height interval of 0–10 m from the ground was also used and
compared to the number of detected whorls at the full length of the trees, to see how well
the algorithm works at the lower level.

3. Results

The comparison of the laser-detected branch whorls with the manually measured
whorls show that the algorithm finds more than 90% of the branch whorls attached below
10 m from the ground, Figure 5, Table 2. Higher up, the detection rate diminishes, probably
as a result of the lower branches covering the higher parts of the tree. In total, for all trees
up to the top, 63.3% of the branch whorls were detected.

For the omission error rate, (Equation (4), Table 3), it can be seen that the different
sample trees differ from 18.4 to 48.9% for the full length of the trees, and from 0.0 to 20.0%
for the height interval 0–10 m. For the commission error rate (Equation 5, Table 3), it can be
seen that the different sample trees differ from 5.0 to 46.4 for the full length of the trees and
0.0–44.4 for the height interval 0–10 m. For all trees, the omission error rate was 36.7% for
the full height interval and 9.2% for the height interval 0–10 m. The commission error rate
for all trees was 24.3% for the full height interval and 29.5% for the height interval 0–10 m,
Table 3.

The fact that the commission error rate is higher at the height interval 0–10 m compared
to the full height interval can be explained by the fact that most commission errors appear
at the lower level of the trees. Correspondingly, the omission error rate is lower at the
height interval 0–10 m compared to the full height interval, which can be explained by the
fact that most omission errors appear at a higher level in the canopy where there is a high
amount of shaded zones, and where the laser beams cannot penetrate.

All in all, the algorithm seems to work well at the lower level of the trees where there
is not too much self-shading by branches. The lower branches occlude the higher branches
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if the instrument is positioned at the ground, making it difficult to detect detailed structures
higher up. The detection rate at the lower level is high and makes it possible to discriminate
most of the branch whorls.

Figure 5. Detection rate of the branch whorls as a function of height from ground. Most of the branch
whorls are detected up to a 10 meter height from the ground.

Table 2. Amount of detected whorls in terrestrial laser scanner data for each sample tree, for all trees,
and for all trees at the height interval 0–10 m from the ground.

Tree Detected Whorls All Whorls Detection Rate [%]

1 28 39 71.8
2 23 41 56.1
3 24 31 77.4
4 31 38 81.6
5 15 26 57.7
6 15 28 53.6
7 19 31 61.3
8 18 28 64.3
9 24 40 60.0

10 24 47 51.1
all trees 221 349 63.3

all trees (branches < 10 m from ground) 148 163 90.8

Table 3. Omission and commission error rates (Equations (4) and (5)) for each sample tree and for all
trees, both for all branch whorls and for branch whorls at a height interval of 0–10m from the ground.

Tree Cr [%] Cr (0–10 m) [%] Or [%] Or (0–10 m) [%]

1 12.5 14.3 28.2 7.7
2 25.8 42.9 43.9 20.0
3 20.0 33.3 22.6 11.1
4 6.1 0.0 18.4 18.2
5 21.1 22.2 42.3 6.7
6 46.4 44.4 46.4 11.8
7 5.0 5.0 38.7 17.4
8 40.0 40.0 35.7 5.3
9 31.4 31.4 40.0 4.0
10 29.4 32.3 48.9 0.0
all 24.3 29.5 36.7 9.2
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4. Discussion

The research area of estimating tree architecture in TLS data is relatively new and there
are not many studies that compare the results with data suitable for inventory applications
in forestry. Many of the earlier papers concentrated on finding algorithms that were robust
enough to be able to detect stems and branches in point cloud data. However, they did
not evaluate the results with forestry parameters from the trees they measured. Most of
them conducted a visual inspection of the results [5–9,18], whereas others compared the
estimates from the algorithm with the data from artificial trees [11].

We only found five studies that compared to sampled forestry parameters from a
ground truth. Dassot et al. [20], for instance, evaluated the total volumes of branches
with a diameter larger than 7 cm of eight species in France and found that the accuracy
was within ±30% for 31 out of 36 sample trees. Hackenberg et al. [16] conducted a linear
regression analysis of the correlation between the ground truth and TLS-estimated data of
volumes for 14 branches of four species in Germany and found an adjusted coefficient of
determination of 0.96. Lau et al. [12] tested nine tropical trees of three species in central
Guyana with branches in a diameter span of 10–20 cm and found a reconstruction accuracy
of 45%, and that the diameters were overestimated by 40%. Pyörälä et al. [4] observed an
overall accuracy of 68.6% for quantitative branch detection of 158 Scots pine trees with
2561 sampled branches with diameters > 0.7 cm. This result is similar to the 63% branch
whorl detection rate in our study. Zhang et al. [13] found a relative root mean square error
of 14.62% for branch lengths and 11.96% for branch numbers on ten sample trees.

There were some different techniques used in these five studies. The paper by Dassot
et al. [20] describes a semi-automatic reconstruction process using polylines and circle
fitting. Since their method is partly manual, it would not be considered in full-scale
industrial solutions. However, in laboratory settings, the method should work well.

Hackenberg et al. [16] used spherical neighborhoods to find and model cylinders in
point cloud data. Their method models junctions of the stems and receives a hierarchical
tree structure, which later can be used as a model of the tree and branches.

Lau et al. [12] and Zhang et al. [13] used quantitative structural models that also give
hierarchical tree structures. However, the method by Lau et al. [12] had a low detection
rate on small branches. Zhang et al. [13] reached a better outcome with, for instance, a root
mean square error of 11.96% for branch numbers.

The method by Pyörälä et al. [4] has the largest ground truth of these studies. Their
techniques are based on searching in the neighborhood of a stem profile, like in our study,
and their detection results are comparable to ours.

All these studies led to the development of the research field with many new methods
and techniques. However, to take the research field further, there is a need to have more
comparisons with ground truth data of different stem quality parameters of interest. This
will give practitioners useful insights into what accuracies to expect from estimates of
forestry parameters from TLS data.

In this study, we have presented a new algorithm for detecting branch attachments to
stems that is based on a voxel approach and line object detection by a voting procedure.
The method works well at the lower levels of the trees in pines of various ages and with
different kinds of branch structures. At higher levels of the tree, however, the occluding
effects of the branches block an efficient detection rate. A solution for detecting branches
high in the canopy is needed. For instance, by using drones or elevated TLS equipment [22].
There is also a need to investigate other types of tree species, beginning with those common
in forestry applications. One large difference would be when going from single-stem trees
to trees where there are many stems and large branches that separate early. In that case,
another stem detection algorithm would be necessary. The current stem profile detection
algorithm was evaluated on spruces and pines [21], and gave a root mean square error of
1.104 cm and an omission error of 10.2% when detecting stem diameters at different heights
of the trees.
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There are a number of scenarios where the system presented in this study could be
applied in the future. For instance, the branch density of each standing tree could be used to
evaluate the quality of stems. Taper sweep and lean of the stems could also be estimated if
this method is combined with, for instance, the stem profile detection algorithm presented
by Olofsson and Holmgren [21]. The information of branch angles could also be used as
input to tree species classification algorithms.

These techniques could also be part of large-scale inventory systems. For instance, laser
measurement equipment could be attached to a harvester and connected to a computer to be
used when selecting and planning the felling and cutting of trees. The stem information
retrieved from this system could be used to train airborne laser scanning systems to build
forest maps with quality data. The branch knot distribution is also an important indicator
for the selection of wood quality class when crosscutting the logs on site.

Laser measurement systems could also be attached to terrain vehicles, backpacks, or
tripods in order to do an inventory of the quality class of the trees in a stand. The trees
detected at the field plot inventories can then be linked to trees detected from airborne
systems as suggested by Olofsson and Holmgren [23]. Statistics from the laser data point
clouds of the detected trees in the airborne systems that are linked to trees from the ground
truth with a known quality can then be used as training data. By choosing variables with
high correlation to the attributes of choice, models can be built that can produce forest
quality stem maps that cover large regions.

For future studies, it is important to test how well the algorithms work on laser data
from different types of sensors, for instance mobile or backpack-carried systems. It is also
of interest to investigate how well the algorithms detect branches in other types of tree
species. It would also be of interest to use full 3D models of the stem, branches, twigs, and
foliage. For instance, modeled by Côté et al. [8] for the purpose of assessing stem quality
on forest stands and thereby giving data to forest operation planning systems.
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