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Abstract: The new sea surface wind direction from the X-band marine radar image is proposed in this
study using a fast convergent gray-level co-occurrence matrix (FC-GLCM) algorithm. First, the radar
image is sampled directly without the need for interpolation due to the algorithm’s application of the
GLCM to the polar co-ordinate system, which reduces the inaccuracy caused by image transformation.
An additional process is then to merge the fast convergence method with the optimized GLCM so that
the circular transition between rough and fine estimates is acquired, resulting in the fast convergence
and accuracy improvement of the GLCM. Furthermore, the algorithm will affect the GLCM spatial
distribution while calculating it, and it can automatically resolve the 180◦ ambiguity problem of
sea surface wind direction retrieved from radar images. Finally, the proposed method is applied to
1436 X-band marine radar sequences collected from the coast of the East China Sea. Compared with
in situ anemometer data, the correlation coefficient is as high as 0.9268, and the RMSE is 4.9867◦. The
new method was also tested under diverse sea conditions. The FC-GLCM wind direction results
against the adaptive reduced method (ARM), energy spectrum method (ESM), and the traditional
GLCM (T-GLCM) method produced the best stability and accuracy, in which the RMSE decreased by
91.6%, 67.7%, and 18.1%, respectively.

Keywords: fast convergent GLCM; wind direction; X-band marine radar image; 180◦ ambiguity
problem

1. Introduction

Sea surface wind estimation plays an important role in many marine activities, such
as navigation safety, performance, and marine exploration [1]. Accurate wind direction
information is not only an important judgment factor for ship sailing direction, but also
an important factor for military guidance and carrier-borne aircraft takeoff and landing
safety. The conventional in situ wind sensors such as anemometers placed in ships and
buoys are susceptible to airflow distortion caused by superstructures or the movement of
the anemometer platform, and can provide inaccurate wind data [2]. Other remote sensing
methods such as scatterometers [3,4] and radiometers [5,6] can achieve a wider coverage
of wind information, but they cannot perform high-precision small-area measurements.
Synthetic aperture radar (SAR) has high resolution and day-and-night imaging capabilities,
but its computational cost is too high [7].

Land-based and ship-borne low-cost X-band marine radars with high temporal and
spatial resolution have been broadly used in the observation of ocean wave height [8],
currents [9], rain [10], and sea surface winds [11]. The average wind field information
retrieved from X-band marine radar is one of the more important environmental factors
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for continuous and real-time takeoff and landing safety of carrier-borne aircraft under the
conditions of sea dynamic vehicles. The average wind information near 1 km from the
ship is free of structural disturbance and tends to be closer to free flow. It provides most
accurate steady-state wind parameters on the ship’s surface for carrier aircraft [12,13].

Previous studies have demonstrated that, for X-band radar operating at grazing
incidence with horizontal transmit–horizontal receive (HH) polarization, there are two
methods used to retrieve wind direction information. The first method, proposed in 1998,
provides that the polarization radar cross section (RCS) is at its maximum when the wind
is upwind, and the sea surface wind direction information can be retrieved based on this
principle [14]. In 2012, Lund et al. proposed that the harmonic function model could be
established by applying the RCS of the marine radar image and sea surface wind field, and
the unique maximum value of the function could be more accurately obtained [15]. In 2017,
the relation between the inherent modal function component of the radar image and the
sea surface wind field function was established based on the ensemble empirical mode
decomposition method and the sea surface wind direction information was retrieved based
on the unique maximum value of the mode function [16]. However, these methods cannot
obtain an accurate upwind peak value for the radar data without 360◦ coverage. In 2020,
Chen, X. and Huang, W. et al. [17,18] successively identified the relationship between radar
images and the wind field in various deep learning-based models and directly obtained
sea surface wind direction information from radar images according to these models. This
type of method results in models with significant differences for different radar models,
requiring readjustment of model parameters or modification of the model function.

The second method is based on the characteristics of small-scale wind streak in the
marine radar image sequences to retrieve wind direction information. The static small-scale
wind streak can be extracted from the nautical radar image sequence and the wind streak
is aligned with the wind direction [19,20]. Two methods have been developed for texture
orientation estimation, including the most commonly used spectrum-based and gradient-
based methods. Several spectrum-based methods have also been developed, including
those based on Fourier transform [21], Radon transform [22], the Gabor filter [23], and
wavelet transform [24]. In 2016, Wang, Y. and Huang, W. [25] proposed that sea surface
wind direction information can be obtained under rainfall and nonrainfall conditions using
the Fourier transform wavenumber spectrum region and the value of the radar image,
respectively. A wind field energy spectrum method (ESM) with the characteristic that the
axis of the small-scale wind streak is parallel to the sea surface wind direction is proposed
in [26]. However, this kind of method can only be used when the image coverage is greater
than 180◦, which is highly dependent on the streak scale characteristics. In special weather
or when the streak scale is outside the estimated range, the accuracy is greatly reduced and
some data are not applicable.

For gradient-based methods, the main local orientation of the wind streak is estimated
by assuming that it is perpendicular to the wind direction. The smoothing image and
calculating gradient are combined in the frequency domain to reduce the influence of
noise [27]. A gradient optical flow method to retrieve sea surface wind field information
based on gust signal characteristics in marine radar images is proposed in [28]. However,
as wind field is a static characteristic signal, it is difficult to extract the spatial characteristics
from a single image, resulting in the retrieval accuracy of the optical flow method being
unable to meet the engineering requirements. A local gradient method (LGM) to retrieve
sea surface wind direction information from sea surface static feature images based on the
wind streak feature is proposed in [29]. Although the retrieval accuracy of this method
meets the engineering requirements, there remains a high volume of inapplicable data. An
adaptive reduction algorithm-improved local gradient algorithm (ARM) is proposed in [30].
These methods are still dependent on the scale characteristics of the wind streak and the
latter two methods still rely on the first method to solve the 180◦ ambiguity problem. In
addition, the FT- and gradient-based methods usually require a large rectangular dataset
with many samples of the texture to accurately calculate the direction. However, the
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nautical radar image involves polar co-ordinates, which need to be transformed into
rectangular data through image interpolation. This transformation process will cause radar
image distortion and lead to inaccurate results. In 2021, Wang, H. et al. [26] proposed
the wavenumber energy spectrum method (ESM) to directly obtain the sea surface wind
direction information and better accuracy and data applicability were achieved. These
methods are only used when the image coverage is greater than 180◦ and the accuracy is
greatly reduced in special weather or the streak scale is not in the estimated range.

The paper proposes GLCM-based wind streak analysis to overcome the problems
associated with FT- and gradient-based methods. However, the conventional GLCM for
texture orientation estimation has some limits, as follows [31–33]: 1© Identification range
limitation. The traditional gray-level co-occurrence matrix calculation method can only
identify the angles of 90◦, 45◦, 0◦, and −45◦ in the horizontal direction. However, only
parts of the radar image textures are located in these particular directions in practice,
resulting in the gray-level co-occurrence being typically insufficient to accurately resolve all
texture directions. 2© Limited application range. The traditional gray-level co-occurrence
matrix calculation is only limited to Cartesian co-ordinate systems, but marine radar use
rotating scanning for imaging, and the generated images are based on polar coordinates.
3© Insufficient directional accuracy. The confidence interval of the traditional gray-level
co-occurrence matrix is 10◦, while the radar image amplitude resolution is 0.1◦. In this
paper, a FC-GLCM based on the wind streak image method is proposed; the FC-GLCM
angle estimation of the circular transition between rough and fine transition is performed
for each set separately and adaptive angle fusion is performed according to the clustering
results of the angle categories. The overall trend of the identified image is the main
wind direction information. This new method not only meets the requirements of high
accuracy of wind field information extraction in engineering, but also leads to the change
in spatial distribution of the matrix when the normalized GLCM calculation is carried out.
It can automatically solve the 180◦ ambiguity problem of retrieving sea wind direction
information in the space domain.

The remainder of this paper is organized as follows. An overview of the data and polar
co-ordinate sea surface static feature image extraction process is presented in Section 2. In
Section 3, the new wind direction retrieval method, the FC-GLCM, is proposed and how to
solve the 180◦ ambiguity problem in the retrieval of sea surface wind direction information
is presented. In Section 4, the method is applied to real radar images to validate the wind
direction results, and the sensitivity and robustness are discussed in comparison with the
traditional methods. Finally, a summary is given in Section 5.

2. Data Overview
2.1. Data Source

A typical horizontal polarization short pulse mode X-band marine radar was employed
in this paper. For the X-band radar, the main backscatter mechanism at the ocean surface is
Bragg scattering when the NRCS (normalized radar cross section) is proportional to the
spectral density of the surface roughness [19]. The X-band radar antenna has a compact
bulk and excellent azimuth discrimination, making it ideal for short-range detection. It
not only emits electromagnetic waves, but also receives echo waves to form a sea clutter
image. The radar wavelength is 3 cm, the operating frequency is 9320~9500 Hz, the actual
observation distance is up to 4500 m, the azimuth resolution is 0.1◦, and the radial resolution
is 7.5 m. It should be noted that the radar operates in a rotational scanning mode. For each
0.1◦ interval, the radar antenna broadcasts and receives a column of electromagnetic wave
signals, which are stored per line. Assuming that the ship’s head direction is the initial
harness, the azimuth of the succeeding storage lines is increased by 0.1◦.

The marine radar revolves for one circle to gather an entire image, which takes roughly
2.5 s and includes up to 3300 ± 120 harnesses, with each of the harnesses containing
about 600 pixels points on the radial direction line. On the onboard software operating
platform, the radar scan image is transformed into a polar image. A sequence of time
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series consisting of 32 images lasting 80 s is obtained from the radar pulse value. Given the
incidence angle of the radar antenna and the height above sea level, a considerable distance
of wave inversion will result in local information distortion, while a short distance will
weaken the algorithm’s robustness. Consequently, the ideal distance of the wave inversion
is determined to be 600 ∼ 2100 m. Because of the marine radar’s 360◦ surround measuring
approach, some data along the coast will be included in the results. The isolated bright
spots or continuous bright regions that emerge in the marine radar images is caused by
fixed targets, as shown in Figure 1a. Too many fixed targets will not only obscure certain
radar image features but will also enhance the mean value of the radar echo strength
throughout the whole study region, which provides excellent coverage for the static signal
provided by the sea surface wind field [34]. As a result, the interference of fixed objects in
the radar image must be removed. The amplitude direction of 106◦ ∼ −69◦ is removed
in this research, and the resulting image is presented in Figure 1b. The initial angle is
defined in this paper as the ship’s head direction θn = 93◦, according to the features of the
measured data. Eventually, the study area is clockwise

.
U0(θn) = [106◦, 291◦] with a radial

distance of
.

U0(ln) = [600 m, 2100 m].

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 28 
 

 

radial resolution is 7.5 m. It should be noted that the radar operates in a rotational scan-
ning mode. For each 0.1° interval, the radar antenna broadcasts and receives a column of 
electromagnetic wave signals, which are stored per line. Assuming that the ship’s head 
direction is the initial harness, the azimuth of the succeeding storage lines is increased by 
0.1°. 

The marine radar revolves for one circle to gather an entire image, which takes 
roughly 2.5 s and includes up to 3300  120±  harnesses, with each of the harnesses con-
taining about 600 pixels points on the radial direction line. On the onboard software op-
erating platform, the radar scan image is transformed into a polar image. A sequence of 
time series consisting of 32 images lasting 80 s is obtained from the radar pulse value. 
Given the incidence angle of the radar antenna and the height above sea level, a consider-
able distance of wave inversion will result in local information distortion, while a short 
distance will weaken the algorithm’s robustness. Consequently, the ideal distance of the 
wave inversion is determined to be 600 ~ 2100  m. Because of the marine radar’s 360° 
surround measuring approach, some data along the coast will be included in the results. 
The isolated bright spots or continuous bright regions that emerge in the marine radar 
images is caused by fixed targets, as shown in Figure 1a. Too many fixed targets will not 
only obscure certain radar image features but will also enhance the mean value of the 
radar echo strength throughout the whole study region, which provides excellent cover-
age for the static signal provided by the sea surface wind field [34]. As a result, the inter-
ference of fixed objects in the radar image must be removed. The amplitude direction of 
106 ~ 69° − °  is removed in this research, and the resulting image is presented in Figure 
1b. The initial angle is defined in this paper as the ship’s head direction 93n = °θ , according 
to the features of the measured data. Eventually, the study area is clockwise 

( ) [ ]0 106 ,291nU θ = ° °  with a radial distance of ( ) [ ]0  = 600 m, 2100 mnU l . 

 
Figure 1. Map of the experiment site. Locations of the radar station and anemometer are shown by 
red stars. (a) Single polar marine radar image collected on 00:20 UTC+8 27 October 2010; (b) selected 
radar image after removing 106 ~ 69° − °  amplitude on 27 October 2010. 

The original radar images utilized in this paper were collected from the HEU wave 
and current monitoring systems located on Haitan Island along the East China Sea at 
25°27′N, 119°50′E, between 22 October and 30 October 2010. Rainfall will increase the 
roughness of the sea surface and further surge the scattering area of the radio wave gen-
erated by the radar when it comes into contact with the surface, affecting the echo intensity 
of the sea surface and introducing noise to the radar images. After removing the data of 

Figure 1. Map of the experiment site. Locations of the radar station and anemometer are shown by
red stars. (a) Single polar marine radar image collected on 00:20 UTC+8 27 October 2010; (b) selected
radar image after removing 106◦ ∼ −69◦ amplitude on 27 October 2010.

The original radar images utilized in this paper were collected from the HEU wave and
current monitoring systems located on Haitan Island along the East China Sea at 25◦27′N,
119◦50′E, between 22 October and 30 October 2010. Rainfall will increase the roughness
of the sea surface and further surge the scattering area of the radio wave generated by
the radar when it comes into contact with the surface, affecting the echo intensity of the
sea surface and introducing noise to the radar images. After removing the data of strong
rainfall by applying the wave texture difference method in [35], 1448 sets of marine radar
sequences were selected from 1634 sets. After a thorough selection process, a total of
1436 sets of marine radar sequences were deemed suitable for analysis out of the 1448 sets.
The exclusion of 12 sets was necessary due to the low wind speed (1–2 m/s) present in the
data. As shown in Figure 2a, when the wind speed is normal (>2 m/s), the wind streaks
in the image show a clear trend and the red part dominates the entire image. The red
and blue parts have clear boundary lines, which can effectively extract dominant feature
groups in subsequent image preprocessing. When the wind speed is too low, as shown
in Figure 2b, almost all parts of the entire image are dark blue and the trend of wind
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streaks is not obvious. Only the innermost ring has a slight light blue part, which leads
to the inability to extract feature groups in subsequent image preprocessing processes.
In this case, the method in this paper cannot be applied to retrieve the wind direction.
An in situ Model-05103 wind field monitor was used to gather reference wind directions
for validating the proposed scheme for wind direction information extraction from the
marine radar. Since the Model-05103 wind field monitor records every minute, the wind
direction at the moment of the image sequence is selected as the reference wind direction
for the research.
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Figure 2. Static feature images of sea surface under different wind speeds, different color areas as the
bar of Fig.4, the obtaining process is in the Section 2.2.2. (a) The wind speed during measurement
was 19.6 m/s; (b) the wind speed during measurement was 1.7 m/s.

2.2. Polar Co-Ordinate Sea Surface Static Feature Image
2.2.1. Co-Ordinate System Transformation

Since polar co-ordinate systems and image polar co-ordinate systems have different
definitions of central co-ordinates and co-ordinate axis directions, co-ordinate system
transformation is required before image preprocessing; the transformation process is shown
in Figure 3. As shown in Figure 3a, the origin of the polar co-ordinate system is located
in the image center, the north direction is the positive direction of the polar axis, and the
square of the offset angle is clockwise. The co-ordinates of the point are (ρ, θ), the distance
from the point to the origin is ρ, and the red dotted line angle relative to the north is θ. For
the same point, the absolute position is the same under different co-ordinate systems, but
the relative position is different. The origin of the image polar co-ordinate system is located
at the upper left corner of the image, as shown in Figure 3b, and the horizontal direction is
the positive direction of the polar axis. The co-ordinates of this point are

(
ρ′, θ′

)
as shown

in Figure 2b, the distance from the point to the origin is ρ′, and the red dotted line relative
to the horizontal axis is θ′. The co-ordinates in the original polar co-ordinate system can be
converted to the co-ordinates in the image polar co-ordinate system using the following
formula: {

ρ′ =
√

2R2 + ρ2 + 2ρR(sin θ− cos θ)
θ′ = arcsin R−ρ cosθ√

2R2+ρ2+2ρR(sinθ−cosθ)
(1)

where (ρ, θ) is the co-ordinate pair of the point in polar co-ordinates,
(
ρ′, θ′

)
is the co-

ordinate pair of the point in image polar co-ordinates, and R is the radius of the image area.
The radius of the area selected in this paper is R = 2100 m.
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2.2.2. Process of Extracting Sea Surface Static Features

According to the imaging mechanism of the X-band marine radar, the modulation of
the sea surface wind field leads to the feature of small-scale wind streaks in the radar image
sequence. The small-scale wind streaks have static features that make them hard to detect
on a signal radar image since the signal observation period of the marine radar is only
about 2.5 s. As a consequence, in order to obtain the sea surface static features including
the sea surface wind field, it is essential to overlay and average the radar image sequence
in each period (≈80 s). The static patterns of the sea surface features with low-frequency
signals (including sea surface wind field information) were obtained after filtering out
high-frequency wave noise. The main wind direction of the selected area is obtained based
on the characteristic that the small-scale wind streak is aligned with the sea surface wind
direction [19]. In this work, 32 image sequences are overlain and averaged to form a sea
surface static feature image, the process of which is shown in Figure 4. In this paper, the
radar data digitized and stored the spatial and temporal radar backscatter information as
a sequence of images with a 14-bit grayscale depth, i.e., digitized backscatter intensities
ranging from 0 to 8192. In order to perform the following steps, the sea surface static feature
image rescaled to the gray scale [0, 255] (8-bit) I as in that image.
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Figure 4. Process of overlaying and averaging 32 radar image sequences collected on 00:20 UTC+8
27 October 2010, obtaining a sea surface static feature image (including sea surface wind field
information). The wind speed during measurement was 19.6 m/s, the wave height was 3.06 m, the
wave direction was 101◦, the peak period was 10.76 s, and the wind direction was 48◦.
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3. Sea Surface Wind Direction Extraction Algorithm

This section primarily describes the framework of the proposed FC-GLCM algorithm,
as shown in Figure 5. The algorithm’s procedure is divided into three stages: image
preprocessing of polar co-ordinate sea surface static features, the calculation of a fast-
convergence gray-level co-occurrence matrix, and adaptive trend fusion.
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3.1. Image Preprocessing of Polar Co-Ordinate Sea Surface Static Features

The pixel value distribution is clustered, and the prevalent pixel categories are iden-
tified based on the features of the sea surface static feature image. The prevalent pixel
categories extracted are enhanced [36]. When a sea surface static feature image turns to
RGB, I ∈ Rω×h×3 is input and the pixel-level cumulative illumination value Lc(r, θ, I) can
be formulated as:

Lc(r, θ, I) = ∑
m

αmΨm(I(r, θ)), m ∈ {R, G, B} (2)

where Ψm(I(r, θ)) denotes the pixel value of image I at location (r, θ) in channel m and
the channel wise weight parameters αR, αG, and αB is the proportion of the corresponding
R, G, B pixels in channel to the total pixels of the image, and jointly meet αR + αG + αB = 1.
By employing different weights on the R, G, B channels, high-contrast-rate colors such as
yellow and orange will be suppressed and low-contrast-rate colors such as red will be
amplified in the image I as Lc(r, θ, I). Then, the log-average cumulative luminance L̃c(I)
is given as in [37]:

L̃c(I) = 1
NI

exp

(
∑
r,θ

log(δ + Lc(r, θ, I))
)

(3)

where NI is the total number of pixels in the image and δ is a relatively small quantity to
avoid a zero value of Lc(r, θ, I) in log(δ + Lc(r, θ, I)). Eventually, the adaptive enhance-
ment factor map Lg(r, θ, I) can be obtained as:

Lg(r, θ, I) =
log
(
Lc(r, θ, I)/L̃c(I) + 1

)
log
(
Lc

max(I)/L̃c(I) + 1
) (4)
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where Lc
max(I) = max(Lc(r, θ, I)) denotes the maximum value of Lc(r, θ, I). The aim

of factor calculation is to further adaptively alter the local color value of three intensity
channels at each pixel to realize image enhancement, as follows:

Ψm(Ie(r, θ)) = Ψm(I(r, θ)) ∗
Lg(r, θ, I)
Lc(r, θ, I) , m ∈ {R, G, B} (5)

where Ie denotes the enhanced version of the original I . The area in red that has been en-
hanced accurately highlights the features of wind field modulation. Through the derivation
operator, the local auto-enhancement image ΘL(I) can be constructed as:

ΘL(I) = Lc(I)−Lc(Ie) =
Lc(r, θ, I)− log

(
Lc(r,θ,I)
L̃c(I)+1

)
log
(
Lc

max(I)/L̃c(I) + 1
) (6)

According to Lc(r, θ, I) ∈ [0, 1], the value of local auto-enhancement image ΘL(I) can
thus vary beside the original image Lc(r, θ, I). Thereby, the class of low contrast rate can be
indicated as the informative local region. To be specific, the average value µ and standard
deviation σ of the low contrast rate in ΘL(I) are computed. Following a three-sigma
criterion in statistics, pixels in the range µ± 3σ are considered the informative local region,
while others are less informative and should be cast away after the preprocessing step for
higher efficiency.

To acquire the pixel where the dominant trend is situated in a locally enhanced marine
radar image Ie, Gaussian differential filtering is applied to the enhancement image [37]. Af-
ter Gaussian differential filtering, the image’s two-dimensional Gaussian spectral function
G
(
Lg(r, θ)

)
satisfies the following formula [38]:

G
(
Lg(r, θ)

)
= G

(
Lg(r, θ)

)
0 − G

(
Lg(r, θ)

)
k1

=
1

2πσ2
0

e
− (i2+j2)

2σ2
0 − 1

2πσ2
k1

e
− (i2+j2)

2σ2
k1 (7)

where Lg is the Gaussian differential filtering of the locally enhanced image Ie and the
gray portion of the Gaussian filter can smooth the image and reduce noise. G

(
Lg(r, θ)

)
0 is

the two-dimensional Gaussian spectral function under the initial phase angle. G
(
Lg(r, θ)

)
k

is the two-dimensional Gaussian spectral function with a phase angle of k1, which takes
the σk = k1σ0, σ0 = 1.6, and k1 = 0.8.

The range is optimized in depth after the Gaussian differential filtered image Lg is
searched in four neighborhoods. To produce the preprocessed marine radar image L f , two
sets of feature groups are extracted. L f is the final preprocessed radar image; the portion
that is black after depth optimization can clearly and precisely extract wind field stripe
information.

3.2. Fast-Convergence Gray-Level Co-Occurrence Matrix

The traditional GLCM only focuses on the scenarios of direction extraction under the
Cartesian co-ordinate system, which is a malfunction for the polar co-ordinated problems
such as wind direction extraction for radar images. On the other hand, the accuracy of the
retrieved wind direction information based on marine radar images is restricted due to
practical project demands. This paper proposes a FC-GLCM to address the endogenous
problem of the GLCM in order to extend the applicability of traditional GLCM to polar co-
ordinate systems and improve its convergence competence to meet practical requirements.
The visualization of the algorithm is shown in Figure 5. The overall mathematical model of
the FC-GLCM can be formulated as follows:

Zk+1 = sup
{

1
Z

∣∣∣∣Zk = min
Z,k

Pk
Z(r, θ; ρ, ϕ)

}
, 0 ≤ r ≤ rh, θs ≤ θ ≤ θe, 0 ≤ ρ ≤ ρh, ϕs ≤ ϕ ≤ ϕh (8)
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where Zk is the optimal value of the matrix Z′ in the FC-GLCM at k-th iteration,
min
Z,k

Pk
Z(r, θ; ρ, ϕ) is the cost function for jointly considering the variable pair (Z, k) to obtain

the minimal Zk, while Pk
Z(r, θ; ρ, ϕ) is the GCLM process for r, θ; ρ, ϕ applied to the k-th

iteration and Zk in the FC-GLCM. sup{·} is to obtain the supremum of the specific set.
According to the above definitions, the value of Zk can also represent the optimization

degree of ϕk; thus, the supremum sup
{

1
Z

∣∣∣∣Zk = min
Z,k

Pk
Z(r, θ; ρ, ϕ)

}
denotes the minimal Z

among all k iterations and can obtain the corresponding optimal ϕk. Furthermore, rh is
the threshold for amplitude r, while θs and θe are the lower bound and upper bound for
the argument θ, respectively. It should be noted that the world polar co-ordinates pair

(r, θ) can specify a co-ordinate in the polar image G
(
L f

)
. Similar variable setting rules

are employed for the relative polar co-ordinate pair (ρ, ϕ) and the corresponding ρh, ϕs, ϕh.
Finally, the relative polar coordinate pair (ρ, ϕ) is oriented at the coordinate designated by
the global polar coordinate pair (r, θ).

To be specific, the GLCM under the polar co-ordinates system can be formulated
according to the following statements.

The gray-level ranging section of an image f (r, θ) at position (r, θ) varies from 0
to N − 1 and the GLCM is a matrix of size N × N. In the traditional GLCM direction
estimation, only the GLCM matrix of a relative position is used, which corresponds to
an individual pixel in the image. For a GLCM of the relative position (ρ, ϕ) oriented at
position (r, θ), its matrix element at (r, θ) can be calculated by counting the pixel pairs, as
follows [39]:

P(r, θ; ρ, ϕ) = card

 (i, j)| f (i, j) = m− 1,
f (i + ρ cos ϕ, j + ρ sin ϕ) = n− 1,
(i, j) ∈ P , (i + ρ cos ϕ, j + ρ sin ϕ) ∈ P

/Q(ρ, ϕ) (9)

where card(·) denotes the counting function whose output is the number of elements in
a set and (ρ, ϕ) represents a line orientated at the position (r, θ) with a polar amplitude
value ρ and an angle value ϕ with respect to the horizontal orientation of the position (r, θ).
Furthermore, P is the pixel set of the image and f (r, θ) is the gray level at position (r, θ) in
the polar co-ordinate system. The normalization factor Q(ρ, ϕ) is:

Q(ρ, ϕ) = card{(i, j)|(i, j) ∈ P , (i + ρ cos ϕ, j + ρ sin ϕ) ∈ P} (10)

where Q(ρ, ϕ) is the number of pixel pairs that satisfy the relative position (ρ, ϕ). Then, the
gray-level co-occurrence matrix satisfies the following formula:

Z(ρ, ϕ) =
N

∑
r=1

N

∑
θ=1

ω(r, θ)× P(r, θ; ρ, ϕ) (11)

where ω(r, θ) is an (r, θ)-oriented increasing function, which can be written as:

ω(r, θ) = 1 + exp(−d[(r, θ)|(r0, θ0)]) (12)

where d[(r, θ)|(r0, θ0)] is the distance measure function between (r, θ) and its orientation
point (r0, θ0).

This paper uses the integral of Z(ρ, ϕ) with respect to ρ, which can be calculated as:

Z′(ϕ) =
∫

Z(ρ, ϕ)dρ (13)
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In general, the discrete form of Z′(ϕ) can be formulated as:

Z′(ϕ) =
R

∑
ρ=1

N

∑
r=1

N

∑
θ=1

ω(r, θ)× P(r, θ; ρ, ϕ) (14)

where R is the integration range for ρ.
The optimal orientation ϕmin, which denotes the minimum value of Z′(ϕ), is calculated

as the following formula:

ϕmin = arg
(

min
ϕ

Z′(ϕ)

)
(15)

As shown in Figure 6, the FC-GLCM is not meaningless to repeatedly calculate k times
of GLCM but uses a method of coarse–fine estimation of cyclic iteration. During the first
GLCM, the algorithm finds an optimal solution in the transparent semicircle region of the
graph ϕ∗1 . At this time, the estimated wind direction is 47◦, which is located at the black
line of the semicircle. The estimated wind direction for the first time above ϕ∗1 is the center
and the step size is half of the last time. The GLCM is calculated again and an optimal
solution is found in the purple sector area in the figure to obtain the iterative updated
estimated wind direction ϕ∗2 , which is 48◦. Finally, the estimated wind direction updated
by the second iteration ϕ∗2 is the center and the step size is half of the last time. The GLCM
is calculated again and an optimal solution is found in the orange sector area of the figure.
Finally, the estimated wind direction after three iterations ϕ∗3 is 48.1◦. Experiments show
that the algorithm converges to the unique optimal direction after three iterations. The
mathematical proofs of the uniqueness of optimal direction and the convergence properties
of the FC-GLCM are presented in Appendix A.
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3.3. How to Improve the Efficiency of the FC-GLCM

According to Zheng et al. [33], the GLCM’s wind direction estimation speed is dis-
tributed in vG = 0.05− 0.1fps, where fps is the frame rate, which represents the number of
images the algorithm can process per second. The frame rate of the FC-GLCM algorithm
proposed in this paper is distributed in vG = 0.03− 0.07fps through the actual computation
of the experimental phase. In practical applications, the computation speed of the actual
detection data of the direction station is distributed in vC = 0.2− 0.35fps. To improve the al-
gorithm’s efficiency and meet real-time requirements, this paper proposes two interpolation
algorithms based on the features of the algorithm and the processed data.

According to the algorithm’s properties, the following Table 1 compares the time
complexity of the FC-GLCM with the traditional GLCM.
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Table 1. Comparison of the temporal complexity of FC-GLCM with traditional GLCM.

Step Title FC-GLCM Traditional GLCM

P O
(
n2) O

(
n4)

Q O
(
n2 + log n

)
O
(
n2)

Z O
(
n2) O

(
n4)

Preprocessing O
(
n2) -

As shown in Table 1, the time complexity distribution of the FC-GLCM for each portion
and the traditional GLCM is similar, with the primary amount of computation concentrated
on the P and Z calculations. Due to the accuracy requirements of the algorithm, only the P
and Z calculation processes with a large amount of calculation are interpolated. In terms
of the interpolation implementation method, the sequence of interval calculation first and
interpolation later is adopted. The specific implementation steps are as follows:

Step 1: Interval Calculation

According to the calculation formula of P, each variable’s time complexity can be
simplified to O

(
(n/c)2

)
, where c is the interval order. Similarly, the Z temporal complexity

after the interval calculation is O
(
(n/c)2

)
.

In this paper, the mathematical expectation of the probability model distribution of
the processed image is variable and there is no fixed distribution mode. Therefore, a robust
and accurate interpolation approach must be required.

Step 2: Interpolation Completion

Approach 1: Kriging interpolation
All functions P(x1), P(x2), . . . , P(xn) should have:

P∗(x0) = f [P(x1), P(x2), . . . , P(xn)] (16)

However, due to the complexity of the spatial variables analyzed by Kriging estimation
technology changing with different spatial positions and the insufficient information given
by the limited amount of observation data, determining the general form of the function
clearly and totally is impossible, so we can only estimate P∗(x0), which is the form of f .
When f is considered as a linear function of P(x1), P(x2), . . . , P(xn), the following results
are obtained [40]:

P∗(x0) = λ0 +
n

∑
i=1

P(xi) (17)

The limit of this estimation is based on the linear range. It is essential to decide which
standard to apply for estimating the function before determining the constant λ0, λ2, . . . , λn.
The minimum variance is commonly employed as the estimate standard in a Kriging
estimation scheme. The formula can be written as:

E
{
[P(x0)− P∗(x0)]

2
}
= min (18)

Kriging technology can be used for linear minimum variance estimation.
The pan-Kriging approach was chosen because the random function P(x) involved in

this study is neither defined nor constant.
Assume that the draft function m(x) has the following form:

m(x) =
n

∑
i=1

ai f i(x) (19)
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where ai is a specific constant, f i(x)(i = 1, 2, . . . , n) is a known function with x as its
independent variable, and i is the superscript of f i, f 2 6= f · f , f 3 6= f · f · f , . . . , f n and is
not equal to the product of f .

The mean value of the random function P(x) at a point x is the drift m(x), as:

m(x) = E[P(x)] (20)

If it is a deterministic function that depicts the spatial trend of the random function
P(x), then:

Y(x) = P(x)−m(x) (21)

where Y(x) is referred to as the residual function of P(x) at x.
If f 0(x0) = 1, then the drift at x0 can be expressed as:

m(x0) = a0 +
n

∑
i=1

ai f 0(x0) (22)

Thus, there is:
n

∑
i=1

λi f 0(xj
)
=

k

∑
j=1

λj = f 0(x0) = 1 (23)

Eventually, the mutation function γ(h) with only the residual function Y(x) is listed.
The pan-Kriging equations for estimating P(x) in existence are as follows:

k
∑

jj=1
λjj f i(xjj

)
+ µ0 +

k
∑

i=1
µi f i(xj

)
= γ

(
x0, xj

)
, j = 1, 2, . . . , k

k
∑

j=1
λj = 1

k
∑

j=1
λj f i(xj

)
= f i(x0), i = 1, 2, . . . , n

(24)

Similarly, the random function Z(x) is also interpolated by the above method.
Approach 2: Natural neighbor interpolation
Spatial interpolation creates continuous surface modeling from discrete sample loca-

tions and estimates attribute values. Spatial autocorrelation serves as the foundation for
spatial interpolation, which is the closer the distance is, the more similar the objects are
in [41].

Spatial autocorrelation is also used in natural neighbor interpolation. Its primary
premise is to generate Tyson polygons for all sample locations. When interpolating un-
known points, these Tyson polygons will be updated and a to-be-interpolated Tyson
polygon will be constructed for unknown points. The sample points in the Tyson polygons
that intersect the interpolated Tyson polygons are utilized in the interpolation. The influ-
ence weight of the to-be-interpolated Thyson polygon is determined by the intersecting
area between the original Thyson polygon and the to-be-interpolated Thiessen polygon, as
shown in Figure 7. Formula (31) can be used to represent it:

P(x) =
n

∑
i=1

bi(x)gi (25)

where P(x) is the interpolation result at point x, bi(x) is the weight of interpolation sample
points i(i = 1, 2, . . . , n) with respect to the interpolation point x, and gi is the value at
sample point x.
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The weight can be written using the following formula:

bi(x) =
ci ∩ c(x)

c(x)
, 0 ≤ bi(x) ≤ 1 (26)

where ci is the area of the Tyson polygon in which the sample point participating in the
interpolation is located, c(x) is the area of the Tyson polygon in which the point x to be
interpolated is located, and ci ∩ c(x) is the area where the two intersect. Similarly, the
random function Z(x) is also interpolated by the above method.

3.4. Adaptive Trend Fusion

Following the estimation of the direction of the FC-GLCM for each trend category in
the image L f , the number of pixels contained in each trend category is taken as the confi-
dence of the trend direction, and adaptive trend fusion based on coefficient optimization is
performed to obtain the final overall image trend ϕ∗ [42]. The process of adaptive trend
fusion is shown in Figure 5. The weight of each trend category in the image is optimized
using the formula:

wk = min
wk

[
‖wk − w̃k‖2 +

∥∥Z′(ϕ∗)
∥∥2
]

(27)

where wk is the coefficient of ϕk and w̃k is the reference value of wk.
The general trend of the ultimate image is represented by the equation:

ϕ∗ =
Na

∑
k=1

ϕk · wk (28)

where Na is the number of dominant groups and ϕk is the dominant trend angle of the k-th
sequence determined using the FC-GLCM.

3.5. How to Resolve the 180◦ Ambiguity Problem

It is challenging to resolve the 180◦ ambiguity problem in spatial image processing
when retrieving sea surface wind direction information. The GLCM method applied in this
paper uses a counterclockwise semicircle search method to restrict the angle to 180◦, but
also has the option to select between a tiny angle and a 180◦ turnover as other algorithms.
The following is a theoretical description of the modified GLCM search strategy, which
can effectively solve the 180◦ ambiguity problem and be applied to other wind direction
retrieval methods.

Step 1: Create 360◦ augmented search domain

Firstly, the 180◦ search domain of the GLCM is extended to 360◦, or from the coun-
terclockwise semicircular search mode to the standard circular search mode. The 360◦

search range in this study domain extends the angle search range of the GLCM. Because
of the mirror relationship between the angles below 180◦ and the angles reversed by 180◦,
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the calculation accuracy of the GLCM method will be slightly decreased. The results of
the GLCM’s wind direction inversion will also be impacted by the unstable calculation
accuracy, which makes it difficult to resolve the 180◦ ambiguity problem.

Step 2: Coupling angle evaluation strategy

While Step 1 overcomes the GLCM method’s inability to extract information regarding
a wind direction of over 180◦, the algorithm’s computation accuracy is decreased. This
section utilizes a coupling angle determination strategy to address the mentioned problems
and further resolve the problem of 180◦ ambiguity, while simultaneously increasing the
calculation accuracy of the algorithm.

Source identification. The source of the sea surface wind direction can be identified
based on the fact that the origins between the large and small angles of the wind are
mirrored. According to the definition given in this study, the source of sea surface wind
is the point at which the local maximum value is within the predominant trend range of
the current wind direction data. The likelihood that the wind direction is a small-angle
wind direction increases with the proximity of the wind direction source to the origin of
the polar co-ordinates. Otherwise, the wind direction is a large-angle wind direction.

Trend analysis. Based on the conclusions of the source identification, the trend of the
wind direction is determined as a straight line with three points: the origin of the polar
co-ordinates, the source of the wind direction, and the lower boundary of the data, with the
source of the wind direction serving as the initial point. The characteristics of small-angle
wind are that it begins at the source of the wind and extends to the downward boundary,
and the proximity of the source to the origin is another feature. However, the source of the
wind direction is closer to the lower border and the trend of the large-angle wind direction
extends from the source of the wind direction to the origin of the polar co-ordinates.

The distribution of the P matrix will alter based on the consequence of various trends
within the calculating GLCM, which will have a positive impact on the wind direction
retrieval result. Figure 8a illustrates that the distribution of the small-angle wind direction
ρ in the P matrix is defined by several peaks, which will lead to the general migration
tendency. The distribution of ϕ displays a multi-peak and wide-area trend, an overall
left tilt, and evenly spaced pixels. As shown in Figure 8b, the distribution of the large-
angle wind direction ρ in the P matrix has a single peak, the characteristic value is rather
considerable, and it has a consistent tendency to be non-tilting. The distribution of ϕ
exhibits a single peak, a trend confined to a narrow region, and a right-tilted, steep pixel
distribution.
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In summary, firstly, the feature distribution direction and position of the wind direction
are judged in the process of extracting the dominant features in the preprocessing part for
the input radar image. Secondly, the characteristic change trend of the wind direction is
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evaluated. Finally, utilizing the distinctive distribution direction and location of the wind
direction that will cause the distribution of the P matrix to change, the final estimated sea
surface wind direction can be accurately determined in GLCM calculations. Figure 5 is
taken as an example to illustrate this principle, where the current reference wind direction
is 48◦. In terms of characteristic distribution direction and wind direction, the characteristic
distribution in Figure 5 is characterized by a multi-segment distribution, with a general left-
leaning dominant trend. This distribution mode will cause the P matrix to have multi-peak
characteristics, resulting in an overall migration tendency. The change trend in Figure 5 is
relatively gentle, with an obvious transition trend. As a result, during the feature extraction
process, the result frequently has the feature of edge augmentation and there will be a
certain number of edge transition zones. Due to the smooth pixel distribution of the wind
direction, the P matrix distribution presents a trend of multi-peak and large areas, as shown
in Figure 8a. Due to different characteristic distribution directions and positions, their peak
positions will also be different, as shown in the peak position of the curve in Figure 7. In
addition, since the characteristic change trend of the wind direction in Figure 5 is relatively
gentle, the peak value of its P matrix distribution will also produce more secondary peaks,
as shown in the pink curve in Figure 8a.

4. Experiments Results

In this section, we will analyze 1436 sets of data that were collected between 22 October
and 30 October 2010. This dataset includes a wind speed range between slightly higher
than 2 m/s and 20 m/s, a wave direction range between 65◦ and 257◦, and a wave height
range between 1 m and 3 m. As evaluation criteria, Kullback–Leibler divergence (KLD),
root-mean-square error (RMSE), and Pearson’s correlation coefficient (PCC) are chosen
to compare the FC-GLCM, natural neighbor, Kriging, traditional GLCM (T-GLCM), the
adaptive reduced method (ARM), and the energy spectrum method (ESM).

KLD divergence measures the divergence between the distribution S and Ŝ:

KL
(
S, Ŝ
)
=

N×N

∑
i=1

Ŝi log
Ŝi
Si

(29)

where S represents the measurement speed data by vane, Ŝ represents the wind direction
data estimated by the algorithm, and N × N represents the matrix of the input radar image.

RMSE reflects the extent to which Ŝ deviates from S:

SRMSE =

√
∑N×N

i=1

(
Si − Ŝi

)2

N
(30)

PCC measures the linear correlation between S and Ŝ:

PCCs =
σ
(
S, Ŝ
)

σ(S)σ
(
Ŝ
) (31)

where σ
(
S, Ŝ
)

is the covariance of S and Ŝ.

4.1. Sensitivity Analysis

The preparation of the polar co-ordinates’ sea surface static images is carried out in
the third section of the paper, which includes the Gaussian difference filtering procedure
with the two parameters k1 and σ. The number of iterations ξ plays a crucial role in the
calculation accuracy and speed when using the FC-GLCM algorithm. We analyze the
sensitivity of these three parameters. Tables 2 and 3 demonstrate that when k1 and σ
increase, KLD and RMSE show a pattern of decreasing first and then increasing, whereas
PCC shows a trend of increasing first and then decreasing. KLD and RMSE are the smallest
and PCC is the biggest when k1 = 1.60 and σ = 0.80, respectively. This shows that
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the distribution of the wind direction retrieved by the FC-GLCM method is almost the
same as that of the reference wind direction, with the lowest standard deviation and best
correlation. Figures 9 and 10 demonstrate that the retrieved wind direction will be larger
than the reference wind direction when k1 and σ are too large or too small, but when k1 is
excessively large, the estimated wind direction will be about twice as large as the reference
wind direction. When σ is excessively large, the estimate is approximately double the
reference value. Table 4 illustrates the variations in KLD, RMSE, and PCC with increasing
iterations. As shown in Figure 11, KLD and RMSE are minimum and PCC is maximum
when the number of iterations ξ = 3. In conclusion, the algorithm performs best when
k1 = 1.60, σ = 0.80, and ξ = 3.

Table 2. Sensitivity analysis of parameter k1.

k1 0.16 0.64 1.12 1.60 1.76 1.88 16.00

KLD 0.9742 0.8788 0.7600 0.6954 0.7380 2.3865 4.5658
RMSE (◦) 11.0756 8.4816 5.0022 4.3236 4.3669 47.3704 92.8893

PCC 0.0289 0.0288 0.0291 0.0301 0.0293 0.0291 0.0292

Table 3. Sensitivity analysis of parameter σ.

σ 0.08 0.32 0.56 0.80 0.88 4.40 8.00

KLD 0.8758 0.8294 0.7839 0.7277 0.7652 1.5085 2.4246
RMSE (◦) 7.6117 6.3330 5.2913 5.2017 5.3398 25.3538 48.0796

PCC 0.0293 0.0293 0.0291 0.0295 0.0291 0.0295 0.0292
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Table 4. Sensitivity analysis of iteration number ξ.

ξ 1 2 3 4 5 6 7

KLD 0.3239 0.3153 0.2856 0.3240 0.3227 0.3216 0.3253
RMSE (◦) 4.7254 4.7653 4.6455 4.7242 4.7284 4.7212 4.7193

PCC 0.0295 0.0294 0.0305 0.0292 0.0292 0.0292 0.0294
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different. (a) KLD index; (b) RMSE index; (c) PCC index.

4.2. Accuracy Validation

The ARM, ESM, and T-GLCM algorithms are compared with the FC-GLCM algorithm,
the Kriging interpolation method, and the natural neighbor interpolation method. The
results, evaluation criteria, and computing time are shown in Table 5. The table shows that
for the retrieved wind direction data compared to the data measured by the in situ vane
anemometer, the KLD of the FC-GLCM algorithm proposed in this paper has 0.6404, and
the RMSE is 4.9867◦. The correlation coefficient is as high as 0.9268. Table 5 demonstrates
that the FC-GLCM reduces the computation time by 63.8%, 50.6%, and 42.9%, respectively,
compared to ARM, ESM, and T-GLCM, which has the fastest calculation speed. In addi-
tion, in terms of the KLD indicator, the FC-GLCM reduced by 0.05%, 32.7%, and 16.8%,
respectively, when compared to T-GLCM, ARM, and ESM. In terms of the RMSE indicators,
the FC-GLCM decreased by 18.1%, 91.6%, and 67.7%, respectively, compared to T-GLCM,
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ARM, and ESM. When compared to the FC-GLCM method, the RMSE of Kriging and
natural neighbor interpolation increases by 0.4616◦ and 0.3902◦, respectively. Nevertheless,
the calculation time is decreased by 21% and 26%, respectively. The method proposed
in this study may efficiently increase the accuracy and calculation speed of the T-GLCM
algorithm, and the proposed interpolation method can also greatly enhance the calculation
speed with minimal accuracy cost.

Table 5. Comparison of the proposed FC-GLCM method with classic wind measurement technique.

Method KLD RMSE (◦) PCC Computing
Time(s)

ARM 0.9516 59.3512 0.3112 25.2679
ESM 0.7699 15.4349 0.9122 18.4831

FC-GLCM 0.6404 4.9867 0.9268 9.1391
Kriging 0.6137 5.4483 0.9267 7.2608

Natural Neighbor 0.6182 5.3769 0.9267 6.7746
T-GLCM 0.6713 6.0533 0.9265 15.9731

Figure 12 shows the line diagram of each algorithm divided according to time se-
quences under the PCC indicator. The data under weak rainfall are shown in the gray
background region of the figure. Figure 12a illustrates how poorly the ARM algorithm
performs in the PCC indicator and its retrieved wind direction information differs greatly
from the reference wind direction data in all cases, especially in rainy weather when its
error can reach more than 80%. The gray background area in Figure 12 represents the weak
rainfall data. The red dotted boxes represent the data with noticeable jitter during weak
rainfall. The red dotted box on the right shows the weak rainfall data from 13:12 to 19:30 on
30 October. During this period, the RMSE of the FC-GLCM was 5.0167◦, which was 94.5%
and 82.7% lower than that of ARM and ESM, respectively. The RMSE of the Kriging inter-
polation and natural neighbor interpolation proposed in this paper is 5.4248◦ and 5.2356◦,
respectively. The left red dotted box shows the rainfall data from 1:22 to 6:37 on 24 October.
At this time, the sea surface wind direction is a large-angle wind direction. The RMSE of
the FC-GLCM is only 0.26◦, which is 88.2% lower than that of ARM and ESM. The RMSE
of the two interpolation methods proposed in this paper is 1.16◦. Therefore, the FC-GLCM
algorithm can not only effectively resist the impact of rainfall on the retrieval of sea surface
wind direction information using the Gaussian filtering and feature enhancement methods
in the preprocessing part but can also accurately identify the wind direction at all angles
using the different spatial distributions of the P matrix.

Figure 13 shows the two-dimensional distribution of the KLD indicators in the sample
data. The closer the KLD is to zero, the more similar the distribution of the reference and
estimated sea surface wind directions. The more accurate the model, the more accurate
the wind direction inversion. Figure 13a demonstrates that the FC-GLCM algorithm is
distributed at 0~2, the ARM is distributed at −4~10, the ESM is distributed at −2~4, T-
GLCM is distributed at −3~4, and both interpolation algorithms are distributed at −2~3.
Therefore, the FC-GLCM algorithm proposed in this paper has the most concentrated
distribution and the algorithm has higher accuracy and better convergence in retrieving
sea surface wind direction information.
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Figure 12. Comparison of the proposed FC-GLCM method results with different wind measurement
techniques. (The pink curve with the open points represents the wind direction measured by the
vane anemometer, the gray background area is the data during weak rainfall, and the red dotted
boxes represent the data with large error during rainfall.) (a) Comparison of the proposed FC-GLCM
method results with the Kriging, natural neighbor, and T-GLCM approaches. (b) Comparison of the
proposed FC-GLCM method results with the ARM, ESM.
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Table 6 shows how each algorithm’s accuracy decreases in response to strong wind 
conditions. The FC-GLCM algorithm in this paper not only has significantly greater accu-
racy than the other algorithms, but also has a lower RMSE compared to the other algo-
rithms. Considering the influence of wind speed on the retrieval of sea surface wind di-
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Figure 13. Comparison of KLD index between the proposed FC-GLCM and classic algorithm.
(a) Comparison of the proposed FC-GLCM method with the ARM and ESM; (b) comparison of the
proposed FC-GLCM method with the Kriging, natural neighbor, and T-GLCM approaches.

Figure 14 shows the three-dimensional distribution of the sample data RMSE indica-
tors. Table 5 shows that the RMSE of the FC-GLCM algorithm is only 4.9867◦, while that
of ARM is 59.3512◦. The distribution of the FC-GLCM algorithm is more centralized, as
shown in Figure 14a, while the distribution of the ARM is the most decentralized. It can be
seen from Figure 14b that the convergence of the two interpolation algorithms is relatively
weak compared with T-GLCM, but the RMSE of both algorithms is lower than T-GLCM
according to Table 5. Therefore, it shows that the two interpolation methods will reduce
the robustness and improve the performance of the improved algorithm.
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4.3. Robustness Test

This section redistributes the reference data used in this study according to various
sea conditions and investigates how these factors affect the algorithm’s accuracy. Weak
wind, strong wind, wave height, wave direction, and rainfall are among the sea condition
parameters tested in this section.

Table 6 shows how each algorithm’s accuracy decreases in response to strong wind
conditions. The FC-GLCM algorithm in this paper not only has significantly greater
accuracy than the other algorithms, but also has a lower RMSE compared to the other
algorithms. Considering the influence of wind speed on the retrieval of sea surface wind
direction information, this paper divides the sample data into two categories: small wind
speed (2–13.5 m/s) and large wind speed (13.5–20 m/s). There are 746 groups of data for
small wind speed and 690 groups of data for large wind speed. Figure 15 shows the wind
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direction error between the estimated wind direction and the reference wind direction at
different wind speeds. The shaded area is the wind speed data measured by the vane.
Figure 15a shows the error between the estimated wind direction and the reference wind
direction when the wind speed is 2–13.5 m/s. The red dotted boxes represent the area with
large fluctuations in the error range. The large error range of the left dotted box is caused
by the large fluctuation in the wind speed between 7–11 m/s and the large angle wind
direction at this time. At the time, the RMSE of ARM can reach 71.2691◦, while the RMSE
of the FC-GLCM algorithm is only 9.7285◦. The dotted box on the right is the error data
when the wind speed is approximately 12 m/s. The estimated wind direction is basically
consistent with the reference wind direction and the RMSE of the FC-GLCM is only 2.7487◦,
which is 42.7512◦ and 21.4726◦ less than the RMSE of ARM and ESM, respectively. The red
dotted box in Figure 15b shows the error data when the wind speed is 13–14 m/s. At this
time, the RMSE of the FC-GLCM is only 2.3565◦, which is 94.9% and 64.9% lower than ARM
and ESM, respectively. ARM and ESM have a larger error range when the wind speed is
approximately 13 m/s. However, the fast convergence and adaptive fusion characteristics
of the FC-GLCM ensure the stability, robustness, and accuracy of the retrieved results.

Table 6. Comparison between FC-GLCM algorithm and classic method under different sea conditions.

Sea Condition Indicator ARM ESM T-GLCM FC-GLCM

Weak Wind
KLD 0.9361 0.7735 0.6054 0.4518

RMSE (◦) 74.7396 19.7976 6.9043 4.4738
PCC 0.3545 0.9140 0.9252 0.9277

Strong Wind
KLD 0.9670 0.7655 0.6114 0.5124

RMSE (◦) 35.8954 8.4672 6.0449 4.4738
PCC 0.2081 0.3978 0.8289 0.8395

Wave Height
KLD 0.8931 0.7906 0.5987 0.4523

RMSE (◦) 56.4481 10.7277 6.3990 5.2223
PCC 0.4723 0.9158 0.9169 0.9272

Wave Direction
KLD 0.8931 0.7906 0.5987 0.4523

RMSE (◦) 56.4481 10.7321 6.3979 5.2222
PCC 0.4733 0.9158 0.9169 0.9272

Rainfall
KLD 2.3897 0.6503 0.6445 0.5579

RMSE (◦) 91.2342 29.0755 6.5193 5.0167
PCC -0.0322 0.8569 0.9061 0.9263

Since the wave height and wave direction data are averaged for 20 min, in order to
analyze the time correspondence, it is also necessary to average the retrieval results for
20 min. There are 170 sets of data after averaging. Table 6 indicates that the wave height
and wave direction will indeed have a negative impact on the algorithm’s accuracy and
robustness when they are significantly changed. Figure 16 shows the wind direction error
between the retrieved direction data and reference wind direction data at different wave
heights. Figure 17 shows the wind direction error between the retrieved direction data and
the reference wind direction data at different wave directions. It can be seen from Table 6
that the RMSE of the overall sample of the FC-GLCM is 5.2223◦ when the wave height
is different, which is reduced by 51.2258◦, 5.5024◦, and 1.1767◦, respectively, compared
with ARM, ESM, and T-GLCM. The red dotted box in Figure 16 shows the data with large
error fluctuations and the wave height is about 1.5 m. In this area, the sample RMSE of the
FC-GLCM, ESM, and ARM is 3.60◦, 3.82◦, and 26.53◦, respectively. The large error range
of the dotted line box in Figure 17 is caused by the large wave direction, which reaches
around 180◦. Compared with ARM and ESM, the FC-GLCM still has higher precision, and
the sample RMSE of the FC-GLCM is only 3.72◦. To sum up, both ARM and ESM have
larger errors due to the influence of wave height and direction, while the FC-GLCM greatly
suppresses the influence of such sea conditions on inversion results due to the feature
extraction and dominant wind direction data acquisition steps in its preprocessing.



Remote Sens. 2023, 15, 2078 22 of 27
Remote Sens. 2023, 15, x FOR PEER REVIEW 22 of 28 
 

 

 
(a) 

 
(b) 

Figure 15. Wind direction error between estimated direction and reference wind direction at differ-
ent wind speeds. (The shaded area represents measurement speed data by vane and the red dotted 
box represents the area with large fluctuations in the error range.) (a) Wind direction error between 
retrieved direction and reference wind direction when the wind speed is 0–13 m/s. (b) Wind direction 
error between retrieved direction and reference wind direction when the wind speed is 13–20 m/s. 

Since the wave height and wave direction data are averaged for 20 min, in order to 
analyze the time correspondence, it is also necessary to average the retrieval results for 20 
min. There are 170 sets of data after averaging. Table 6 indicates that the wave height and 
wave direction will indeed have a negative impact on the algorithm’s accuracy and ro-
bustness when they are significantly changed. Figure 16 shows the wind direction error 
between the retrieved direction data and reference wind direction data at different wave 
heights. Figure 17 shows the wind direction error between the retrieved direction data 
and the reference wind direction data at different wave directions. It can be seen from 
Table 6 that the RMSE of the overall sample of the FC-GLCM is 5.2223° when the wave 

Figure 15. Wind direction error between estimated direction and reference wind direction at different
wind speeds. (The shaded area represents measurement speed data by vane and the red dotted
box represents the area with large fluctuations in the error range.) (a) Wind direction error between
retrieved direction and reference wind direction when the wind speed is 0–13 m/s. (b) Wind direction
error between retrieved direction and reference wind direction when the wind speed is 13–20 m/s.



Remote Sens. 2023, 15, 2078 23 of 27

Remote Sens. 2023, 15, x FOR PEER REVIEW 23 of 28 
 

 

height is different, which is reduced by 51.2258°, 5.5024°, and 1.1767°, respectively, com-
pared with ARM, ESM, and T-GLCM. The red dotted box in Figure 16 shows the data with 
large error fluctuations and the wave height is about 1.5 m. In this area, the sample RMSE 
of the FC-GLCM, ESM, and ARM is 3.60°, 3.82°, and 26.53°, respectively. The large error 
range of the dotted line box in Figure 17 is caused by the large wave direction, which reaches 
around 180°. Compared with ARM and ESM, the FC-GLCM still has higher precision, and 
the sample RMSE of the FC-GLCM is only 3.72°. To sum up, both ARM and ESM have larger 
errors due to the influence of wave height and direction, while the FC-GLCM greatly sup-
presses the influence of such sea conditions on inversion results due to the feature extraction 
and dominant wind direction data acquisition steps in its preprocessing. 

 
Figure 16. Wind direction error between retrieved direction and reference wind direction at different 
wave heights. (The shaded area represents wave height data measured by vane and the red dotted 
box represents the area with large fluctuations in the error range.) 

 

Figure 16. Wind direction error between retrieved direction and reference wind direction at different
wave heights. (The shaded area represents wave height data measured by vane and the red dotted
box represents the area with large fluctuations in the error range.)

Remote Sens. 2023, 15, x FOR PEER REVIEW 23 of 28 
 

 

height is different, which is reduced by 51.2258°, 5.5024°, and 1.1767°, respectively, com-
pared with ARM, ESM, and T-GLCM. The red dotted box in Figure 16 shows the data with 
large error fluctuations and the wave height is about 1.5 m. In this area, the sample RMSE 
of the FC-GLCM, ESM, and ARM is 3.60°, 3.82°, and 26.53°, respectively. The large error 
range of the dotted line box in Figure 17 is caused by the large wave direction, which reaches 
around 180°. Compared with ARM and ESM, the FC-GLCM still has higher precision, and 
the sample RMSE of the FC-GLCM is only 3.72°. To sum up, both ARM and ESM have larger 
errors due to the influence of wave height and direction, while the FC-GLCM greatly sup-
presses the influence of such sea conditions on inversion results due to the feature extraction 
and dominant wind direction data acquisition steps in its preprocessing. 

 
Figure 16. Wind direction error between retrieved direction and reference wind direction at different 
wave heights. (The shaded area represents wave height data measured by vane and the red dotted 
box represents the area with large fluctuations in the error range.) 

 

Figure 17. Wind direction error between retrieved direction data and reference wind direction data at
different wave directions. (The shaded area represents wave direction data measured by vane and
the red dotted box represents the area with large fluctuations in the error range.)

In this section, the algorithm is verified by the above series of experiments. Firstly, the
sensitivity of variable parameters in the FC-GLCM is analyzed. The experimental results
show that the algorithm accuracy will vary with the filter variance σ and variance coefficient
k1, which are convex set distributions near the optimal parameters, and the highest precision
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is in the optimal parameter combination σ = 0.16 and k1 = 0.80. Increasing the number of
iterations improves the accuracy to some extent, while increasing the number of calculations.
The number of iterations chosen is ξ = 3 based on accuracy and speed. Secondly, for the
1436 groups of measured sea surface wind direction data, this section compares the FC-
GLCM algorithm with other algorithms. The FC-GLCM algorithm has the highest accuracy.
Its correlation coefficient with the reference sea surface wind direction data is up to 0.9268
and the RMSE is 4.9867◦. Finally, this section also compares the FC-GLCM with other
classical algorithms for data under various sea conditions. At different wind speeds, the
RMSE of FC-GLCM is 4.4738◦. At different wave heights and wave directions, the RMSE of
the FC-GLCM is 5.2223◦. Under rainfall conditions, the RMSE of the FC-GLCM is 5.1067◦.
Therefore, the FC-GLCM algorithm proposed in this paper has the best accuracy and
robustness under different sea conditions.

5. Conclusions

In this paper, a new method is proposed for retrieving the sea surface wind direction
information from X-band radar image sequences. First, our method proposes an FC- GLCM
algorithm based on angle iteration, which improves computation speed and optimizes
the GLCM accuracy range. This paper also proposes the Kriging and natural neighbor
interpolation methods, which ensure that the FC-GLCM satisfies the requirements of speed
and accuracy to better meet the needs of practical engineering. Furthermore, expanding
the traditional GLCM algorithm in polar co-ordinates and enabling GLCM to be used with
the whole static feature images of the sea surface not only improves the accuracy of the
retrieved data, but also simplifies the complexity of the algorithm flow. Finally, the adaptive
trend fusion and image preprocessing process of the algorithm solve the bottleneck problem
(180◦ ambiguity problem) associated with the existing inversion method, which can ensure
the real-time engineering application of the algorithm and can also be transplanted to
other algorithms to solve the problem. In comparison to ARM, ESM, T-GLCM, Kriging,
and natural neighbor in the 1436 sets of measured wind direction datasets, the proposed
method obtains a KLD of 0.6404, an RMSE of 4.9867◦, and a correlation coefficient of
0.9268. The paper compares the FC-GLCM with ESM and ARM for the data under different
sea conditions after categorizing the measured sea surface wind direction data for sea
conditions. Under different sea circumstances, the FC-GLCM produced the best accuracy,
with an average accuracy reduction rate of only 8%. Especially when rainfall has a great
impact on image quality, the accuracy reduction rate of the FC-GLCM is less than 13%. This
paper demonstrates the engineering feasibility of the new method from both theoretical
analysis and experimental data. Compared with the traditional GLCM, the accuracy and
robustness of the new method are improved and the calculation speed is also guaranteed.
However, the sea conditions investigated in this paper are still insufficient for investigating
application areas and there is a scarcity of algorithmic application research under harsh
conditions. Moreover, the algorithm proposed in this article is not applicable in situations
where wind speed is extremely low. In further study, we will optimize the algorithm’s
performance in extreme situations and broaden the application environment for the GLCM
in sea surface wind direction inversion.
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Appendix A

Theorem A1. The dominant trend angle ϕ∗ for a given image L f is calculated using the FC-GLCM
algorithm. The dominance of its trend may be evaluated using parameters K measurement, and it is
unique.

Proof of Theorem A1. Assuming that parameter K is a parameter measuring the trend size
of pixels in image L f , the size of parameter K by the ratio of the number of trend pixels Ne
to the number of other pixels N0 (the set of all pixels in the image L f except trend pixels)
and its relationship follows the below formula:

K ∝
Ne

N0
(A1)

Other pixel sets are only uniquely defined by the trend pixel set when given the whole
set of current pixels.

The pixel point L f
(
ri, θj

)
in the image L f is uniquely defined by the coordinate pair(

ri, θj
)
, where i ≤ M, j ≤ N, M is the number of rows in the image L f , and N is the number

of columns in the image L f , where image is L f ∈ RM×N×3. The following definition
applies to the trend pixel set G:

G(ϕ, η) = {(r, θ)|Φ(ψ((r, θ) : a)|F (a)) > η} (A2)

where ψ((r, θ)) is the coordinate pair (r, θ) for the circle’s center, and the bottom semicircle
is uniquely defined for the search radius ρ. In the search region a, ψ((r, θ) : a) denotes
the pixel group determined by the distribution angle of the most advantageous related
pixels. F (a) is the area-limiting function, which restricts the coordinate pairs (r, θ) in the
search area a to the image’s boundaries to prevent out of bounds. Φ(ψ((r, θ) : a)|F (a)) is a
pixel ratio in the whole a determined by calculation ψ((r, θ)). η denotes the ratio threshold,
which is uniquely determined by the image L f and can be written using the formula:

η = µ± 2σ (A3)

where σ and µ denote function Φ, the standard deviation and mean value of all pixels in
the image L f after the procedure. �

The feature of the trend ϕ in image L f has been more distinctive when the set of trend
pixels G(ϕ, η) in the image L f contains more pixels, and the value of the parameter K
has been greater. The parameter K can be used to determine the dominant degree of the
trend when the image L f has a unique dominant angle ϕ∗. We have demonstrated that the
radar image processed with FC-GLCM have a distinct optimal solution ϕ∗ in Theorem A1.
Theorem A2 will give a detailed insight into the convergence behavior of the FC-GLCM.

Theorem A2. The FC-GLCM algorithm converges to any image L f , with the convergence rate
parameter ξ controlling the rate of convergence.

Proof of Theorem A2. For the k-th gray-level co-occurrence matrix operation angle se-
quence ϕk and its update iteration result sequence ϕk+1, the advantage trend angle ϕ∗

of the sequence ϕk is ϕk+1 = U
(

ϕ∗k , εk+1
)

according to the operation law of the update
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iteration mode. The relationship between the gray-level co-occurrence matrix operation
result and the corresponding angle sequence Z′(ϕ) satisfies the formula:

Z′
(

ϕ∗k+1
)
≤ Kεk+1Z′(ϕ∗k ) (A4)

In addition, when Kεk+1 ≤ 1, with Z′
(

ϕ∗k+1
)
> 0 is true for ∀k > 0, k ∈ Z, then ∃λ < 1

makes: ∣∣Z′(ϕ∗k+1
)
− Z′(ϕ∗k )

∣∣ < λZ′(ϕ∗k ) ≤ ξZ′(ϕ∗0) (A5)

where ϕ∗0 is the initial angle sequence, and ∃M ∈ Z means that Z′(ϕ∗0) ≤M is established.

For ∀k > 0, k ∈ Z, Kεk+1 ≤ 1 is formed, and λ < 1, ξ = λ
k

∏
ρ=1

Kερ < 1 is established.

Further, there is ∣∣Z′(ϕ∗k+1
)
− Z′(ϕ∗k )

∣∣ <M (A6)

Then, the sequence {Z′(ϕ)}must be convergent, and the convergence rate is controlled
by the convergence parameter ξ. �
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