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Abstract: The new sea surface wind direction from the X-band marine radar image is proposed in 
this study using a fast convergent gray-level co-occurrence matrix (FC-GLCM) algorithm. First, the 
radar image is sampled directly without the need for interpolation due to the algorithm’s 
application of the GLCM to the polar co-ordinate system, which reduces the inaccuracy caused by 
image transformation. An additional process is then to merge the fast convergence method with the 
optimized GLCM so that the circular transition between rough and fine estimates is acquired, 
resulting in the fast convergence and accuracy improvement of the GLCM. Furthermore, the 
algorithm will affect the GLCM spatial distribution while calculating it, and it can automatically 
resolve the 180° ambiguity problem of sea surface wind direction retrieved from radar images. 
Finally, the proposed method is applied to 1436 X-band marine radar sequences collected from the 
coast of the East China Sea. Compared with in situ anemometer data, the correlation coefficient is 
as high as 0.9268, and the RMSE is 4.9867°. The new method was also tested under diverse sea 
conditions. The FC-GLCM wind direction results against the adaptive reduced method (ARM), 
energy spectrum method (ESM), and the traditional GLCM (T-GLCM) method produced the best 
stability and accuracy, in which the RMSE decreased by 91.6%, 67.7%, and 18.1%, respectively. 

Keywords: fast convergent GLCM; wind direction; X-band marine radar image; 180° ambiguity 
problem 
 

1. Introduction 
Sea surface wind estimation plays an important role in many marine activities, such 

as navigation safety, performance, and marine exploration [1]. Accurate wind direction 
information is not only an important judgment factor for ship sailing direction, but also 
an important factor for military guidance and carrier-borne aircraft takeoff and landing 
safety. The conventional in situ wind sensors such as anemometers placed in ships and 
buoys are susceptible to airflow distortion caused by superstructures or the movement of 
the anemometer platform, and can provide inaccurate wind data [2]. Other remote 
sensing methods such as scatterometers [3,4] and radiometers [5,6] can achieve a wider 
coverage of wind information, but they cannot perform high-precision small-area 
measurements. Synthetic aperture radar (SAR) has high resolution and day-and-night 
imaging capabilities, but its computational cost is too high [7]. 

Land-based and ship-borne low-cost X-band marine radars with high temporal and 
spatial resolution have been broadly used in the observation of ocean wave height [8], 
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currents [9], rain [10], and sea surface winds [11]. The average wind field information 
retrieved from X-band marine radar is one of the more important environmental factors 
for continuous and real-time takeoff and landing safety of carrier-borne aircraft under the 
conditions of sea dynamic vehicles. The average wind information near 1 km from the 
ship is free of structural disturbance and tends to be closer to free flow. It provides most 
accurate steady-state wind parameters on the ship’s surface for carrier aircraft [12,13]. 

Previous studies have demonstrated that, for X-band radar operating at grazing 
incidence with horizontal transmit–horizontal receive (HH) polarization, there are two 
methods used to retrieve wind direction information. The first method, proposed in 1998, 
provides that the polarization radar cross section (RCS) is at its maximum when the wind 
is upwind, and the sea surface wind direction information can be retrieved based on this 
principle [14]. In 2012, Lund et al. proposed that the harmonic function model could be 
established by applying the RCS of the marine radar image and sea surface wind field, 
and the unique maximum value of the function could be more accurately obtained [15]. 
In 2017, the relation between the inherent modal function component of the radar image 
and the sea surface wind field function was established based on the ensemble empirical 
mode decomposition method and the sea surface wind direction information was 
retrieved based on the unique maximum value of the mode function [16]. However, these 
methods cannot obtain an accurate upwind peak value for the radar data without 360° 
coverage. In 2020, Chen, X. and Huang, W. et al. [17,18] successively identified the 
relationship between radar images and the wind field in various deep learning-based 
models and directly obtained sea surface wind direction information from radar images 
according to these models. This type of method results in models with significant 
differences for different radar models, requiring readjustment of model parameters or 
modification of the model function. 

The second method is based on the characteristics of small-scale wind streak in the 
marine radar image sequences to retrieve wind direction information. The static small-
scale wind streak can be extracted from the nautical radar image sequence and the wind 
streak is aligned with the wind direction [19,20]. Two methods have been developed for 
texture orientation estimation, including the most commonly used spectrum-based and 
gradient-based methods. Several spectrum-based methods have also been developed, 
including those based on Fourier transform [21], Radon transform [22], the Gabor filter 
[23], and wavelet transform [24]. In 2016, Wang, Y. and Huang, W. [25] proposed that sea 
surface wind direction information can be obtained under rainfall and nonrainfall 
conditions using the Fourier transform wavenumber spectrum region and the value of the 
radar image, respectively. A wind field energy spectrum method (ESM) with the 
characteristic that the axis of the small-scale wind streak is parallel to the sea surface wind 
direction is proposed in [26]. However, this kind of method can only be used when the 
image coverage is greater than 180°, which is highly dependent on the streak scale 
characteristics. In special weather or when the streak scale is outside the estimated range, 
the accuracy is greatly reduced and some data are not applicable. 

For gradient-based methods, the main local orientation of the wind streak is 
estimated by assuming that it is perpendicular to the wind direction. The smoothing 
image and calculating gradient are combined in the frequency domain to reduce the 
influence of noise [27]. A gradient optical flow method to retrieve sea surface wind field 
information based on gust signal characteristics in marine radar images is proposed in 
[28]. However, as wind field is a static characteristic signal, it is difficult to extract the 
spatial characteristics from a single image, resulting in the retrieval accuracy of the optical 
flow method being unable to meet the engineering requirements. A local gradient method 
(LGM) to retrieve sea surface wind direction information from sea surface static feature 
images based on the wind streak feature is proposed in [29]. Although the retrieval 
accuracy of this method meets the engineering requirements, there remains a high volume 
of inapplicable data. An adaptive reduction algorithm-improved local gradient algorithm 
(ARM) is proposed in [30]. These methods are still dependent on the scale characteristics 
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of the wind streak and the latter two methods still rely on the first method to solve the 
180° ambiguity problem. In addition, the FT- and gradient-based methods usually require 
a large rectangular dataset with many samples of the texture to accurately calculate the 
direction. However, the nautical radar image involves polar co-ordinates, which need to 
be transformed into rectangular data through image interpolation. This transformation 
process will cause radar image distortion and lead to inaccurate results. In 2021, Wang, H. 
et al. [26] proposed the wavenumber energy spectrum method (ESM) to directly obtain 
the sea surface wind direction information and better accuracy and data applicability were 
achieved. These methods are only used when the image coverage is greater than 180° and 
the accuracy is greatly reduced in special weather or the streak scale is not in the estimated 
range. 

The paper proposes GLCM-based wind streak analysis to overcome the problems 
associated with FT- and gradient-based methods. However, the conventional GLCM for 
texture orientation estimation has some limits, as follows [31–33]: ➀ Identification range 
limitation. The traditional gray-level co-occurrence matrix calculation method can only 
identify the angles of 90°, 45°, 0°, and −45° in the horizontal direction. However, only parts 
of the radar image textures are located in these particular directions in practice, resulting 
in the gray-level co-occurrence being typically insufficient to accurately resolve all texture 
directions. ➁ Limited application range. The traditional gray-level co-occurrence matrix 
calculation is only limited to Cartesian co-ordinate systems, but marine radar use rotating 
scanning for imaging, and the generated images are based on polar coordinates. ➂ 
Insufficient directional accuracy. The confidence interval of the traditional gray-level co-
occurrence matrix is 10°, while the radar image amplitude resolution is 0.1°. In this paper, 
a FC-GLCM based on the wind streak image method is proposed; the FC-GLCM angle 
estimation of the circular transition between rough and fine transition is performed for 
each set separately and adaptive angle fusion is performed according to the clustering 
results of the angle categories. The overall trend of the identified image is the main wind 
direction information. This new method not only meets the requirements of high accuracy 
of wind field information extraction in engineering, but also leads to the change in spatial 
distribution of the matrix when the normalized GLCM calculation is carried out. It can 
automatically solve the 180° ambiguity problem of retrieving sea wind direction 
information in the space domain. 

The remainder of this paper is organized as follows. An overview of the data and 
polar co-ordinate sea surface static feature image extraction process is presented in Section 
2. In Section 3, the new wind direction retrieval method, the FC-GLCM, is proposed and 
how to solve the 180° ambiguity problem in the retrieval of sea surface wind direction 
information is presented. In Section 4, the method is applied to real radar images to 
validate the wind direction results, and the sensitivity and robustness are discussed in 
comparison with the traditional methods. Finally, a summary is given in Section 5. 

2. Data Overview 
2.1. Data Source 

A typical horizontal polarization short pulse mode X-band marine radar was 
employed in this paper. For the X-band radar, the main backscatter mechanism at the 
ocean surface is Bragg scattering when the NRCS (normalized radar cross section) is 
proportional to the spectral density of the surface roughness [19]. The X-band radar 
antenna has a compact bulk and excellent azimuth discrimination, making it ideal for 
short-range detection. It not only emits electromagnetic waves, but also receives echo 
waves to form a sea clutter image. The radar wavelength is 3 cm, the operating frequency 
is 9320~9500 Hz, the actual observation distance is up to 4500 m, the azimuth resolution 
is 0.1°, and the radial resolution is 7.5 m. It should be noted that the radar operates in a 
rotational scanning mode. For each 0.1° interval, the radar antenna broadcasts and 
receives a column of electromagnetic wave signals, which are stored per line. Assuming 



Remote Sens. 2023, 15, 2078 4 of 28 
 

 

that the ship’s head direction is the initial harness, the azimuth of the succeeding storage 
lines is increased by 0.1°. 

The marine radar revolves for one circle to gather an entire image, which takes 
roughly 2.5 s and includes up to 3300  120±   harnesses, with each of the harnesses 
containing about 600 pixels points on the radial direction line. On the onboard software 
operating platform, the radar scan image is transformed into a polar image. A sequence 
of time series consisting of 32 images lasting 80 s is obtained from the radar pulse value. 
Given the incidence angle of the radar antenna and the height above sea level, a 
considerable distance of wave inversion will result in local information distortion, while 
a short distance will weaken the algorithm’s robustness. Consequently, the ideal distance 
of the wave inversion is determined to be 600 ~ 2100  m. Because of the marine radar’s 
360° surround measuring approach, some data along the coast will be included in the 
results. The isolated bright spots or continuous bright regions that emerge in the marine 
radar images is caused by fixed targets, as shown in Figure 1a. Too many fixed targets will 
not only obscure certain radar image features but will also enhance the mean value of the 
radar echo strength throughout the whole study region, which provides excellent 
coverage for the static signal provided by the sea surface wind field [34]. As a result, the 
interference of fixed objects in the radar image must be removed. The amplitude direction 
of 106 ~ 69° − °  is removed in this research, and the resulting image is presented in Figure 
1b. The initial angle is defined in this paper as the ship’s head direction 93n = °θ , according 
to the features of the measured data. Eventually, the study area is clockwise 

( ) [ ]0 106 ,291nU θ = ° °  with a radial distance of ( ) [ ]0  = 600 m, 2100 mnU l . 

 
Figure 1. Map of the experiment site. Locations of the radar station and anemometer are shown by 
red stars. (a) Single polar marine radar image collected on 00:20 UTC+8 27 October 2010; (b) selected 
radar image after removing 106 ~ 69° − °  amplitude on 27 October 2010. 

The original radar images utilized in this paper were collected from the HEU wave 
and current monitoring systems located on Haitan Island along the East China Sea at 
25°27′N, 119°50′E, between 22 October and 30 October 2010. Rainfall will increase the 
roughness of the sea surface and further surge the scattering area of the radio wave 
generated by the radar when it comes into contact with the surface, affecting the echo 
intensity of the sea surface and introducing noise to the radar images. After removing the 
data of strong rainfall by applying the wave texture difference method in [35], 1448 sets of 
marine radar sequences were selected from 1634 sets. After a thorough selection process, 
a total of 1436 sets of marine radar sequences were deemed suitable for analysis out of the 
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1448 sets. The exclusion of 12 sets was necessary due to the low wind speed (1–2 m/s) 
present in the data. As shown in Figure 2a, when the wind speed is normal (>2 m/s), the 
wind streaks in the image show a clear trend and the red part dominates the entire image. 
The red and blue parts have clear boundary lines, which can effectively extract dominant 
feature groups in subsequent image preprocessing. When the wind speed is too low, as 
shown in Figure 2b, almost all parts of the entire image are dark blue and the trend of 
wind streaks is not obvious. Only the innermost ring has a slight light blue part, which 
leads to the inability to extract feature groups in subsequent image preprocessing 
processes. In this case, the method in this paper cannot be applied to retrieve the wind 
direction. An in situ Model-05103 wind field monitor was used to gather reference wind 
directions for validating the proposed scheme for wind direction information extraction 
from the marine radar. Since the Model-05103 wind field monitor records every minute, 
the wind direction at the moment of the image sequence is selected as the reference wind 
direction for the research. 

 
Figure 2. Static feature images of sea surface under different wind speeds, different color areas as 
the bar of Fig.4, the obtaining process is in the Section 2.2.2. (a) The wind speed during measurement 
was 19.6 m/s; (b) the wind speed during measurement was 1.7 m/s. 

2.2. Polar Co-ordinate Sea Surface Static Feature Image 
2.2.1. Co-ordinate System Transformation 

Since polar co-ordinate systems and image polar co-ordinate systems have different 
definitions of central co-ordinates and co-ordinate axis directions, co-ordinate system 
transformation is required before image preprocessing; the transformation process is 
shown in Figure 3. As shown in Figure 3a, the origin of the polar co-ordinate system is 
located in the image center, the north direction is the positive direction of the polar axis, 
and the square of the offset angle is clockwise. The co-ordinates of the point are ( ),ρ θ , the 
distance from the point to the origin is ρ , and the red dotted line angle relative to the 
north is θ  . For the same point, the absolute position is the same under different co-
ordinate systems, but the relative position is different. The origin of the image polar co-
ordinate system is located at the upper left corner of the image, as shown in Figure 3b, 
and the horizontal direction is the positive direction of the polar axis. The co-ordinates of 
this point are ( )' ',ρ θ  as shown in Figure 2b, the distance from the point to the origin is 'ρ

, and the red dotted line relative to the horizontal axis is 'θ  . The co-ordinates in the 
original polar co-ordinate system can be converted to the co-ordinates in the image polar 
co-ordinate system using the following formula: 

( )

( )

' 2 2

'

2 2

2 2 sin - cos
- cosarcsin

2 2 sin - cos

R R

R
R R

ρ = + ρ + ρ θ θ


ρ θθ = + ρ + ρ θ θ

 (1)

where ( ),ρ θ   is the co-ordinate pair of the point in polar co-ordinates, ( )' ',ρ θ   is the co-
ordinate pair of the point in image polar co-ordinates, and R  is the radius of the image 
area. The radius of the area selected in this paper is  = 2100 mR . 
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Figure 3. Process of co-ordinate system transformation on 00:20 UTC+8 27 October 2010. (a) Polar 
co-ordinate system; (b) image polar co-ordinate system. 

2.2.2. Process of Extracting Sea Surface Static Features 
According to the imaging mechanism of the X-band marine radar, the modulation of 

the sea surface wind field leads to the feature of small-scale wind streaks in the radar 
image sequence. The small-scale wind streaks have static features that make them hard to 
detect on a signal radar image since the signal observation period of the marine radar is 
only about 2.5 s. As a consequence, in order to obtain the sea surface static features 
including the sea surface wind field, it is essential to overlay and average the radar image 
sequence in each period (≈80 s). The static patterns of the sea surface features with low-
frequency signals (including sea surface wind field information) were obtained after 
filtering out high-frequency wave noise. The main wind direction of the selected area is 
obtained based on the characteristic that the small-scale wind streak is aligned with the 
sea surface wind direction [19]. In this work, 32 image sequences are overlain and 
averaged to form a sea surface static feature image, the process of which is shown in 
Figure 4. In this paper, the radar data digitized and stored the spatial and temporal radar 
backscatter information as a sequence of images with a 14-bit grayscale depth, i.e., 
digitized backscatter intensities ranging from 0 to 8192. In order to perform the following 
steps, the sea surface static feature image rescaled to the gray scale [0, 255] (8-bit)   as 
in that image. 

 
Figure 4. Process of overlaying and averaging 32 radar image sequences collected on 00:20 UTC+8 
27 October 2010, obtaining a sea surface static feature image (including sea surface wind field 
information). The wind speed during measurement was 19.6 m/s, the wave height was 3.06 m, the 
wave direction was 101°, the peak period was 10.76 s, and the wind direction was 48°. 
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3. Sea Surface Wind Direction Extraction Algorithm 
This section primarily describes the framework of the proposed FC-GLCM 

algorithm, as shown in Figure 5. The algorithm’s procedure is divided into three stages: 
image preprocessing of polar co-ordinate sea surface static features, the calculation of a 
fast-convergence gray-level co-occurrence matrix, and adaptive trend fusion. 

 
Figure 5. The framework of the proposed FC-GLCM algorithm. 

3.1. Image Preprocessing of Polar Co-Ordinate Sea Surface Static Features 
The pixel value distribution is clustered, and the prevalent pixel categories are 

identified based on the features of the sea surface static feature image. The prevalent pixel 
categories extracted are enhanced [36]. When a sea surface static feature image turns to 
RGB, 3ω h× ×∈  is input and the pixel-level cumulative illumination value ( , , )c r θ   
can be formulated as: 

m m
m

( , , ) ( ( , )),m { , , }c r θ α r θ R G B= Ψ ∈    (2)

where m ( ( , ))Ψ r θ  denotes the pixel value of image   at location ( , )r θ  in channel m 
and the channel wise weight parameters Rα  , Gα  , and Bα   is the proportion of the 
corresponding , ,R G B  pixels in channel to the total pixels of the image, and jointly meet 

1+ + =R G Bα α α . By employing different weights on the , ,R G B  channels, high-contrast-
rate colors such as yellow and orange will be suppressed and low-contrast-rate colors such 
as red will be amplified in the image    as ( , , )c r θ   . Then, the log-average 

cumulative luminance ( )c   is given as in [37]: 

( )
,

1( ) exp log ( , , )c c

r θ
δ r θ

N
 

= + 
 




     (3)

where N   is the total number of pixels in the image and δ  is a relatively small quantity 
to avoid a zero value of ( , , )c r θ    in ( )log ( , , )+ cδ r θ   . Eventually, the adaptive 
enhancement factor map ( , , )g r θ   can be obtained as: 

( )
( )max

log ( , , ) ( ) 1
( , , )

log ( ) ( ) 1

c c

g c c

r θ
r θ

+
=

+




   

 
   

 (4)
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where ( )max ( ) max ( , , )c c r θ=     denotes the maximum value of ( , , )c r θ  . The aim 
of factor calculation is to further adaptively alter the local color value of three intensity 
channels at each pixel to realize image enhancement, as follows: 

( ) { }m e m

( , , )
( ( , )) ( , ) * , m , ,

( , , )
g
c

r θ
r θ r θ R G B

r θ
Ψ = Ψ ∈

 
 

 
 (5)

where e  denotes the enhanced version of the original  . The area in red that has been 
enhanced accurately highlights the features of wind field modulation. Through the 
derivation operator, the local auto-enhancement image ( )Θ   can be constructed as: 

( ) ( ) ( )
( )( )e

max

( , , )( , , ) log
( ) 1

log ( ) 1

c
c

c
c c

c c

r θr θ
 

−  + Θ = − =
+




  
 

   
   

  (6)

According to [ ]( , , ) 0,1c r θ ∈  , the value of local auto-enhancement image ( )Θ   
can thus vary beside the original image ( , , )c r θ  . Thereby, the class of low contrast 
rate can be indicated as the informative local region. To be specific, the average value μ  
and standard deviation σ of the low contrast rate in ( )Θ   are computed. Following a 
three-sigma criterion in statistics, pixels in the range 3μ σ±  are considered the informative 
local region, while others are less informative and should be cast away after the 
preprocessing step for higher efficiency. 

To acquire the pixel where the dominant trend is situated in a locally enhanced 
marine radar image e  , Gaussian differential filtering is applied to the enhancement 
image [37]. After Gaussian differential filtering, the image’s two-dimensional Gaussian 
spectral function ( )( , )gG r θ  satisfies the following formula [38]: 

( ) ( ) ( )
( ) ( )2 22 2

22
0 1

1
1

22
2 20
0

1 1( , ) ( , ) ( , ) e e
2 2

k

i ji j

σσ
g g g k

k

G r θ G r θ G r θ
πσ πσ

++
−−

= − = −    (7)

where g  is the Gaussian differential filtering of the locally enhanced image e  and 
the gray portion of the Gaussian filter can smooth the image and reduce noise. 

( )0
( , )gG r θ  is the two-dimensional Gaussian spectral function under the initial phase 

angle. ( )( , )g k
G r θ   is the two-dimensional Gaussian spectral function with a phase 

angle of 1k , which takes the 1 0 0, 1.6kσ k σ σ= = , and 1 0.8k = . 
The range is optimized in depth after the Gaussian differential filtered image g  is 

searched in four neighborhoods. To produce the preprocessed marine radar image f , 
two sets of feature groups are extracted. f  is the final preprocessed radar image; the 
portion that is black after depth optimization can clearly and precisely extract wind field 
stripe information. 

3.2. Fast-Convergence Gray-Level Co-occurrence Matrix 
The traditional GLCM only focuses on the scenarios of direction extraction under the 

Cartesian co-ordinate system, which is a malfunction for the polar co-ordinated problems 
such as wind direction extraction for radar images. On the other hand, the accuracy of the 
retrieved wind direction information based on marine radar images is restricted due to 
practical project demands. This paper proposes a FC-GLCM to address the endogenous 
problem of the GLCM in order to extend the applicability of traditional GLCM to polar 
co-ordinate systems and improve its convergence competence to meet practical 
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requirements. The visualization of the algorithm is shown in Figure 5. The overall 
mathematical model of the FC-GLCM can be formulated as follows: 

( )1 ,

1sup | min , ; , ,0 , ,0 ,k
k k Z h s e h s hZ k

Z Z P r θ ρ φ r r θ θ θ ρ ρ φ φ φ
Z+

 = = ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 
 

(8)

where kZ   is the optimal value of the matrix 'Z   in the FC-GLCM at k-th iteration, 
( )

,
min , ; ,k

ZZ k
P r θ ρ φ   is the cost function for jointly considering the variable pair ( ),Z k   to 

obtain the minimal kZ , while ( ), ; ,k
ZP r θ ρ φ  is the GCLM process for , ; ,r θ ρ φ  applied to 

the k-th iteration and kZ   in the FC-GLCM. { }sup    is to obtain the supremum of the 
specific set. According to the above definitions, the value of kZ  can also represent the 

optimization degree of kφ ; thus, the supremum ( )
,

1sup | min , ; ,k
k ZZ k

Z P r θ ρ φ
Z

 = 
 

 denotes the 

minimal Z   among all k   iterations and can obtain the corresponding optimal kφ  . 
Furthermore, hr   is the threshold for amplitude r  , while sθ   and eθ   are the lower 
bound and upper bound for the argument θ , respectively. It should be noted that the 
world polar co-ordinates pair ( ),r θ  can specify a co-ordinate in the polar image ( )fG  . 

Similar variable setting rules are employed for the relative polar co-ordinate pair ( ),ρ φ  
and the corresponding , ,h s hρ φ φ  . Finally, the relative polar coordinate pair ( ),ρ φ   is 
oriented at the coordinate designated by the global polar coordinate pair ( ),r θ . 

To be specific, the GLCM under the polar co-ordinates system can be formulated 
according to the following statements. 

The gray-level ranging section of an image ( ),f r θ  at position ( ),r θ  varies from 0 
to 1N −   and the GLCM is a matrix of size N N×  . In the traditional GLCM direction 
estimation, only the GLCM matrix of a relative position is used, which corresponds to an 
individual pixel in the image. For a GLCM of the relative position ( ),ρ φ   oriented at 
position ( ),r θ , its matrix element at ( ),r θ  can be calculated by counting the pixel pairs, 
as follows [39]: 

( )
( )

( )
, | ( , ) 1,

, ; , card ( cos , sin ) 1, ,
( , ) , ( cos , sin )

i j f i j m
P r θ ρ φ f i ρ φ j ρ φ n Q ρ φ

i j i ρ φ j ρ φ

= − 
 = + + = −
 ∈ + + ∈  

 (9)

where ( )card   denotes the counting function whose output is the number of elements in 
a set and ( ),ρ φ  represents a line orientated at the position ( ),r θ  with a polar amplitude 
value ρ  and an angle value φ with respect to the horizontal orientation of the position 
( ),r θ  . Furthermore,    is the pixel set of the image and ( ),f r θ   is the gray level at 
position ( ),r θ  in the polar co-ordinate system. The normalization factor ( ),Q ρ φ  is: 

( ) { }, card ( , ) | ( , ) , ( cos , sin )Q ρ φ i j i j i ρ φ j ρ φ= ∈ + + ∈   (10)

where ( ),Q ρ φ  is the number of pixel pairs that satisfy the relative position ( ),ρ φ . Then, 
the gray-level co-occurrence matrix satisfies the following formula: 

( ) ( ) ( )
1 1

, , , ; ,
N N

r θ
Z ρ φ ω r θ P r θ ρ φ

= =

= ×  (11)

where ( ),ω r θ  is an ( ),r θ -oriented increasing function, which can be written as: 

( ) ( ) ( )( )0 0, 1 exp , | ,ω r θ d r θ r θ= + −     (12)
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where ( ) ( )0 0, | ,d r θ r θ     is the distance measure function between ( ),r θ   and its 

orientation point ( )0 0,r θ . 
This paper uses the integral of ( ),Z ρ φ  with respect to ρ , which can be calculated 

as: 

( ) ( )' ,Z φ Z ρ φ dρ=   (13)

In general, the discrete form of ( )'Z φ  can be formulated as: 

( ) ( ) ( )'

1 1 1
, , ; ,

R N N

ρ r θ
Z φ ω r θ P r θ ρ φ

= = =

= ×  (14)

where R  is the integration range for ρ . 
The optimal orientation minφ  , which denotes the minimum value of ( )'Z φ  , is 

calculated as the following formula: 

( )( )'
min arg min

φ
φ Z φ=  (15)

As shown in Figure 6, the FC-GLCM is not meaningless to repeatedly calculate k 
times of GLCM but uses a method of coarse–fine estimation of cyclic iteration. During the 
first GLCM, the algorithm finds an optimal solution in the transparent semicircle region 
of the graph *

1ϕ . At this time, the estimated wind direction is 47°, which is located at the 
black line of the semicircle. The estimated wind direction for the first time above *

1ϕ  is 
the center and the step size is half of the last time. The GLCM is calculated again and an 
optimal solution is found in the purple sector area in the figure to obtain the iterative 
updated estimated wind direction *

2ϕ , which is 48°. Finally, the estimated wind direction 
updated by the second iteration *

2ϕ  is the center and the step size is half of the last time. 
The GLCM is calculated again and an optimal solution is found in the orange sector area 
of the figure. Finally, the estimated wind direction after three iterations *

3ϕ   is 48.1°. 
Experiments show that the algorithm converges to the unique optimal direction after three 
iterations. The mathematical proofs of the uniqueness of optimal direction and the 
convergence properties of the FC-GLCM are presented in Appendix A. 

 
Figure 6. Fast-convergence visualization of radar image on 00:20 UTC+8 27 October 2010. (The sector 
part is the search area of each iteration and the circular part is the specific method of iterative 
update). 

3.3. How to Improve the Efficiency of the FC-GLCM 
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According to Zheng et al. [33], the GLCM’s wind direction estimation speed is 
distributed in 0.05 0.1fpsGv = − , where fps is the frame rate, which represents the number 
of images the algorithm can process per second. The frame rate of the FC-GLCM algorithm 
proposed in this paper is distributed in 0.03 0.07fpsGv = −   through the actual 
computation of the experimental phase. In practical applications, the computation speed 
of the actual detection data of the direction station is distributed in 0.2 0.35fpsCv = − . To 
improve the algorithm’s efficiency and meet real-time requirements, this paper proposes 
two interpolation algorithms based on the features of the algorithm and the processed 
data. 

According to the algorithm’s properties, the following Table 1 compares the time 
complexity of the FC-GLCM with the traditional GLCM. 

Table 1. Comparison of the temporal complexity of FC-GLCM with traditional GLCM. 

Step Title FC-GLCM Traditional GLCM 

P ( )2O n  ( )4O n  

Q  ( )2 logO n n+  ( )2O n  

Z ( )2O n  ( )4O n  

Preprocessing ( )2O n  - 

As shown in Table 1, the time complexity distribution of the FC-GLCM for each 
portion and the traditional GLCM is similar, with the primary amount of computation 
concentrated on the P   and Z   calculations. Due to the accuracy requirements of the 
algorithm, only the P  and Z  calculation processes with a large amount of calculation 
are interpolated. In terms of the interpolation implementation method, the sequence of 
interval calculation first and interpolation later is adopted. The specific implementation 
steps are as follows: 
Step 1: Interval Calculation 

According to the calculation formula of P , each variable’s time complexity can be 
simplified to ( )( )2O n c  , where c   is the interval order. Similarly, the Z   temporal 

complexity after the interval calculation is ( )( )2O n c . 

In this paper, the mathematical expectation of the probability model distribution of 
the processed image is variable and there is no fixed distribution mode. Therefore, a 
robust and accurate interpolation approach must be required. 
Step 2: Interpolation Completion 

Approach 1: Kriging interpolation 
All functions ( ) ( ) ( )1 2, ,..., nP x P x P x  should have: 

( ) ( ) ( ) ( )*
0 1 2, ,..., nP x f P x P x P x=     (16)

However, due to the complexity of the spatial variables analyzed by Kriging 
estimation technology changing with different spatial positions and the insufficient 
information given by the limited amount of observation data, determining the general 
form of the function clearly and totally is impossible, so we can only estimate ( )*

0P x , 
which is the form of f  . When f   is considered as a linear function of 

( ) ( ) ( )1 2, ,..., nP x P x P x , the following results are obtained [40]: 

( ) ( )*
0 0

1

n

i
i

P x λ P x
=

= +  (17)
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The limit of this estimation is based on the linear range. It is essential to decide which 
standard to apply for estimating the function before determining the constant 0 2, ,..., nλ λ λ . 
The minimum variance is commonly employed as the estimate standard in a Kriging 
estimation scheme. The formula can be written as: 

( ) ( ){ }2*
0 0 minE P x P x − =   (18)

Kriging technology can be used for linear minimum variance estimation. 
The pan-Kriging approach was chosen because the random function ( )P x  involved 

in this study is neither defined nor constant. 
Assume that the draft function ( )m x  has the following form: 

( ) ( )
1

n
i

i
i

m x a f x
=

=  (19)

where ia   is a specific constant, ( ) ( 1, 2,..., )if x i n=   is a known function with x  as its 
independent variable, and i  is the superscript of if , 2 3, ,..., nf f f f f f f f≠ ⋅ ≠ ⋅ ⋅  and 
is not equal to the product of f . 

The mean value of the random function ( )P x  at a point x is the drift ( )m x , as: 

( ) ( )m x E P x=     (20)

If it is a deterministic function that depicts the spatial trend of the random function 
( )P x , then: 

( ) ( ) ( )Y x P x m x= −  (21)

where ( )Y x  is referred to as the residual function of ( )P x  at x. 
If ( )0

0 1f x = , then the drift at 0x  can be expressed as: 

( ) ( )0
0 0 0

1

n

i
i

m x a a f x
=

= +  (22)

Thus, there is: 

( ) ( )0 0
0

1 1
1

n k

i j j
i j
λ f x λ f x

= =

= = =   (23)

Eventually, the mutation function ( )γ h   with only the residual function ( )Y x   is 
listed. The pan-Kriging equations for estimating ( )P x  in existence are as follows: 

( ) ( ) ( )

( ) ( )

0 0
1 1

1

0
1

, , 1, 2,...,

1

, 1,2,...,

k k
i i

jj jj i j j
jj i
k

j
j
k

i i
j j

j

λ f x μ μ f x γ x x j k

λ

λ f x f x i n

= =

=

=

+ + = =

=

= =

 





 (24)

Similarly, the random function ( )Z x  is also interpolated by the above method. 
Approach 2: Natural neighbor interpolation 
Spatial interpolation creates continuous surface modeling from discrete sample 

locations and estimates attribute values. Spatial autocorrelation serves as the foundation 
for spatial interpolation, which is the closer the distance is, the more similar the objects 
are in [41]. 



Remote Sens. 2023, 15, 2078 13 of 28 
 

 

Spatial autocorrelation is also used in natural neighbor interpolation. Its primary 
premise is to generate Tyson polygons for all sample locations. When interpolating 
unknown points, these Tyson polygons will be updated and a to-be-interpolated Tyson 
polygon will be constructed for unknown points. The sample points in the Tyson 
polygons that intersect the interpolated Tyson polygons are utilized in the interpolation. 
The influence weight of the to-be-interpolated Thyson polygon is determined by the 
intersecting area between the original Thyson polygon and the to-be-interpolated 
Thiessen polygon, as shown in Figure 7. Formula (31) can be used to represent it: 

( ) ( )
1

n

i i
i

P x b x g
=

=  (25)

where ( )P x  is the interpolation result at point x, ( )ib x  is the weight of interpolation 
sample points ( 1,2,..., )i i n=   with respect to the interpolation point x , and ig   is the 
value at sample point x. 

 
Figure 7. Basic principle diagram of natural neighbor interpolation. 

The weight can be written using the following formula: 

( ) ( )
( ) ( ),0 1i

i i

c c x
b x b x

c x
∩

= ≤ ≤  (26)

where ic  is the area of the Tyson polygon in which the sample point participating in the 
interpolation is located, ( )c x  is the area of the Tyson polygon in which the point x to be 
interpolated is located, and ( )ic c x∩  is the area where the two intersect. Similarly, the 
random function ( )Z x  is also interpolated by the above method. 

3.4. Adaptive Trend Fusion 
Following the estimation of the direction of the FC-GLCM for each trend category in 

the image f  , the number of pixels contained in each trend category is taken as the 
confidence of the trend direction, and adaptive trend fusion based on coefficient 
optimization is performed to obtain the final overall image trend *φ  [42]. The process of 
adaptive trend fusion is shown in Figure 5. The weight of each trend category in the image 
is optimized using the formula: 

( ) 22 ' *min
k

k k kw
w w w Z φ = − +  

  (27)

where kw  is the coefficient of kφ  and kw  is the reference value of kw . 
The general trend of the ultimate image is represented by the equation: 
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*

1

aN

k k
k

φ φ w
=

= ⋅  (28)

where aN  is the number of dominant groups and kφ  is the dominant trend angle of the 
k-th sequence determined using the FC-GLCM. 

3.5. How to Resolve the 180° Ambiguity Problem 
It is challenging to resolve the 180° ambiguity problem in spatial image processing 

when retrieving sea surface wind direction information. The GLCM method applied in 
this paper uses a counterclockwise semicircle search method to restrict the angle to 180°, 
but also has the option to select between a tiny angle and a 180° turnover as other 
algorithms. The following is a theoretical description of the modified GLCM search 
strategy, which can effectively solve the 180° ambiguity problem and be applied to other 
wind direction retrieval methods. 
Step 1: Create 360° augmented search domain 

Firstly, the 180° search domain of the GLCM is extended to 360°, or from the 
counterclockwise semicircular search mode to the standard circular search mode. The 360° 
search range in this study domain extends the angle search range of the GLCM. Because 
of the mirror relationship between the angles below 180° and the angles reversed by 180°, 
the calculation accuracy of the GLCM method will be slightly decreased. The results of 
the GLCM’s wind direction inversion will also be impacted by the unstable calculation 
accuracy, which makes it difficult to resolve the 180° ambiguity problem. 
Step 2: Coupling angle evaluation strategy 

While Step 1 overcomes the GLCM method’s inability to extract information 
regarding a wind direction of over 180°, the algorithm’s computation accuracy is 
decreased. This section utilizes a coupling angle determination strategy to address the 
mentioned problems and further resolve the problem of 180° ambiguity, while 
simultaneously increasing the calculation accuracy of the algorithm. 

Source identification. The source of the sea surface wind direction can be identified 
based on the fact that the origins between the large and small angles of the wind are 
mirrored. According to the definition given in this study, the source of sea surface wind 
is the point at which the local maximum value is within the predominant trend range of 
the current wind direction data. The likelihood that the wind direction is a small-angle 
wind direction increases with the proximity of the wind direction source to the origin of 
the polar co-ordinates. Otherwise, the wind direction is a large-angle wind direction. 

Trend analysis. Based on the conclusions of the source identification, the trend of the 
wind direction is determined as a straight line with three points: the origin of the polar 
co-ordinates, the source of the wind direction, and the lower boundary of the data, with 
the source of the wind direction serving as the initial point. The characteristics of small-
angle wind are that it begins at the source of the wind and extends to the downward 
boundary, and the proximity of the source to the origin is another feature. However, the 
source of the wind direction is closer to the lower border and the trend of the large-angle 
wind direction extends from the source of the wind direction to the origin of the polar co-
ordinates. 

The distribution of the P matrix will alter based on the consequence of various trends 
within the calculating GLCM, which will have a positive impact on the wind direction 
retrieval result. Figure 8a illustrates that the distribution of the small-angle wind direction 
ρ in the P matrix is defined by several peaks, which will lead to the general migration 
tendency. The distribution of ϕ  displays a multi-peak and wide-area trend, an overall 
left tilt, and evenly spaced pixels. As shown in Figure 8b, the distribution of the large-
angle wind direction ρ in the P matrix has a single peak, the characteristic value is rather 
considerable, and it has a consistent tendency to be non-tilting. The distribution of ϕ  
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exhibits a single peak, a trend confined to a narrow region, and a right-tilted, steep pixel 
distribution. 

 
Figure 8. P matrix distribution at different angles. (a) Distribution of the small-angle wind direction; 
(b) distribution of the large-angle wind direction. 

In summary, firstly, the feature distribution direction and position of the wind 
direction are judged in the process of extracting the dominant features in the 
preprocessing part for the input radar image. Secondly, the characteristic change trend of 
the wind direction is evaluated. Finally, utilizing the distinctive distribution direction and 
location of the wind direction that will cause the distribution of the P matrix to change, 
the final estimated sea surface wind direction can be accurately determined in GLCM 
calculations. Figure 5 is taken as an example to illustrate this principle, where the current 
reference wind direction is 48°. In terms of characteristic distribution direction and wind 
direction, the characteristic distribution in Figure 5 is characterized by a multi-segment 
distribution, with a general left-leaning dominant trend. This distribution mode will cause 
the P matrix to have multi-peak characteristics, resulting in an overall migration tendency. 
The change trend in Figure 5 is relatively gentle, with an obvious transition trend. As a 
result, during the feature extraction process, the result frequently has the feature of edge 
augmentation and there will be a certain number of edge transition zones. Due to the 
smooth pixel distribution of the wind direction, the P matrix distribution presents a trend 
of multi-peak and large areas, as shown in Figure 8a. Due to different characteristic 
distribution directions and positions, their peak positions will also be different, as shown 
in the peak position of the curve in Figure 7. In addition, since the characteristic change 
trend of the wind direction in Figure 5 is relatively gentle, the peak value of its P matrix 
distribution will also produce more secondary peaks, as shown in the pink curve in Figure 
8a. 

4. Experiments Results 
In this section, we will analyze 1436 sets of data that were collected between 22 

October and 30 October 2010. This dataset includes a wind speed range between slightly 
higher than 2 m/s and 20 m/s, a wave direction range between 65° and 257°, and a wave 
height range between 1 m and 3 m. As evaluation criteria, Kullback–Leibler divergence 
(KLD), root-mean-square error (RMSE), and Pearson’s correlation coefficient (PCC) are 
chosen to compare the FC-GLCM, natural neighbor, Kriging, traditional GLCM (T-
GLCM), the adaptive reduced method (ARM), and the energy spectrum method (ESM). 

KLD divergence measures the divergence between the distribution S  and Ŝ : 

( )
1

ˆˆ ˆ, log
N N

i
i

i i

S
KL S S S

S
×

=
=   (29)
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where S   represents the measurement speed data by vane, Ŝ   represents the wind 
direction data estimated by the algorithm, and N N×  represents the matrix of the input 
radar image. 

RMSE reflects the extent to which Ŝ  deviates from S : 

( )2

1
ˆN N

i i i

RMSE

S S
S

N

×
= −

=  (30)

PCC measures the linear correlation between S  and Ŝ : 

( )
( ) ( )

ˆ,
ˆ

S S
PCCs

S S

σ
=

σ σ
 (31)

where ( )ˆ,S Sσ  is the covariance of S  and Ŝ . 

4.1. Sensitivity Analysis 
The preparation of the polar co-ordinates’ sea surface static images is carried out in 

the third section of the paper, which includes the Gaussian difference filtering procedure 
with the two parameters 1k  and σ . The number of iterations ξ plays a crucial role in 
the calculation accuracy and speed when using the FC-GLCM algorithm. We analyze the 
sensitivity of these three parameters. Tables 2 and 3 demonstrate that when 1k  and σ  
increase, KLD and RMSE show a pattern of decreasing first and then increasing, whereas 
PCC shows a trend of increasing first and then decreasing. KLD and RMSE are the 
smallest and PCC is the biggest when 1 1.60k =  and 0.80σ = , respectively. This shows 
that the distribution of the wind direction retrieved by the FC-GLCM method is almost 
the same as that of the reference wind direction, with the lowest standard deviation and 
best correlation. Figures 9 and 10 demonstrate that the retrieved wind direction will be 
larger than the reference wind direction when 1k  and σ  are too large or too small, but 
when 1k  is excessively large, the estimated wind direction will be about twice as large as 
the reference wind direction. When σ  is excessively large, the estimate is approximately 
double the reference value. Table 4 illustrates the variations in KLD, RMSE, and PCC with 
increasing iterations. As shown in Figure 11, KLD and RMSE are minimum and PCC is 
maximum when the number of iterations 3ξ=  . In conclusion, the algorithm performs 
best when 1 1.60k = , 0.80σ = , and 3ξ= . 

Table 2. Sensitivity analysis of parameter 1k . 

k1  0.16 0.64 1.12 1.60 1.76 1.88 16.00 
KLD 0.9742 0.8788 0.7600 0.6954 0.7380 2.3865 4.5658 

RMSE (°) 11.0756 8.4816 5.0022 4.3236 4.3669 47.3704 92.8893 
PCC 0.0289 0.0288 0.0291 0.0301 0.0293 0.0291 0.0292 

Table 3. Sensitivity analysis of parameter σ . 

σ  0.08 0.32 0.56 0.80 0.88 4.40 8.00 
KLD 0.8758 0.8294 0.7839 0.7277 0.7652 1.5085 2.4246 

RMSE (°) 7.6117 6.3330 5.2913 5.2017 5.3398 25.3538 48.0796 
PCC 0.0293 0.0293 0.0291 0.0295 0.0291 0.0295 0.0292 

Table 4. Sensitivity analysis of iteration number ξ. 
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ξ  1 2 3 4 5 6 7 
KLD 0.3239 0.3153 0.2856 0.3240 0.3227 0.3216 0.3253 

RMSE (°) 4.7254 4.7653 4.6455 4.7242 4.7284 4.7212 4.7193 
PCC 0.0295 0.0294 0.0305 0.0292 0.0292 0.0292 0.0294 

 
Figure 9. Wind direction sequence obtained by FC-GLCM algorithm when parameter 1k   is 
different. (The pink curve with the open points represents the wind direction measured by the vane 
anemometer.) 

 
Figure 10. Wind direction sequence obtained by FC-GLCM algorithm when parameter σ   is 
different. (The pink curve with the open points represents the wind direction measured by the vane 
anemometer.) 
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Figure 11. Wind direction sequence obtained by FC-GLCM algorithm when iteration number ξ  is 
different. (a) KLD index; (b) RMSE index; (c) PCC index. 

4.2. Accuracy Validation 
The ARM, ESM, and T-GLCM algorithms are compared with the FC-GLCM 

algorithm, the Kriging interpolation method, and the natural neighbor interpolation 
method. The results, evaluation criteria, and computing time are shown in Table 5. The 
table shows that for the retrieved wind direction data compared to the data measured by 
the in situ vane anemometer, the KLD of the FC-GLCM algorithm proposed in this paper 
has 0.6404, and the RMSE is 4.9867°. The correlation coefficient is as high as 0.9268. Table 
5 demonstrates that the FC-GLCM reduces the computation time by 63.8%, 50.6%, and 
42.9%, respectively, compared to ARM, ESM, and T-GLCM, which has the fastest 
calculation speed. In addition, in terms of the KLD indicator, the FC-GLCM reduced by 
0.05%, 32.7%, and 16.8%, respectively, when compared to T-GLCM, ARM, and ESM. In 
terms of the RMSE indicators, the FC-GLCM decreased by 18.1%, 91.6%, and 67.7%, 
respectively, compared to T-GLCM, ARM, and ESM. When compared to the FC-GLCM 
method, the RMSE of Kriging and natural neighbor interpolation increases by 0.4616° and 
0.3902°, respectively. Nevertheless, the calculation time is decreased by 21% and 26%, 
respectively. The method proposed in this study may efficiently increase the accuracy and 
calculation speed of the T-GLCM algorithm, and the proposed interpolation method can 
also greatly enhance the calculation speed with minimal accuracy cost. 

Table 5. Comparison of the proposed FC-GLCM method with classic wind measurement technique. 

Method KLD RMSE (°) PCC Computing Time(s) 
ARM 0.9516 59.3512 0.3112 25.2679 
ESM 0.7699 15.4349 0.9122 18.4831 

FC-GLCM 0.6404 4.9867 0.9268 9.1391 
Kriging 0.6137 5.4483 0.9267 7.2608 

Natural Neighbor 0.6182 5.3769 0.9267 6.7746 
T-GLCM 0.6713 6.0533 0.9265 15.9731 

Figure 12 shows the line diagram of each algorithm divided according to time 
sequences under the PCC indicator. The data under weak rainfall are shown in the gray 
background region of the figure. Figure 12a illustrates how poorly the ARM algorithm 
performs in the PCC indicator and its retrieved wind direction information differs greatly 
from the reference wind direction data in all cases, especially in rainy weather when its 
error can reach more than 80%. The gray background area in Figure 12 represents the 
weak rainfall data. The red dotted boxes represent the data with noticeable jitter during 
weak rainfall. The red dotted box on the right shows the weak rainfall data from 13:12 to 
19:30 on 30 October. During this period, the RMSE of the FC-GLCM was 5.0167°, which 
was 94.5% and 82.7% lower than that of ARM and ESM, respectively. The RMSE of the 
Kriging interpolation and natural neighbor interpolation proposed in this paper is 5.4248° 
and 5.2356°, respectively. The left red dotted box shows the rainfall data from 1:22 to 6:37 
on 24 October. At this time, the sea surface wind direction is a large-angle wind direction. 
The RMSE of the FC-GLCM is only 0.26°, which is 88.2% lower than that of ARM and 
ESM. The RMSE of the two interpolation methods proposed in this paper is 1.16°. 
Therefore, the FC-GLCM algorithm can not only effectively resist the impact of rainfall on 
the retrieval of sea surface wind direction information using the Gaussian filtering and 
feature enhancement methods in the preprocessing part but can also accurately identify 
the wind direction at all angles using the different spatial distributions of the P matrix. 
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(a) 

 
(b) 

Figure 12. Comparison of the proposed FC-GLCM method results with different wind measurement 
techniques. (The pink curve with the open points represents the wind direction measured by the 
vane anemometer, the gray background area is the data during weak rainfall, and the red dotted 
boxes represent the data with large error during rainfall.) (a) Comparison of the proposed FC-GLCM 
method results with the Kriging, natural neighbor, and T-GLCM approaches. (b) Comparison of the 
proposed FC-GLCM method results with the ARM, ESM. 

Figure 13 shows the two-dimensional distribution of the KLD indicators in the 
sample data. The closer the KLD is to zero, the more similar the distribution of the 
reference and estimated sea surface wind directions. The more accurate the model, the 
more accurate the wind direction inversion. Figure 13a demonstrates that the FC-GLCM 
algorithm is distributed at 0~2, the ARM is distributed at −4~10, the ESM is distributed at 
−2~4, T-GLCM is distributed at −3~4, and both interpolation algorithms are distributed at 
−2~3. Therefore, the FC-GLCM algorithm proposed in this paper has the most 
concentrated distribution and the algorithm has higher accuracy and better convergence 
in retrieving sea surface wind direction information. 
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Figure 13. Comparison of KLD index between the proposed FC-GLCM and classic algorithm. (a) 
Comparison of the proposed FC-GLCM method with the ARM and ESM; (b) comparison of the 
proposed FC-GLCM method with the Kriging, natural neighbor, and T-GLCM approaches. 

Figure 14 shows the three-dimensional distribution of the sample data RMSE 
indicators. Table 5 shows that the RMSE of the FC-GLCM algorithm is only 4.9867°, while 
that of ARM is 59.3512°. The distribution of the FC-GLCM algorithm is more centralized, 
as shown in Figure 14a, while the distribution of the ARM is the most decentralized. It can 
be seen from Figure 14b that the convergence of the two interpolation algorithms is 
relatively weak compared with T-GLCM, but the RMSE of both algorithms is lower than 
T-GLCM according to Table 5. Therefore, it shows that the two interpolation methods will 
reduce the robustness and improve the performance of the improved algorithm. 

 
Figure 14. Comparison of RMSE index between the proposed FC-GLCM and classic algorithm. (a) 
Comparison of the proposed FC-GLCM method with the ARM and ESM; (b) comparison of the 
proposed FC-GLCM method with the Kriging, natural neighbor, and T-GLCM approaches. 

4.3. Robustness Test 
This section redistributes the reference data used in this study according to various 

sea conditions and investigates how these factors affect the algorithm’s accuracy. Weak 
wind, strong wind, wave height, wave direction, and rainfall are among the sea condition 
parameters tested in this section. 

Table 6 shows how each algorithm’s accuracy decreases in response to strong wind 
conditions. The FC-GLCM algorithm in this paper not only has significantly greater 
accuracy than the other algorithms, but also has a lower RMSE compared to the other 
algorithms. Considering the influence of wind speed on the retrieval of sea surface wind 
direction information, this paper divides the sample data into two categories: small wind 
speed (2–13.5 m/s) and large wind speed (13.5–20 m/s). There are 746 groups of data for 
small wind speed and 690 groups of data for large wind speed. Figure 15 shows the wind 
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direction error between the estimated wind direction and the reference wind direction at 
different wind speeds. The shaded area is the wind speed data measured by the vane. 
Figure 15a shows the error between the estimated wind direction and the reference wind 
direction when the wind speed is 2–13.5 m/s. The red dotted boxes represent the area with 
large fluctuations in the error range. The large error range of the left dotted box is caused 
by the large fluctuation in the wind speed between 7–11 m/s and the large angle wind 
direction at this time. At the time, the RMSE of ARM can reach 71.2691°, while the RMSE 
of the FC-GLCM algorithm is only 9.7285°. The dotted box on the right is the error data 
when the wind speed is approximately 12 m/s. The estimated wind direction is basically 
consistent with the reference wind direction and the RMSE of the FC-GLCM is only 
2.7487°, which is 42.7512° and 21.4726° less than the RMSE of ARM and ESM, respectively. 
The red dotted box in Figure 15b shows the error data when the wind speed is 13–14 m/s. 
At this time, the RMSE of the FC-GLCM is only 2.3565°, which is 94.9% and 64.9% lower 
than ARM and ESM, respectively. ARM and ESM have a larger error range when the wind 
speed is approximately 13 m/s. However, the fast convergence and adaptive fusion 
characteristics of the FC-GLCM ensure the stability, robustness, and accuracy of the 
retrieved results. 

Table 6. Comparison between FC-GLCM algorithm and classic method under different sea 
conditions. 

Sea Condition Indicator ARM ESM T-GLCM FC-GLCM 

Weak Wind 
KLD 0.9361 0.7735 0.6054 0.4518 

RMSE (°) 74.7396 19.7976 6.9043 4.4738 
PCC 0.3545 0.9140 0.9252 0.9277 

Strong Wind 
KLD 0.9670 0.7655 0.6114 0.5124 

RMSE (°) 35.8954 8.4672 6.0449 4.4738 
PCC 0.2081 0.3978 0.8289 0.8395 

Wave Height 
KLD 0.8931 0.7906 0.5987 0.4523 

RMSE (°) 56.4481 10.7277 6.3990 5.2223 
PCC 0.4723 0.9158 0.9169 0.9272 

Wave Direction 
KLD 0.8931 0.7906 0.5987 0.4523 

RMSE (°) 56.4481 10.7321 6.3979 5.2222 
PCC 0.4733 0.9158 0.9169 0.9272 

Rainfall 
KLD 2.3897 0.6503 0.6445 0.5579 

RMSE (°) 91.2342 29.0755 6.5193 5.0167 
PCC -0.0322 0.8569 0.9061 0.9263 
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(a) 

 
(b) 

Figure 15. Wind direction error between estimated direction and reference wind direction at 
different wind speeds. (The shaded area represents measurement speed data by vane and the red 
dotted box represents the area with large fluctuations in the error range.) (a) Wind direction error 
between retrieved direction and reference wind direction when the wind speed is 0–13 m/s. (b) Wind 
direction error between retrieved direction and reference wind direction when the wind speed is 13–
20 m/s. 

Since the wave height and wave direction data are averaged for 20 min, in order to 
analyze the time correspondence, it is also necessary to average the retrieval results for 20 
min. There are 170 sets of data after averaging. Table 6 indicates that the wave height and 
wave direction will indeed have a negative impact on the algorithm’s accuracy and 
robustness when they are significantly changed. Figure 16 shows the wind direction error 
between the retrieved direction data and reference wind direction data at different wave 
heights. Figure 17 shows the wind direction error between the retrieved direction data 
and the reference wind direction data at different wave directions. It can be seen from 
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Table 6 that the RMSE of the overall sample of the FC-GLCM is 5.2223° when the wave 
height is different, which is reduced by 51.2258°, 5.5024°, and 1.1767°, respectively, 
compared with ARM, ESM, and T-GLCM. The red dotted box in Figure 16 shows the data 
with large error fluctuations and the wave height is about 1.5 m. In this area, the sample 
RMSE of the FC-GLCM, ESM, and ARM is 3.60°, 3.82°, and 26.53°, respectively. The large 
error range of the dotted line box in Figure 17 is caused by the large wave direction, which 
reaches around 180°. Compared with ARM and ESM, the FC-GLCM still has higher 
precision, and the sample RMSE of the FC-GLCM is only 3.72°. To sum up, both ARM and 
ESM have larger errors due to the influence of wave height and direction, while the FC-
GLCM greatly suppresses the influence of such sea conditions on inversion results due to 
the feature extraction and dominant wind direction data acquisition steps in its 
preprocessing. 

 
Figure 16. Wind direction error between retrieved direction and reference wind direction at different 
wave heights. (The shaded area represents wave height data measured by vane and the red dotted 
box represents the area with large fluctuations in the error range.) 
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Figure 17. Wind direction error between retrieved direction data and reference wind direction data 
at different wave directions. (The shaded area represents wave direction data measured by vane and 
the red dotted box represents the area with large fluctuations in the error range.) 

In this section, the algorithm is verified by the above series of experiments. Firstly, 
the sensitivity of variable parameters in the FC-GLCM is analyzed. The experimental 
results show that the algorithm accuracy will vary with the filter variance σ  and variance 
coefficient 1k , which are convex set distributions near the optimal parameters, and the 
highest precision is in the optimal parameter combination 0.16σ =   and 1 0.80k =  . 
Increasing the number of iterations improves the accuracy to some extent, while 
increasing the number of calculations. The number of iterations chosen is 3ξ =  based on 
accuracy and speed. Secondly, for the 1436 groups of measured sea surface wind direction 
data, this section compares the FC-GLCM algorithm with other algorithms. The FC-
GLCM algorithm has the highest accuracy. Its correlation coefficient with the reference 
sea surface wind direction data is up to 0.9268 and the RMSE is 4.9867°. Finally, this 
section also compares the FC-GLCM with other classical algorithms for data under 
various sea conditions. At different wind speeds, the RMSE of FC-GLCM is 4.4738°. At 
different wave heights and wave directions, the RMSE of the FC-GLCM is 5.2223°. Under 
rainfall conditions, the RMSE of the FC-GLCM is 5.1067°. Therefore, the FC-GLCM 
algorithm proposed in this paper has the best accuracy and robustness under different sea 
conditions. 

5. Conclusions 
In this paper, a new method is proposed for retrieving the sea surface wind direction 

information from X-band radar image sequences. First, our method proposes an FC- 
GLCM algorithm based on angle iteration, which improves computation speed and 
optimizes the GLCM accuracy range. This paper also proposes the Kriging and natural 
neighbor interpolation methods, which ensure that the FC-GLCM satisfies the 
requirements of speed and accuracy to better meet the needs of practical engineering. 
Furthermore, expanding the traditional GLCM algorithm in polar co-ordinates and 
enabling GLCM to be used with the whole static feature images of the sea surface not only 
improves the accuracy of the retrieved data, but also simplifies the complexity of the 
algorithm flow. Finally, the adaptive trend fusion and image preprocessing process of the 
algorithm solve the bottleneck problem (180° ambiguity problem) associated with the 
existing inversion method, which can ensure the real-time engineering application of the 
algorithm and can also be transplanted to other algorithms to solve the problem. In 
comparison to ARM, ESM, T-GLCM, Kriging, and natural neighbor in the 1436 sets of 
measured wind direction datasets, the proposed method obtains a KLD of 0.6404, an 
RMSE of 4.9867°, and a correlation coefficient of 0.9268. The paper compares the FC-
GLCM with ESM and ARM for the data under different sea conditions after categorizing 
the measured sea surface wind direction data for sea conditions. Under different sea 
circumstances, the FC-GLCM produced the best accuracy, with an average accuracy 
reduction rate of only 8%. Especially when rainfall has a great impact on image quality, 
the accuracy reduction rate of the FC-GLCM is less than 13%. This paper demonstrates 
the engineering feasibility of the new method from both theoretical analysis and 
experimental data. Compared with the traditional GLCM, the accuracy and robustness of 
the new method are improved and the calculation speed is also guaranteed. However, the 
sea conditions investigated in this paper are still insufficient for investigating application 
areas and there is a scarcity of algorithmic application research under harsh conditions. 
Moreover, the algorithm proposed in this article is not applicable in situations where wind 
speed is extremely low. In further study, we will optimize the algorithm’s performance in 
extreme situations and broaden the application environment for the GLCM in sea surface 
wind direction inversion. 
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Appendix A 

Theorem A1. The dominant trend angle *φ  for a given image f  is calculated using the FC-
GLCM algorithm. The dominance of its trend may be evaluated using parameters 
measurement, and it is unique. 

Proof of Theorem A1. Assuming that parameter   is a parameter measuring the trend 
size of pixels in image f , the size of parameter   by the ratio of the number of trend 
pixels eN  to the number of other pixels 0N  (the set of all pixels in the image f  except 
trend pixels) and its relationship follows the below formula: 

0

eN
N

∝  (A1)

Other pixel sets are only uniquely defined by the trend pixel set when given the 
whole set of current pixels. 

The pixel point ( ),f i jr θ  in the image f  is uniquely defined by the coordinate 

pair ( ),i jr θ , where ,i M j N≤ ≤ , M  is the number of rows in the image f , and N  

is the number of columns in the image f , where image is 3M N
f

× ×∈ . The following 
definition applies to the trend pixel set  : 

( ) ( ) ( )( ) ( )( ){ }, , | , : |φ η r θ ψ r θ a a η= Φ >   (A2)

where ( )( ),ψ r θ  is the coordinate pair ( ),r θ  for the circle’s center, and the bottom 
semicircle is uniquely defined for the search radius ρ . In the search region a , 

( )( ), :ψ r θ a  denotes the pixel group determined by the distribution angle of the most 

advantageous related pixels. ( )a  is the area-limiting function, which restricts the 
coordinate pairs ( ),r θ  in the search area a to the image’s boundaries to prevent out of 
bounds. ( )( ) ( )( ), : |ψ r θ a aΦ   is a pixel ratio in the whole a determined by calculation 

( )( ),ψ r θ . η denotes the ratio threshold, which is uniquely determined by the image f  
and can be written using the formula: 

2η μ σ= ±  (A3)

where σ and μ  denote function Φ , the standard deviation and mean value of all 
pixels in the image f  after the procedure. □ 



Remote Sens. 2023, 15, 2078 26 of 28 
 

 

The feature of the trend φ in image f  has been more distinctive when the set of 
trend pixels ( ),φ η   in the image f   contains more pixels, and the value of the 
parameter    has been greater. The parameter    can be used to determine the 
dominant degree of the trend when the image f  has a unique dominant angle *φ . We 
have demonstrated that the radar image processed with FC-GLCM have a distinct optimal 
solution *φ  in Theorem A1. Theorem A2 will give a detailed insight into the convergence 
behavior of the FC-GLCM. 

Theorem A2. The FC-GLCM algorithm converges to any image f , with the convergence rate 

parameter ξ  controlling the rate of convergence. 

Proof of Theorem A2. For the k-th gray-level co-occurrence matrix operation angle 
sequence kφ  and its update iteration result sequence 1kφ + , the advantage trend angle *φ  
of the sequence kφ  is ( )*

1 1,k k kφ U φ ε+ +=  according to the operation law of the update 
iteration mode. The relationship between the gray-level co-occurrence matrix operation 
result and the corresponding angle sequence ( )'Z φ  satisfies the formula: 

( ) ( )' * ' *
1 1k k kZ φ Kε Z φ+ +≤  (A4)

In addition, when 1 1kKε + ≤ , with ( )' *
1 0kZ φ + >  is true for 0,k k∀ > ∈ , then 1λ∃ <  

makes: 

( ) ( ) ( ) ( )' * ' * ' * ' *
1 0k k kZ φ Z φ λZ φ ξZ φ+ − < ≤  (A5)

where *
0φ  is the initial angle sequence, and ∃ ∈  means that ( )' *

0Z φ ≤   is 

established. For 0,k k∀ > ∈ , 1 1kKε + ≤  is formed, and 1λ < , 
1

1
k

ρ
ρ

ξ λ Kε
=

= <∏  is 

established. 
Further, there is 

( ) ( )' * ' *
1k kZ φ Z φ+ − <  (A6)

Then, the sequence ( ){ }'Z φ   must be convergent, and the convergence rate is 

controlled by the convergence parameter ξ . □ 
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