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Abstract: Aimingat non-side-looking airborne radar, we propose a novel unsupervised affinity
propagation (AP) clustering radar detection algorithm to suppress clutter and detect targets. The
proposed method first uses selected power points as well as space-time adaptive processing (STAP)
weight vector, and designs matrix-transformation-based weighted input data, with which the first
unsupervised weighted AP clustering is proposed by means of their similarity matrix, responsibility
values and availability values. Then, new reconstructed weighted power inputs are designed, and
the second weighted AP clustering is proposed. Finally, with their cluster results, a detection-
discriminant criterion is designed for the judgment of target detection, and simultaneously, the clutter
is suppressed. Compared with the conventional and important STAP, ADC and JDL algorithms, and
several SO-based, GO-based and OS-based CFAR algorithms, the proposed unsupervised algorithm
achieves much higher probability of detection and provides distinctly superior target-detection
performance. With reasonable computation time, it can better conquer the range dependence in
characteristic of clutter and better process non-independent identically distributed (non-IID) samples
of non-side-looking radar. Sufficient simulations are performed, and they demonstrate that the
proposed unsupervised algorithm is preferable and advantageous.

Keywords: target detection; clutter suppression; affinity propagation clustering; airborne radar;
unsupervised clustering

1. Introduction

Airborne radar garners considerable attention on account of its flexibility and long
field of view, but it suffers from the core problem that the strong clutter and its broadened
spectrum drowns out weak targets [1–4]. To deal with clutter and detect targets, the lead-
ing technology known as space-time adaptive processing (STAP) [4–6] achieves this by
estimating the accurate covariance matrix of clutter and noise in applications, and suffi-
cient samples are also required to be independent identically distributed (IID). However,
by reason of radar configuration and signal environment, practical clutter characteristics
are usually non-uniform, which results in significant degradation of performance for tra-
ditional methods of suppressing the clutter and detecting the target. Particularly when
the antenna array of airborne radar is configured as non-side-looking, the samples directly
cause a failure in IID due to range dependence of clutter [7].

In the range-compensation methods, the common aim is to make the compensated
clutter spectra be consistent with each other [8–10]. For example, a Doppler warping (DW)
method [11,12] is proposed for a non-side-looking array by exploiting the radar navigation
parameters. It shifts the two-dimensional clutter spectrum into a one-dimensional spectrum,
with which the spectrum becomes coincident with that to be detected upon the direction of
Doppler. In addition, a well-known ADC algorithm that is angle Doppler compensation [13]
uses an inertial navigation parameter and linear transformation; then, the broadened
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clutter is improved. In addition to those methods, a high-order Doppler warping (HODW)
method [14] considers multiple spatial angle directions to compensate the adjacent range
cells. However, most of the existing range-compensation methods rely heavily on the given
and the estimated multiple parameters of the inertial navigation system, which indicates
that they tend to be non-adaptive methods.

For purpose of overcoming the non-IID condition of clutter characteristic in non-
side-looking radar, dimension- and rank-reduction methods usually reduce degrees of
freedom (DOF) and select partial samples [15–17]. The classical joint domain localized
(JDL) algorithm [18] brings in Fourier transformation with two dimensions and picks out
a rectangular local region for joint processing. It is worth stressing that the JDL method
processes the beamforming and the Doppler frequency simultaneously. Moreover, by con-
structing the auxiliary beam, the auxiliary cannel processing (ACP) method [19] lessens the
system’s DOF from NK to N + K− 1, where N is the number of array elements and K is
the number of transmitted pulses in a coherent processing interval. However, reduction of
the sample data and the system’s DOF directly leads to performance degradations when
suppressing the clutter and detecting the target in the above methods.

Aiming at target detection for airborne radar, a number of methods have been proposed,
including the commonly applied constant false alarm rate (CFAR) extended methods [20–28],
such as cell averaging CFAR (CA-CFAR) [22]; the smallest of CFAR method—that is, SO-
CFAR [23]; the greatest of CFAR, abbreviated as GO-CFAR [24]; and order statistic CFAR,
abbreviated as OS-CFAR [25]. It is worth mentioning that machine learning developments
have contributed some algorithms in signal processing of radar. However, most of the
machine learning-based target-detection methods [29,30] for airborne radar concentrate on
processing and optimization for synthetic aperture radar (SAR) image. Meanwhile, they
usually require a number of labeled data and cannot be directly applied to clutter sup-
pression and target detection for non-side-looking radar with non-IID samples—on which
there is also little related clustering literature—although the unsupervised clustering al-
gorithms [31] of machine learning do not require labeled data. For example, an affinity
propagation method [32] achieves unsupervised clustering while having no need for speci-
fying the number of clusters in advance, and it finds the final cluster centers from existing
data points rather than creating new data points. Moreover, it is insensitive to the initial
values of the data. However, when specially applied to radar receive data, the clustering
methods suffer challenges, including the design of appropriate input data points, relevant
clustering parameters and particular criteria for clutter suppression and target detection. A
few of other machine learning-based methods [33–36] for clutter suppression have been
proposed, but they mainly aim at suppressing the clutter by improving the estimation of
the clutter characteristics, rather than directly detecting the target by proposing target and
clutter classifiers.

To solve these problems mentioned above, an unsupervised affinity propagation
(AP) clustering based clutter-suppression and target-detection algorithm for non-side-
looking airborne radar is proposed. The work presented here exploits the advantages
of machine learning technologies to directly propose a machine learning-based target-
detection algorithm, which is suited to airborne non-side-looking radar whose samples are
non-IID, and it can detect the target and suppress the clutter simultaneously. Meanwhile, it
is an unsupervised algorithm that does not require any labeled data or assigned labels.

Directed at non-side-looking radar, this novel method first uses matrix transformation
based on the STAP weight vector and the selected power points including clutter plus
noise and signal, and designs weighted input data for target detection. Next, the first
unsupervised weighted AP clustering is proposed for the whole designed weighted input,
by means of their similarity matrix, responsibility values and availability values. Then,
the proposed method designs new reconstructed weighted power input, with which the
second weighted AP clustering is further proposed. Finally, with the cluster results of
the first and the second weighted AP clusterings, a target detection-discriminant criterion
is designed. The proposed unsupervised algorithm can effectively and advantageously
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detect the target, and simultaneously suppress clutter. Compared with conventional clutter-
suppression and target-detection methods, including the STAP, ADC, JDL and several
CFAR-based methods, the proposed unsupervised algorithm implements greatly superior
target detection and a distinctly higher probability of detection (PD). With reasonable
computation time, it better conquers the range dependence of the characteristics of the
clutter and better deals with the non-IID-sample circumstance of non-side-looking radar.

2. Signal Model

Consider that the array of airborne radar system is uniform and linear, and it is
equipped with N receiving array elements, whose element inner space is generally a half-
wavelength represented as d = λ/2. In a certain coherent processing interval, the number
of transmitted pulses is K, which is specific to a certain pulse repetition frequency. The
uniform speed of the moving airborne platform is denoted as va. Moreover, ϑ is used to
represent the non-side-looking angle. Therefore, we have [37–39]

at( f̄d,i) = [1, ej2π f̄d,i , . . . , ej2π(K−1) f̄d,i ] (1)

and
as( f̄s,i) = [1, ej2π f̄s,i , . . . , ej2π(N−1) f̄s,i ] (2)

where at( f̄d,i) and as( f̄s,i) stand for temporal and spatial steering vectors, respectively;
meanwhile, f̄d,i and f̄s,i are the normalized Doppler and spatial frequencies, respectively.
Then, corresponding to the ith block of clutter, we have

ast( f̄s,i, f̄d,i) = at( f̄d,i)⊗ as( f̄s,i) ∈ CNK×1 (3)

where ast( f̄s,i, f̄d,i) ∈ CNK×1 denotes the space-time steering vector with dimensions
NK× 1, and ⊗ is the Kronecker product. Based on this, we can express the stacked
echo data vector as follows [37]:

xcn,l =
Nc

∑
i=1

ξi,last( f̄s,i, f̄d,i) + nl (4)

where scalar l stands for the lth range cell attached to the total L training range cell samples,
and vector nl denotes noise with a zero mean. Additionally, Nc is the total number of clutter
blocks subject to a certain clutter cell; meanwhile, {ξ1,l , ξ2,l , . . . , ξNc ,l} are their respective
complex amplitudes. Then, making use of L training samples and by maximum likelihood
estimation, covariance matrix with regard to xcn,l is [40]

RX ≈ R̂X ≈
1

L− 1

L

∑
l=1,l 6=ls

xcn,lx
H
cn,l (5)

where R̂X is the covariance estimation matrix and (·)H is the conjugate transpose. It
excludes xcn,ls , which is the sample that may contain the target. Then, to suppress clutter for
further target detection, utilizing Lagrange multiplier technology, by solving the minimized
variance problem {min

w
wHRXw, s.t.wHast( fs0, fd0) = 1}, STAP calculates its weight vector

wopt, as follows [37]:

wopt =
R−1

X ast( fs0, fd0)

aH
st( fs0, fd0)R

−1
X ast( fs0, fd0)

(6)

where (·)−1 is an inverse operation. NK× 1-dimensional ast( fs0, fd0) corresponds to the
target, whose temporal frequency and spatial frequency are fd0 and fs0, respectively. Hence,
by adding the weight vector wopt to the received data xcn,l , further target detection perfor-
mance of STAP can be achieved by detection methods. Generally, target detection of radar
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is a binary hypothesis problem, which corresponds to hypotheses H0 and H1 on behalf of
nonexistence and existence of the target, respectively—that is [25–27],{

H0 : xl = xcn,l , |xl | ≤ η0
H1 : xl = xcn,l + xs,l , |xl | > η0

(7)

where xcn,l is composed of clutter plus noise, xs,l is the received target echo, and for STAP,
xl is replaced by wH

optxl . Moreover, η0 = Th × Zcn is the threshold value of detection, with
Th and Zcn being the threshold factor and the clutter-plus-noise power level. Specifically,
as one of the classical methods of target detection, the OS-CFAR detection method estimates
Zcn by firstly processing the order of the selected R reference cell samples from small to
large x1 ≤ x2 ≤ . . . ≤ xR, and then the RKth ordered sample xRK becomes the judgment
threshold for total clutter-plus-noise power. This can be written as [23]

Zcn = αxRK (8)

where α is the scale factor, whose value is related to the false-alarm probability. Unfortu-
nately, target detection is degraded seriously when the estimated power Zcn is inaccurate.
The most significant reason is the non-IID training sample circumstance in non-side-looking
radar. In this case, clutter distribution changes along with the range, and the clutter statis-
tics for different range cells are not identical. Traditional dimension and rank reduction
methods solve this problem at the expense of a reduction in the system’s degree of freedom,
and the clutter suppression STAP method suffers degradation on account of inaccurate
estimation of RX. In addition, traditional range-compensation methods for this problem
usually rely heavily on the multiple parameters of the inertial navigation system, and they
are non-adaptive methods.

3. The Proposed Algorithm

The proposed method designs an unsupervised, weighted AP clustering algorithm
for detecting targets in clutter, relying on clustering different clutter and target data twice,
which are exploited to further the detection discriminant criterion based on AP clustering.
Specifically, the power points including clutter, noise and signal, are brought in first,
as follows:

PS
ow(l, m) =

1
aHst( f̄ l

s , f̄ m
d )RS

Xast( f̄ l
s , f̄ m

d )
(9)

where PS
ow(l, m) stands for the (l, m)th element of the matrix PS

ow ∈ CL×M composed
of the power points, and different from RX for clutter plus noise, RS

X is derived from
all samples that may contain detected targets. Furthermore, f̄ m

d in ast( f̄ l
s , f̄ m

d ), derived
from Equation (3), denotes the normalized Doppler frequency corresponding to the mth
point in the interested temporal domain, whose total number of the assigned points is M.
Meanwhile, f̄ l

s represents the lth normalized spatial frequency of the power points in the
spatial distribution. In the matrix PS

ow ∈ CL×M, L can be set as the number introduced after
Equation (4) for more easily comprehending the further design of weighted operation. Then,
the weights used to construct the weighted data as the input of the designed clustering for
clutter plus noise and target are proposed as

Ecns(l) =
(vmax −vmin)(wH

optxcn,l −min{wH
optXcns})

max{wH
optXcns} −min{wH

optXcns}
+ vmin (10)

for l = 1, 2, . . . , L, and wopt can be obtained from Equation (6). Moreover, max{·} stands for
taking the maximum, whereas min{·} stands for taking the minimum. For Equation (10),
vmax and vmin are the desired maximum and minimum after the normalization. With Ecns,
the weight matrix Êcns in the proposed method is organized as

Êcns = [Ecns(1), Ecns(2), . . . , Ecns(L); . . . ; Ecns(1), Ecns(2), . . . , Ecns(L)] ∈ CM×L (11)
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where L has been defined after Equation (4). Hence, the final weighted data for the proposed
detection clustering are designed as follows:

F̂w(m, l) =
[10 log10(

|PS
ow |

Dmax
)]H(m, l)

[Êcns(m, l)]η
(12)

with which the final weighted input matrix is

˜̂Fw =
|F̂w|

max{|F̂w|}
(13)

where in Equations (12) and (13), | · | denotes the absolute value matrix for each of its
elements, and Dmax = max{|PS

ow|}. In addition, [·](m, l) and [·]η are the (m, l)th element
and the ηth power of [·], respectively, and 10 log10(·) is the logarithmic function. The setting
of η, vmax, and vmin adjust the effect of the weights Êcns(m, l) on the constructed weighted
input data for the detection clustering.

The proposed weighted AP clustering algorithm for radar clutter suppression and
target detection performs the clustering twice and then designs the detection-discriminant
criterion, by which the consequence of clutter is eliminated and the target can be detected.
The first AP clustering is based on the whole designed weighted input data ˜̂Fw, and affinity
propagation is clustered on the similarity matrix of these data points. The AP clustering
treats all of the inputs as possible cluster centers, which are called exemplars. Since the goal
of clustering is to minimize distance, the Euclidean distance can be chosen as the metrics of
similarity—that is, the similarity of any two points is written as

s(i, j) = −d2
E[

˜̂Fw(i, :), ˜̂Fw(j, :)]

= −
L

∑
l=1

[ ˜̂Fw(i, l)− ˜̂Fw(j, l)]2, i 6= j
(14)

where ˜̂Fw(i, :) represents a certain row and {i, j} = 1, 2, . . . , M. The similarity s(i, j) can
form a similarity matrix S ∈ CM×M. When i = j, s(i, j) is defined as

s(i, j) = Pi, i = j (15)

where Pi is known as the preference, whose value and the maximum iteration number T
can be assigned. The proposed unsupervised algorithm sets the ith preference element
Pi as

Pi = pre ·mean{S̃}, i = 1, 2, . . . , M (16)

where pre is the adjustment parameter for the preference and mean{·} stands for the mean
of all the elements in {·}. Furthermore, the detailed representation of S̃ is

S̃ =


s(1, 2) s(1, 3) s(1, 4) · · · s(1, M)
s(2, 1) s(2, 3) s(2, 4) · · · s(2, M)
s(3, 1) s(3, 2) s(3, 4) · · · s(3, M)

...
...

...
. . .

...
s(M, 1) s(M, 2) s(M, 3) · · · s(M, M− 1)

 ∈ CM×(M−1) (17)

Next, based on s(i, j), to achieve the clustering of the clutter plus noise and signal, it is
important to calculate the responsibility value h̄(i, j) and the availability value β(i, j) for the
data points ˜̂Fw. They represent different categories of data information. More specifically,
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with respect to point i, h̄(i, j) stands for the degree of suitability of point j serving as its
exemplar, and h̄(i, j) is expressed in detail as [32]

h̄(i, j) = s(i, j)−max
h 6=j
{s(i, h) + β(i, h)}, h = 1, 2, . . . , M (18)

where the initial value of β(i, h) is zero. Particularly, we directly have

h̄(j, j) = pre ·mean{S̃} −max
h 6=j
{s(j, h) + β(j, h)} (19)

for i = j. On the other hand, for the availability β(i, j), as the other evaluation information
between different points, it stands for the degree of suitability that point i picks j as the
exemplar, and it is calculated from

β(i, j) = min{0, h̄(j, j) + ∑
p 6=i,p 6=j

max{0, h̄(p, j)}}, i 6= j, p = 1, 2, . . . , M (20)

and otherwise
β(i, j) = β(j, j) = ∑

p 6=j
max{0, h̄(p, j)}, i = j (21)

where 1 ≤ p ≤ M. The iterative processing of AP clustering is alternately updating h̄(i, j)
and β(i, j). To avoid oscillations, a damping factor λ ∈ [0.5, 1) is introduced, and the
stability of the iterative process can be guaranteed. With the damping factor, the updating
of h̄(i, j) for i 6= j is expressed as

h̄(t)(i, j) = λh̄(t−1)(i, j) + (1− λ)[s(i, j)−max
h 6=j
{s(i, h) + β(t)(i, h)}] (22)

where t ≤ T, and the updating of β(i, j) for i 6= j is

β(t)(i, j) = λβ(t−1)(i, j) + (1− λ)[min{0, h̄(t)(j, j) + ∑
p 6=i,j

max{0, h̄(t)(p, j)}}] (23)

where above h̄(t)(i, j) and β(t)(i, j) are the updated h̄(i, j) and β(i, j) for the tth iteration
containing the damping factor. Meanwhile, the special circumstance for i = j should be
separately calculated as the following different results:

h̄(t)(j, j) = λh̄(t−1)(j, j) + (1− λ)[pre ·mean{S̃} −max
h 6=j
{s(j, h) + β(t)(j, h)}] (24)

where the adjustment parameter pre will be designed especially by the proposed unsuper-
vised algorithm. In addition, another result for i = j is

β(t)(j, j) = λβ(t−1)(j, j) + (1− λ)[∑
p 6=j

max{0, h̄(t)(p, j)}] (25)

Hence, AP clustering determines the exemplar by combining the reliability h̄(i, j) and
the validity β(i, j). That is, when a certain point j makes h̄(i, j) + β(i, j) reach the maximum
value, we have

Ij = arg
j

max{h̄(t)(i, j) + β(t)(i, j)}, ∀i (26)

together with
Q1 = num{I1, I2, . . . , IQ1} (27)
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where Ij is regarded as cluster center of the ith point; in addition, arg max{·} finds the argu-
ment for maximization and num{·} counts the total number of elements. With the defining
of Q1, the adjustment parameter pre is specially pointed out, because its design satisfies

| arg
pre

{Q1 = 2}| < pre ≤ | arg
pre

{Q1 = 1}| (28)

where pre is a positive value. Larger preference Pi contributes to more final cluster cen-
ters [32]; meanwhile, the negative preference Pi is obtained from the negative matrix S̃
and the positive pre. Therefore, a larger preference Pi is obtained from a smaller pre, which
means that the pre for Q1 = 2 is smaller than the pre for Q1 = 1.

Finally, if the iteration totality becomes more than the assigned T or cluster centers
do not change in several iterations, the first clustering in the proposed unsupervised
algorithm can be deemed as finished by taking down the total cluster number Q1 and
their corresponding cluster centers [I1, I2, . . . , IQ1 ]. With regard to the final clusters, their
total number Q1 for the proposed first clustering is controlled as Q1 = 1 by adjusting the
designed preference adjustment parameter pre in advance.

The proposed method further designs the second clustering by constructing new
data input that contains the clutter plus noise. Therefore, the differences between the first
clustering and the second clustering are fully utilized to distinguish if there is a target in
the non-IID clutter. More specifically, reconstruct the data input for the proposed weighted
AP clustering as follows:

Ỹw =



˜̂Fw(1, 1) ˜̂Fw(1, 2) · · · ˜̂Fw(1, M
2 − lse1)

˜̂Fw(2, 1) ˜̂Fw(2, 2) · · · ˜̂Fw(2, M
2 − lse1)

...
...

. . .
...

˜̂Fw(
M
2 − lse1, 1) ˜̂Fw(

M
2 − lse1, 2) · · · ˜̂Fw(

M
2 − lse1, M

2 − lse1)
˜̂Fw(

M
2 + lse2, M

2 + lse2)
˜̂Fw(

M
2 + lse2, M

2 + lse2 + 1) · · · ˜̂Fw(
M
2 + lse2, M)

˜̂Fw(
M
2 + lse2 + 1, M

2 + lse2)
˜̂Fw(

M
2 + lse2 + 1, M

2 + lse2 + 1) · · · ˜̂Fw(
M
2 + lse2 + 1, M)

...
...

. . .
...

˜̂Fw(M, M
2 + lse2)

˜̂Fw(M, M
2 + lse2 + 1) · · · ˜̂Fw(M, M)


(29)

where lse1 and lse2 = lse1 + 1 are the size parameters, which determine the reconstructed
data that remove a number of points, including the removed central entries around
˜̂Fw(M/2, M/2). Furthermore, we express the detailed dimension of the designed Ỹw
as follows:

Ỹw ∈ C[M+1−(lse1+lse2)]×( M
2 −lse1) (30)

Taking advantage of the designed Ỹw, the proposed method performs the second
clustering expressed as

{IY
j }j=1,2,...,Q2 = arg

j
max{γij(Ỹw, PY) + αij(Ỹw, PY)} (31)

where γij(Ỹw, PY) and αij(Ỹw, PY) represent the obtained h̄(i, j) and β(i, j) with the cluster
processing elaborated from Equation (14) to Equation (25) under new input Ỹw and new
preference PY. By exploiting the updated preference, Q2 is the number of the final stable
clusters with the corresponding centers [IY

1 , IY
2 , . . . , IY

Q2
]. Furthermore, PY is the preference

matrix for the proposed second clustering, and its element PY
i is put forward as

PY
i = pY

re · Pi

= pY
re · pre ·mean{S}, i = 1, 2, . . . , M + 1− (lse1 + lse2)

(32)
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where Pi, pre and S̃ are defined in Equations (16) and (17), and pY
re is another adjustment

parameter of the preference for the second clustering. Once obtained, Q1, Q2, [I1, I2, . . . , IQ1 ]
and [IY

1 , IY
2 , . . . , IY

Q2
] are all used by the proposed method. By exploring and distinguishing

their differences, we further design a detection-discriminant criterion for radar detection,
as follows:

H1 : xl = xcn,l + xs,l , when Q1 = Q2 = 1, ud1 ≤ IY
1 ≤ ud2, ud3 ≤ I1 ≤ ud4

H1 : xl = xcn,l + xs,l , when Q1 = Q2 = 1, IY
1 = ud5, ud3 ≤ I1 ≤ ud4

H1 : xl = xcn,l + xs,l , when Q1 = 1, Q2 = 2, |xl | > η0
H0 : xl = xcn,l , otherwise

(33)

where hypotheses H1 and H0 are, respectively, on behalf of target-existence and target-
nonexistence. Moreover, ud1 to ud5 are the parameters used to define the judgment interval
for target detection, and η0 is the detection threshold of OS-CFAR. They indicate that
when both of the numbers of the cluster centers for the first and the second clusterings are
Q1 = Q2 = 1 and the two centers are located in their own judgment intervals, and when
Q1 = 1 and Q2 = 2 with |xl | > η0, the proposed method determines the target’s pres-
ence. Otherwise, the proposed method determines that there is only clutter and noise
in the detected range cell. The conclusion of the processing procedure for the proposed
unsupervised detection algorithm can be found in Table 1.

Table 1. The processing procedure of the proposed unsupervised algorithm.

1. After the matched filtering, the stacked vector with K pulses composes the received radar
data as seen in Equation (4).

2. On the basis of the power characteristics of clutter plus noise and signal, matrix transforma-
tion based weighted input data matrix ˜̂Fw is proposed.

(a) The power data points are selected as Equation (9), and the STAP weight vector is
calculated from Equation (6);

(b) A series of matrix transformations, are proposed as Equations (10)–(13).

3. Exploiting the designed ˜̂Fw, the proposed method performs the first unsupervised weighted
AP clustering by means of similarity s(i, j), responsibility h̄(i, j) and availability β(i, j) for
1 ≤ i, j ≤ M.

(a) The similarity of any two points is obtained from Equations (14) and (15);
(b) The preference for the clustering is designed as Equation (16);
(c) The responsibility and availability are updated by Equations (18)–(25), until the

number of the final clusters Q1 and the corresponding cluster centers [I1, I2, . . . , IQ1 ]
are obtained.

4. New reconstructed weighted power inputs Ỹw are proposed as Equation (29).
5. The proposed method further designs the second unsupervised weighted AP clustering

denoted as Equation (31), with the new designed preference in Equation (32). Therefore,
the number of the final clusters Q2 and the corresponding cluster centers [IY

1 , IY
2 , . . . , IY

Q2
]

are obtained.
6. With their cluster results, a detection-discriminant criterion is designed for the judgement of

target detection as Equation (33).

4. Simulation Results

The proposed unsupervised AP algorithm for radar detection in clutter is preferable
and advantageous, as verified in the following simulations. Except for the corresponding
settings specifically pointed out in some simulations, the system and parameter settings
for radar are as follows. For airborne radar, its height is H = 6000 m, its number of array
elements is N = 10 and the inner distance is d = 0.3 m. Additionally, the pulse number
defined before Equation (1) is K = 10, and the wavelength is λ = 0.15 m.

In addition, for the proposed method, the parameter settings are pre = 16.68, pY
re = 1.05,

lse1 = 5, lse2 = 6, ud1 = 8, ud2 = 10, ud3 = 11, ud4 = 30 and ud5 = 42, respectively, where
pre and pY

re are the preferences for the first and second clusterings of the proposed method.
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In addition, lse1 = 5 and lse2 = 6 are used for reconstructing the new data of the the
second clustering with M = 60. Meanwhile, ud1 to ud5 are the corresponding settings of the
judgment interval in the detection-discriminant criterion for target detection. Furthermore,
in the following descriptions, SNR is used to represent signal-to-noise ratio, and CNR is
used to stand for clutter-to-noise ratio, with the clutter distribution being the complex
Gaussian. The varied parameters required by performance comparisons will be pointed out
in detail in the following. The results of the simulation curves are obtained from 400 Monte
Carlo experiments.

4.1. Results of the Probability of Detection

Figure 1 shows the performance of radar detection in clutter as a function of SNR.
Radar is forward-looking, and its ϑ = −90◦ is known as the non-side-looking angle
described before Equation (1). Moreover, the target azimuth velocity is vc = 138 m/s,
and the airborne radar velocity is va = 90 m/s. The collected samples from different cells
are L = 60 in total, and it is assumed that the target is located at the (L/4)th range cell;
meanwhile, CNR = 35 dB. The abbreviated PFA is used to express the probability of false
alarms, which is set to be PFA = 5× 10−3 for all the algorithms, including the proposed
method. Specifically, we evaluate the STAP method [5], ADC method [13], JDL method [18],
SO-CFAR method [23], GO-CFAR method [24] and OS-CFAR method [25]. The classical CA-
CFAR method [22] is utilized for the target detection of the clutter suppression and range-
compensation methods STAP, ADC and JDL. This simulation verifies that this proposed
unsupervised method successfully suppresses the clutter in forward-looking radar. It
overcomes the non-IID sample condition and the range dependence of clutter. It provides
obviously better target detection performance than the other methods.
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Figure 1. Comparison of detection probabilities with various SNRs.

Figure 2 shows the radar-detection probabilities at various SNRs for different methods,
under different conditions from Figure 1. We distinguish Figure 2 from Figure 1 by the fact
that for Figure 2, the airborne radar velocity is va = 91 m/s, the target azimuth velocity is
vc = 137 m/s, CNR = 30 dB and the false alarm is PFA = 0.001. The other circumstances
are the same with those of Figure 1. In these conditions, OS-CFAR obtains slightly better
detection than the other methods except for the proposed method. When the SNR is higher
than about 12 dB, all of the detection algorithms can successfully realize the accurate
detection of the moving target. Nevertheless, when the SNR is lower than about 10 dB,
the proposed method achieves the highest probability of detection.
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Figure 2. Comparison of detection probabilities with various SNRs.

For further comparisons, a non-side-looking array with ϑ = −75◦ is used to show
the detection with various SNRs in Figure 3. Furthermore, different va = 100 m/s,
vc = 130 m/s and CNR = 40 dB are used. PFA = 5× 10−4 for all of the analyzed methods.
In these simulation situations, the JDL method provides the lowest detection probability.
With about −5 dB ≤ SNR ≤ 20 dB, the detection outcomes of STAP, ADC, SO-CFAR,
GO-CFAR and OS-CFAR methods are good. However, when SNR is located at SNR = −20
to SNR = −5 dB, the proposed method performs the best.
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Figure 3. Relationship between PD and SNR.

To evaluate the influences of different situations, Figure 4 verifies the corresponding
detection performance with various SNRs for the methods with a non-side-looking array
whose ϑ = −25◦; meanwhile, va = 80 m/s, vc = 130 m/s and CNR = 50 dB. For the
proposed unsupervised algorithm, parameters are specified as ud1 = 35, ud2 = 36, ud3 = 9,
ud4 = 28 and ud5 = 1. The other conditions for the radar system and for the parameters are
kept the same as those for Figure 1. From these results, we can analyze that the proposed
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unsupervised algorithm still maintains a distinct advantages in target detection over the
other methods when SNR is below about SNR = −1 dB.
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Figure 4. Relationship between PD and SNR.

To visually show the target detected by different methods in Figure 4, space-time
spectrum distributions without a target and with a target with respect to Figure 4 can be
found in the upper subfigures of Figure 5. Additionally, the clutter and target distributions
of the spectra corresponding to Figure 1 are also representatively depicted in the lower
subfigures of Figure 5. Their respective SNRs are SNR = 20 dB and SNR = 30 dB. From the
power spectra, we can analyze that broadened clutter ridges and targets make it difficult to
achieve the target detection, especially in the low SNR region. However, in these conditions,
the proposed unsupervised algorithm is effective. It performs well and is preferable to the
other analyzed methods.
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Figure 5. Space-time spectrum distributions of clutter without a target (left column) and with the
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Figure 6 shows the comparison of different methods for the probability of detection
with the variation in the probability of false alarm. The simulation conditions remain the
same as those in Figure 1, except for the fixed SNR = −10 dB. The judgment intervals in
the detection-discriminant criterion of the proposed method for radar detection are used to
adjust the PFA. Specifically, the settings are {ud2 = 8 and ud3 = 12} for PFA = 1.9× 10−3

and {ud2 = 8} for PFA = 3.1× 10−3 and {ud2 = 10} for PFA = 5× 10−3 and {ud1 = 7}
for PFA = 8.8× 10−3 and {ud1 = 6} for PFA = 1.02× 10−2 and {ud1 = 6, ud5 = 40 ∼ 45}
for PFA = 1.12× 10−2 and {ud1 = 1, ud5 = 50} for PFA = 1.9× 10−2. For {udi}i=1,2,3,4,5
corresponding to each PFA, the other parameter settings that are not pointed out in particu-
lar stay the same as the parameters in Figure 1. With the same probabilities of false alarm
mentioned above, the corresponding detection probabilities of the STAP, ADC, JDL, SO-
CFAR, GO-CFAR and OS-CFAR methods are also evaluated. Figure 1 shows that increasing
the PFA contributes to raising the detection probability for all of the methods. Moreover,
the proposed method provides clear advantages over the other analyzed methods under
different PFA conditions.
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Figure 6. Probability of detection versus probability of false alarm for different methods.

4.2. Influences of Sample Condition and Radar System Configuration

For evaluating different numbers of samples, Figure 7 reflects the comparison of
detection probabilities with sample number variation at SNR = −10 dB, and the other
conditions coincide with Figure 1. The number varies from L = 48 to L = 96. It indicates
that the range compensation method ADC for non-side-looking radar provides a higher
probability of detection than STAP, JDL, SO-CFAR, GO-CFAR, and OS-CFAR methods.
Furthermore, compared with those methods, JDL is superior in this situation. As the
number grows gradually, the probability of detection rises to stability for the proposed
method, which possess an apparent advantage over the others when the samples are
more than about L = 54. This is because the more exact power spectrum of clutter-plus-
signal used to be the input for the proposed weighted clustering algorithm, contributes
to more accurate numbers and centers of the clusters for the judgment of the designed
detection-discriminant criterion.
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Figure 7. PD with variation in the number of training samples.

The adaptation level of the proposed unsupervised algorithm for different ϑ of non-
side-looking arrays is verified in Figure 8, where the non-side-looking angle described
before Equation (1) is defined as ϑ = (−90 + ∆θp)◦, and ∆θp changes from ∆θp = 0◦ to
∆θp = 15◦. In addition, SNR = −10 dB, PFA = 5× 10−4 and the others are the same as
those of Figure 1. For the proposed clustering algorithm, the changes of the radar system
configurations cause different input data. Therefore, based on the original parameter
settings, the parameters are adjusted to ud1 = 8− ∆u, ud2 = 10− ∆u, ud3 = 11− ∆u,
ud4 = 30− ∆u and ud5 = 42− ∆u, where ∆u = ceil{(∆θp + 1)/5} − 1, with ceil{·} being
an integer that is not less than {·}. From Figure 8, we can analyze that with the variations in
ϑ, there are fluctuations in detection performance. For further improvement of the detection
of the proposed method, more precise parameter settings can be introduced. However,
on the whole, in Figure 8, the proposed unsupervised algorithm still performs far better
than the others.
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Figure 8. Probability of detection versus non-side-looking angle for different methods.
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4.3. Influences of Parameters and Designed Hypotheses

Figure 9 evaluates the effects of the parameter settings of clustering preference pY
re

on detection probability for the proposed unsupervised algorithm, where preference is
defined as pY

re = 1.05 + ∆Preference with ∆Preference varying from ∆Preference = −0.3 to
∆Preference = 0.3. The influences on different radar system configurations and moving
target environments are considered. The differences in vc, va, SNR, N and K for all the
curves are indicated in Figure 9. It can be seen from Figure 9 that generally, as an empirical
parameter, an appropriate setting of the preference can contribute to the desired perfor-
mance of target detection. Furthermore, the setting of the clustering preference affects
the probability of detection slightly, and the current settings in the proposed method are
effective for all of the analyzed configurations and environments.
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Figure 9. Probability of detection versus different clustering preferences.

As the designed detection-discriminant criterion in the proposed method con-
tains several hypotheses, including ud1 to ud5 and η0 defined in Equation (33), their
different contributions for accurate target detection are demonstrated. In this figure,
{H1 : xl = xcn,l + xs,l , when Q1 = Q2 = 1, ud1 ≤ IY

1 ≤ ud2, ud3 ≤ I1 ≤ ud4},
{H1 : xl = xcn,l + xs,l , when Q1 = Q2 = 1, IY

1 = ud5, ud3 ≤ I1 ≤ ud4} and {H1 :
xl = xcn,l + xs,l , when Q1 = 1, Q2 = 2, |xl | > η0} are briefly represented by the hypothe-

ses H(1)
1 , H(2)

1 and H(3)
1 , respectively. Figure 10 reflects that the difference between the

numbers Q1 and Q2 of the final formed clusters, that is, the designed H(1)
1 , contributes the

most to accurate target detection. Especially at high SNR and SCR, this determines the
vast majority of accurate detections. By contrast, a small percentage about one in eight of
detections is provided from the hypothesis H(3)

1 . The one supplementary point ud5 provides
the least detections, and it can be flexibly adjusted with demand in different situations.
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4.4. Computation Time of Different Methods

Figure 11 demonstrates the computation time versus different numbers L of training
samples, and the conditions coincide with those in Figure 1. Various algorithms are in-
cluded. The figure indicates that the computation time of JDL method, SO-CFAR method,
GO-CFAR method and OS-CFAR method is relatively low. In contrast, the STAP method,
the range compensation ADC method and the proposed method spend more time. The pro-
cesses of ADC and the proposed unsupervised algorithm spend spend similar time when L
is about L = 120. With reasonable computation time, the proposed algorithm can achieve
preferable performance in moving target detection.
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Figure 11. Relationship between computation time and number of samples.

Using various values of N and K, Figure 12 reflects the relationship between processing
time and numbers of array elements and pules. Different methods are shown, and the
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conditions of Figure 1 are used with SNR =−10 dB. As N and K decrease, all the methods
take less time. The processing of the proposed unsupervised algorithm requires less time
than that of ADC when N and K are greater than about N = K = 12, and its computation
time is slightly greater than that of STAP. The computational complexity of the proposed
method is about O{(NK)3 + N2L + M3 + [M + 1− (lse1 + lse2)]

3}, and the matrix sizes of
the original received data and the designed clustering input data are the main factors that
affect the computational complexity. As ADC makes pointed processing for the non-IID
circumstance of the range dependence, and for this the proposed method proposes the
unique design of distinguishing the two clustering processes, it is reasonable for them
to have higher computational costs than STAP without compensation. The proposed
unsupervised algorithm is obviously advantageous for its performance.
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Figure 12. Computation time versus numbers of array elements and pules (N and K).

4.5. Visualization of the Formed Clusters

The clustering results are visually shown using the next simulation with visual data
points. For directly representing different points, as a principal characteristic, the normal-
ized mean value of the designed weighted input with respect to each range cell is brought
in. The cluster centers are specially marked; meanwhile, their central locations with dif-
ferent horizontal and vertical coordinates are also indicated. SNR = 0 dB, and the other
conditions coincide with Figure 2. Three circumstances of the designed second clustering
containing the clutter without a target, the designed second clustering containing the clutter
with a target, and the first clustering containing the clutter with a target, are considered for
cluster visual comparison.

Without the target, the second clustering usually tends to split the points into two
clusters, as seen in Figure 13, and the first clustering in this case provides one cluster, whose
center is located at IY

1 = (8, 0.16095). Figure 13 reflects that for the different circumstances
mentioned above, the proposed detection clusterings can be distinguished from each other
based on their numbers of final clusters, which are exploited for the designed detection-
discriminant criterion.
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Figure 13. Visualization of the formed clusters when Q2 = 2.

There are only a few circumstances in which the second clustering in clutter with-
out a target tends to produce one cluster, whose visualizations in various circumstances
are shown in Figure 14a,b, where SNR = 0 dB. For the better cluster visualizations,
Figures 13 and 14 show one characteristic on the vertical axis. In fact, the proposed un-
supervised algorithm fully excavates multiple potential characteristics used for target
detection in clutter.
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Figure 14. Visualizations of the formed clusters when Q2 = 1. (a) IY
1 = (45, 0.057827) in clutter

without a target. (b) IY
1 = (1, 0.68536) in clutter without a target.

In Figure 14a, the only center for the second clustering in clutter without a target
is IY

1 = (45, 0.057827), whereas in Figure 14b, the center of the final formed cluster is
IY
1 = (1, 0.68536). In spite of the one cluster center occurring in the proposed second

clustering under circumstance of target nonexistence, its center location is remote and and
even near the size boundary of the selected data points. Therefore, it is not within the
desired scope of locations proposed by the detection-discriminant criterion of Equation (33).
Then, the circumstance in Figure 14 is determined as the target-nonexistence situation,
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along with the circumstance in Figure 13. Figure 14 reflects that for different circumstances,
the proposed detection clusterings can be distinguished from each other based on their
cluster centers, which are all exploited for the proposed detection discriminate criterion.

5. Discussion

Discussion 1: For parameters ud1 to ud5 in the detection-discriminant criterion, gener-
ally, a small interval of 1 ≤ ud2 − ud1 ≤ 4 can be considered, and ud5 is regarded as the one
supplementary point that may be another location of the cluster center. In addition, for the
final weighted input matrix ˜̂Fw designed from Equation (9) to Equation (13), if the changes
of its dimension CM×L take place, ud1 to ud5 can be adjusted to desired target locations,
which are not near the size boundary of the designed data point inputs ˜̂Fw and Ỹw to be
clustered. It is worth mentioning that with the same M, when constructing the power point
matrix as the data input, unless major changes in the configurations happen, the empirical
parameters ud1 to ud5 may remain unchanged for different radar system configurations and
clutter-plus-noise environments, as demonstrated in the simulations.

Discussion 2: With regard to the numbers Q1 and Q2 of the final clusters and their
respective cluster centers [I1, I2, . . . , IQ2 ] and [IY

1 , IY
2 , . . . , IY

Q2
], their analyses are as follows.

In high proportions, there are two clusters with respective centers IY
1 and IY

2 for the second
clustering of clutter without a target, whereas there is only one for the second clustering
with a target. Although in a few cases, the second clustering without a target has one cluster
center, its center location IY

1 is remote and excluded from the proposed discriminate criterion
for a target’s existence. As a consequence, unlike other radar detections, the proposed
algorithm makes full use of clustering advantages, and its improved performance is well-
founded and verifiable.

Discussion 3: Additionally, with respect to pre and pY
re involved in the preferences,

to help to distinguish the differences between the two clustering processes for radar target
detection, the preference adjustment parameter pY

re for the designed second clustering
can be a real number that is close to one, instead of being equal to one. In addition,
by controlling the number of clusters, the aim of the first clustering is mainly finding
an appropriate adjustment parameter pre for the preference required by the proposed
clusterings, which are specifically designed for radar data with clutter and target.

6. Conclusions

For non-side-looking airborne radar, an unsupervised AP clustering target detection
algorithm is proposed, and simultaneously, it suppresses the clutter. The proposed unsu-
pervised algorithm performs the designed unsupervised weighted AP clustering twice,
with the corresponding constructed matrix-transformation based different weighted power
inputs. Then, a detection-discriminant criterion based on the cluster results is further
designed for the judgment of target detection, and simultaneously, the clutter is suppressed.
With reasonable processing time, the proposed unsupervised algorithm achieves obvi-
ously higher probabilities of detection than the STAP, ADC, JDL, SO-CFAR, GO-CFAR
and OS-CFAR algorithms. Moreover, it can better overcome the clutter-range dependence
and better deal with the non-IID sample circumstances of non-side-looking radar than
the others.
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