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Abstract: To achieve sustainable urban development, it is essential to gain insight into the spatial and
temporal differentiation characteristics and the driving mechanisms of the urban thermal environ-
ment (UTE). As urbanization continues to accelerate, human activity and landscape configuration
and composition interact to complicate the UTE. However, the differences in UTE-driven mecha-
nisms at different stages of urbanization remain unclear. In this study, the UTE of Shenyang was
measured quantitatively by using the land surface temperature (LST). The spatial and temporal
differentiation characteristics were chronologically studied using the standard deviation ellipse (SDE)
and hotspot analysis (Getis–Ord Gi*). Then, the relationship between human activities, landscape
composition and landscape configuration and LST was explored in a hierarchical manner by applying
the geographical detector. The results show that the UTE in Shenyang continues to deteriorate
with rapid urbanization, with significant spatial and temporal differentiation characteristics. The
class-level landscape configuration is more important than that at the landscape level when studying
UTE-driven mechanisms. At the class level, the increased area and abundance of cropland can
effectively reduce LST, while those of impervious surfaces can increase LST. At the landscape level,
LST is mainly influenced by landscape composition and human activities. Due to rapid urbanization,
the nonlinear relationship between most drivers and LST shifts to near-linear. In the later stage of
urbanization, more attention needs to be paid to the effect of the interaction of drivers on LST. At the
class level, the interaction between landscape configuration indices for impervious surfaces, cropland
and water significantly influenced LST. At the landscape level, the interactions among the normalized
difference building index (NDBI) and other selected factors are significant. The findings of this study
can contribute to the development of urban planning strategies to optimize the UTE for different
stages of urbanization.

Keywords: urban thermal environment; rapid urbanization; spatial and temporal differentiation;
driving mechanisms; geographical detector

1. Introduction

The physical environment associated with heat in urban areas is known as the ur-
ban thermal environment (UTE) and can affect human thermal comfort and physical
conditions [1,2]. During the rapid urbanization process, the changing urban form, popula-
tion migration and uncontrolled land exploitation cause alterations in the surface energy
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balance, which in turn leads to the continuous deterioration of the UTE [3,4]. Statistics
show that the human-induced global land surface temperature has increased by 1.07 ◦C
from 1850–1900 to 2010–2019 [5]. As a result, many ecological and social problems have
arisen, such as ecosystem destruction, increased energy consumption and threats to human
health [6–8]. The UTE should therefore be an important research object for sustainable
urban development [9].

Studies increasingly recognize that investigating the spatial and temporal characteris-
tics of the UTE and its driving mechanisms is a prerequisite for mitigating its deteriora-
tion [10,11]. Although station observations, model simulations and mobile measurements
are the main methods to obtain the local thermal environment, these methods hardly reflect
the spatial and temporal characteristics of the UTE on a macroscale [12]. Studying urban
scales, however, helps to understand the unique surface structure of a city [13]. Recently, the
popularity of satellite remote sensing has facilitated access to the acquisition of geospatial
information related to land cover, especially in large-scale and long-term monitoring [14].
It has become common to quantify the spatial and temporal characteristics of the UTE and
the mechanisms driving it using land surface temperature (LST) obtained from satellite
thermal infrared remote sensing [11].

LST is a complex defined by multiple factors [12,15], such as human activities and
landscape composition and configuration. Researchers often describe the biophysical
characteristics of the land using landscape composition [16]. Land covered by buildings
usually increases LST, while the opposite is true for land covered by vegetation and water
bodies [17]. Studies have demonstrated that the role of landscape composition in LST can
be quantified using the normalized difference building index (NDBI), fractional vegetation
cover (FVC) and modified normalized difference water index (MNDWI) [18,19].

Human beings tend to release large amounts of anthropogenic heat through intensive
and continuous activities on the ground, resulting in a rise in LST [20]. Population density
and nighttime light data are considered suitable for analyzing the contribution of human
activities to LST [21,22]. Moreover, the combination of landscape composition and human
activities can jointly facilitate the spatial arrangement of the entire landscape, i.e., landscape
configuration [23]. The efficiency of energy exchange and surface energy fluxes between
landscape patches can be influenced by their spatial configuration, which in turn leads to
differences in the distribution of LST [15].

Most studies have used landscape pattern indices to examine the role of the spatial
configuration of landscape patches, including area factors, shape factors, aggregation factors
and diversity factors [15,24]. It is important to note that the landscape pattern indices are
multidimensional and usually include landscape-level indices and class-level indices in
studies [25]. Landscape-level indices are applied to reflect the spatial configuration of
multi-class mosaics of landscape patches, but it is difficult to show the morphological
characteristics of each landscape patch [26].

Class-level indices can provide more detailed information on the spatial pattern of
each type of landscape patch than landscape-level indices [26]. The stratified nature of
ecological processes in the landscape may influence LST [15]. As a result, a growing number
of researchers have investigated the impact of landscape pattern indices that combine both
the landscape level and the class level on LST. For example, by studying the relationship
between the spatial configuration of heat source and heat sink landscapes and LST in
Zhengzhou over an 18-year period, Zhao et al. [27] found that both landscape-level and
class-level landscape pattern indices have a significant impact on LST and can inform urban
planning based on the results of the different levels. Furthermore, there is a consensus
among researchers that it is more important to optimize the landscape composition than
to optimize the landscape configuration at different levels when reducing LST [15,27].
However, the difference in the importance of landscape pattern indices at the landscape
level and class level in reducing LST has not received much attention. They represent
different spatial hierarchies of landscape configuration and may contribute differently
to LST [28]. By comparing the differences in the contributions of landscape-level and
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class-level landscape pattern indices to LST, it is possible to clarify whether the importance
of landscape configuration in reducing LST varies from level to level and thus to inform
the adjustment of urban planning strategies [28,29].

In fact, quantifying the contribution of drivers is challenging because their effects on
LST may be the result of a nonlinear interaction process [30]. For instance, by studying
the effect of urban landscape structure on LST, Zhou et al. [31] found interactions among
some landscape indices; i.e., changes in some landscape indices will indirectly enhance
or diminish the effects of other indices on LST. Hu et al. [32] highlighted the existence of
thresholds for the effects of the Normalized Difference Vegetation Index (NDVI) and NDBI
on LST through empirical studies. Common analytical methods for exploring the effects
of drivers mainly include correlation analysis and regression analysis [33–35]. However,
these methods are only applicable to explore linear relationships between variables, and
most of them have difficulty detecting interactions between independent variables, making
it difficult to capture the marginal effects of variables on LST. Meanwhile, the highly
complex variability and spatial heterogeneity of the UTE require deeper insight to accurately
characterize the relationship between LST and its drivers [30]. As a statistical method that
has emerged in recent years, a geographical detector can quantify the impacts of drivers
and their interactions on spatial heterogeneity [36]. The detector does not follow the
linearity assumptions of traditional statistical methods, and it can avoid the effects of
collinearity between variables [37]. This approach has become common in attribution
analysis in a number of fields, such as social sciences, environmental sciences and public
health [38–40]. Therefore, this study conducted a multi-level attribution analysis for LST
using the geographical detector.

In addition to the lack of quantification of the interactions and nonlinear effects of
drivers on LST, there are limitations in research on the driving mechanisms of LST at the
time scale. Much of the research on the driving mechanisms of LST focuses on a single stage
of urbanization [20,41] while ignoring the differences in the driving mechanisms of LST
across different urbanization stages. Driving mechanisms may show variable results across
different stages of urbanization, so the neglect of such variability may not support the
development of urban planning strategies to reduce LST in differentiated UTE contexts [42].

The rapid urbanization of major Chinese cities over the last twenty years has led to
the transformation of land cover, which in turn has resulted in the continuing deterioration
of the UTE [43]. As one of China’s fifteen sub-provincial cities, Shenyang’s urbanization
rate was over 20% higher than China’s average urbanization rate in 2020. Meanwhile,
Shenyang’s status as an important industrial base in China has allowed it to undergo a
phase of rapid urbanization and led to increased UTE deterioration [44]. Like many cities,
Shenyang has faced the threat of extreme weather conditions in recent years [45]. In the
summer of 2018, the highest temperature in Shenyang reached 38.4 ◦C, surpassing previous
statistically extreme values. Therefore, Shenyang can be used as a representative for the
study of UTE deterioration during rapid urbanization, and the findings can be a reference
for other cities with similar development backgrounds.

Based on the 2000, 2010 and 2020 LSTs of Shenyang, this study analyzed the spa-
tial and temporal differentiation characteristics and driving mechanisms of the UTE. The
main objectives of our study were (1) to detect the spatial and temporal differentiation
characteristics of LST and (2) to construct an analytical framework to quantify the relation-
ship between landscape composition, landscape configuration, human activities and LST
heterogeneity in a hierarchical manner and to reveal the changing characteristics of the
driving mechanisms at different stages of rapid urbanization. This study can enhance the
understanding of the mechanisms driving the UTE during rapid urbanization and provide
marginal contributions to the formulation of strategies for land use and urban planning.



Remote Sens. 2023, 15, 2075 4 of 24

2. Materials and Methods
2.1. Study Area

Shenyang is located at 41.20◦~43.04◦N and 122.42◦~123.81◦E, with a total area of about
12,860 square kilometers. Shenyang is the capital of Liaoning Province, China, and a typical
city in cold regions. The terrain of Shenyang inclines from northeast to southwest, forming
mountains, hills and alluvial plains. There are 27 rivers flowing through Shenyang, all
belonging to the two major water systems, the Liao River and the Hun River. The Köppen
climate classification classifies Shenyang as Dwa, i.e., cold and dry winters and hot and
rainy summers. As the central city of Northeast China, Shenyang has developed rapidly
in the last forty years. In 2020, the city had a resident population of 9.07 million and
an urbanization rate of 84.52%, having reached an advanced stage of urbanization. As
shown in Figure 1, the current study focuses on nine major municipal districts in Shenyang,
namely, Heping District, Shenhe District, Dandong District, Huanggu District, Tiexi District,
Sujiatun District, Hunnan District, Shenbei New District and Yuhong District, with a total
study area of about 3766.76 square kilometers.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 27 
 

 

2. Materials and Methods 
2.1. Study Area 

Shenyang is located at 41.20°~43.04°N and 122.42°~123.81°E, with a total area of about 
12,860 square kilometers. Shenyang is the capital of Liaoning Province, China, and a typ-
ical city in cold regions. The terrain of Shenyang inclines from northeast to southwest, 
forming mountains, hills and alluvial plains. There are 27 rivers flowing through Shen-
yang, all belonging to the two major water systems, the Liao River and the Hun River. The 
Köppen climate classification classifies Shenyang as Dwa, i.e., cold and dry winters and 
hot and rainy summers. As the central city of Northeast China, Shenyang has developed 
rapidly in the last forty years. In 2020, the city had a resident population of 9.07 million 
and an urbanization rate of 84.52%, having reached an advanced stage of urbanization. As 
shown in Figure 1, the current study focuses on nine major municipal districts in Shen-
yang, namely, Heping District, Shenhe District, Dandong District, Huanggu District, Tiexi 
District, Sujiatun District, Hunnan District, Shenbei New District and Yuhong District, 
with a total study area of about 3766.76 square kilometers. 

 
Figure 1. Study area. 

2.2. Data Sources and Preprocessing 
This study acquired Landsat 5 TM images with a strip number of 119 and a shape 

number of 31 for 31 July 2000 and 12 August 2010 and Landsat 8 OLI images with a strip 
number of 119 and a shape number of 31 for 22 July 2020 from the Geospatial Data Cloud 
(http://www.gscloud.cn/search, accessed on 14 April 2022). All images with no or few 

Figure 1. Study area.

2.2. Data Sources and Preprocessing

This study acquired Landsat 5 TM images with a strip number of 119 and a shape
number of 31 for 31 July 2000 and 12 August 2010 and Landsat 8 OLI images with a strip
number of 119 and a shape number of 31 for 22 July 2020 from the Geospatial Data Cloud
(http://www.gscloud.cn/search, accessed on 14 April 2022). All images with no or few
clouds (less than 5%) in Shenyang were obtained in the summer, because the vegetation
usually reaches its maximum growth in this season. The images were preprocessed using

http://www.gscloud.cn/search
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ENVI 5.3, with preprocessing including radiometric calibration, atmospheric correction
and image cutting, to facilitate the calculation of LST and landscape composition indices.

Land cover data were obtained from Globeland30 (http://globeland30.org/, accessed
on 14 April 2022). Compared to Globcover data with 300 m resolution and MODIS data
with 500 m resolution, Globeland30 has a finer scale and is considered suitable for studies
in developing countries [46]. Using Globeland30, the land cover categories in Shenyang
were extracted and classified into six types: cropland, forest, grassland, wetland, water and
impervious surface.

Worldpop (https://www.worldpop.org/, accessed on 14 April 2022) provided popu-
lation density data for the years 2000 to 2020 at a spatial resolution of 1 km. Nighttime light
data for 2000, 2010 and 2020 can be retrieved from the National Tibetan Plateau Data Center
(http://data.tpdc.ac.cn, accessed on 14 April 2022) with a spatial resolution of 1 km. This
dataset is the result of a nighttime light convolutional long short-term memory (NTLSTM)
network. By applying the network, the researchers produced the world’s first 1984–2020
Chinese prolonged artificial nighttime light dataset [47]. Model evaluation against the orig-
inal images showed a root-mean-square error (RMSE) of 0.73, a coefficient of determination
(R2) of 0.95 and a linear slope of 0.99 at the pixel level, indicating the high quality of data
for the generated product. The correlation between nighttime light data and socioeconomic
indicators such as the built-up area, GDP and population at different stages is better than
all existing products, validating the temporal consistency of this data product [47].

2.3. Methodology

Our research consisted of four main steps: (1) the radiative transfer equation-based
method (RTE) was used to obtain LSTs from 2000 to 2020; (2) spatial and temporal dif-
ferentiation characteristics based on the multi-year LST dataset were analyzed; (3) the
role of landscape configuration in LST for different land types in 2000, 2010 and 2020 was
quantified using the geographical detector; (4) at the landscape level, the role of landscape
composition, landscape configuration and human activities in LST in 2000, 2010 and 2020
was quantified using the geographical detector. The study flow chart is shown in Figure 2.
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2.3.1. Land Surface Temperature Inversion

Based on band 6 of Landsat 5 TM in 2000 and 2010 and band 10 of Landsat 8 OLI
in 2020, this study used the RTE for the inversion of LST. The RTE has been considered
to have high accuracy in previous studies and has been widely used for the inversion of
LST [48,49]. A simplified radiative transfer equation can express the brightness value of
thermal infrared radiation:

Lλ = [εB(Ts) + (1− ε)L↓]τ + L↑ (1)

where ε is the surface-specific emissivity, B(Ts) is the blackbody thermal radiation lu-
minance, τ is the atmospheric transmittance in the thermal infrared band, L↓ is the at-
mospheric downward radiance, and L↑ is the atmospheric upward radiance. Ts can be
obtained as a function of Planck’s equation:

Ts = K2/ ln(K1/B(Ts) + 1) (2)

For band 6 of Landsat 5 TM, K1 = 607.76 W/(m2∗µm∗sr) and K2 = 1260.56 K. For
band 10 of Landsat 8 OLI, K1 = 774.89 W/(m2∗µm∗sr) and K2 = 1321.08 K.

2.3.2. Acquisition of Independent Variables

As shown in Table 1, the findings of the researchers and the basic information about
the study area led to the selection of three types of independent variables to examine the
driving mechanism of the UTE.

Table 1. The selected independent variables.

Factor Type Variables Data Source

Landscape composition indices
NDBI

Landsat 5 (TM)/Landsat 8 (OLI/TIRS)FVC
MNDWI

Human activity indices
Population density https://www.worldpop.org/ (accessed on

14 April 2022)

Nighttime light http://data.tpdc.ac.cn (accessed on
14 April 2022)

Landscape configuration indices

Percent of Landscape

http://globeland30.org/ (accessed on
14 April 2022)

Density of Patches
Largest Patch Index

Edge Density
Area-Weighted Patch Fractal Dimension

Contagion
Shannon’s Diversity Index

Landscape composition indices mainly consist of biophysical components such as
vegetation, water and built-up land. Based on previous studies, we quantified the landscape
composition indices using FVC, NDBI and MNDWI.

The proportion of pixels containing the vertical projection of vegetation is called FVC.
Previous studies have mostly used it to quantify the ecological status of the research area.
Firstly, we obtained the NDVI using the following equation:

NDVI =
NIR− R
NIR + R

(3)

where NIR is the near-infrared band, and R is the red band.

https://www.worldpop.org/
http://data.tpdc.ac.cn
http://globeland30.org/
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Based on the results of NDVI, a dimidiate pixel model was used to obtain FVC,
and 5–95% was selected as the confidence interval for the NDVI value. The formula is
as follows:

FVC =
NDVI − NDVImax

NDVImin − NDVImax
(4)

where NDVImax is the NDVI value of the fully vegetated area, and NDVImin is the NDVI
value of the non-vegetated area.

The NDBI is widely used to extract the construction sites in areas of interest. The
calculation formula is as follows:

NDBI =
MIR− NIR
MIR + NIR

(5)

where MIR is the mid-infrared band, and NIR is the near-infrared band.
Compared to the NDWI, the MNDWI proposed by Xu [50] can effectively eliminate

construction noise and consequently provide more accurate information on water body
changes. The MNDWI is therefore often used to obtain water information from water
areas where the background is dominated by built-up land. The MNDWI is calculated
as follows:

MNDWI =
Green−MIR
Green + MIR

(6)

where Green is the green band.
Human activity indices were represented by preprocessed population density data

and nighttime light data. Landscape configuration indices were quantified through land-
scape pattern indices, which were calculated based on land use data. Based on previous
studies [16,38], seven landscape pattern indices were considered appropriate to quantify
the landscape configuration at the class level and landscape level (Table 2). Five class-level
indices were chosen to explore the landscape configuration of land cover; they represent
the area factor, shape factor and aggregation factor. Additionally, six landscape-level
indices were used to assess the structure and morphology of the entire landscape. In
addition to the area factor, shape factor and aggregation factor, a diversity factor was added
to the landscape-level indices. The landscape pattern indices were all calculated using
Fragstats 4.0.

Table 2. Detailed information on landscape metrics.

Category Landscape Pattern Indices Unit Class Landscape

Area factor
Percent of Landscape PLAND %

√

Largest Patch Index LPI %
√ √

Edge Density ED m/ha
√ √

Shape factor Area-Weighted Patch Fractal
Dimension FRAC_AM -

√ √

Aggregation factor Density of Patches PD count/100 ha
√ √

Contagion CONTAG %
√

Diversity factor Shannon’s Diversity Index SHDI -
√

2.3.3. Standard Deviation Ellipse

The SDE introduced by Lefever [51] was used to spatially quantify the distribution
characteristics of and spatio-temporal variation in the study object. The basic characteristics
of the SDE include the long axis, short axis, shape and range. The long and short axes
indicate the direction and extent of the spatial distribution of the study object, respectively.
The higher their ratio, the more concentrated and directional the study object is. Conversely,
the lower the ratio, the more discrete and less directional the study object is. In addition,
the gravity center can be used to assess the trend of a geographical object over time [52]. By
comparing changes in the gravity centers of the ellipses at different times, the development
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trend and trajectory changes in the study object can be estimated spatially. This study used
the SDE to determine the migration trajectory of the hotspot regions of LST.

2.3.4. Hotspot Analysis (Getis–Ord Gi*)

The hotspot analysis method proposed by Ord and Getis [53] is an effective method
for studying the spatial clustering characteristics of research objects. By calculating the
z-scores and p-values of elements, the method can effectively explore where the clustering
of high- or low-value elements occurs in space. Elements with high values and surrounded
by other elements having high values are usually statistically significant hotspots. We
performed the hotspot analysis of LST using the hotspot analysis tool of Arc GIS 10.4.1. The
results obtained with this tool can show the spatial clustering of cold and hotspots in LST.

2.3.5. Geographical Detector

As a statistical tool for measuring spatial heterogeneity, the geographical detector has
been widely used in recent years [37]. This tool can effectively measure the relationship
between variables and identify the explanatory variables that contribute primarily to the
spatial heterogeneity of the dependent variable, without assuming the linearity of the
association between them [36]. The geographical detector consists of four parts: a factor
detector, risk detector, ecological detector and interaction detector. In this study, the direct
effect of selected drivers on the spatial heterogeneity of LST was analyzed using the factor
detector. The results can be expressed as q-statistics:

q = 1−

L
∑

h=1
Nhσh

2

Nσ2 (7)

where L is the number of strata of explanatory variables (h = 1, 2, . . . , L), N is the number
of samples, and stratum h consists of Nh units. σ2 is the variance of the dependent variable,
and σh

2 represents the variance in the dependent variable in stratum h.
The value of q ranges within [0, 1]. The closer the value of q is to 1, the stronger the

explanatory power of the explanatory variable, and the closer it is to 0, the weaker the
explanatory power.

The risk detector was used to identify significant differences between the means of
the dependent variable and the explanatory variable in the two sub-regions, which in turn
determined the potential risk region of the dependent variable. The interaction detector
determined whether the explanatory power of two explanatory variables superimposed on
each other was enhanced, diminished or mutually independent.

Since the explanatory variables of the geographical detector need to be discretized, the
Jenks natural breaks classification method was used to classify the means of independent
variables into nine classes and incorporate them into 967 2 km × 2 km grids for calculation.
Major urban blocks in China are rectangles of approximately 800 m to 1200 m in length,
so grid cells of 1 km to 5 km are suitable for urban-scale studies [54]. In previous studies,
a grid scale of 2 km × 2 km has been considered the best scale for exploring the driving
mechanisms of LST [55]. Therefore, a 2 km × 2 km analysis unit was chosen to explore the
driving mechanism of LST in this study.

3. Results
3.1. Validation of LST Results

We validated the LST results for 2000, 2010 and 2020 using the MOD11A1 Version 6.1
product (MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN
Grid) obtained from LAADS DAAC (https://ladsweb.modaps.eosdis.nasa.gov/, accessed
on 24 March 2023). The product provides daily per-pixel LST and emissivity with a spatial
resolution of 1 km [56]. Previous studies have demonstrated that this product can be used
to validate LST results [57].

https://ladsweb.modaps.eosdis.nasa.gov/
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MOD11A1 1 km LST data on the same date as the selected Landsat remote-sensing
images for this study were extracted as validation data. Afterward, linear fits were made
using these data and inverse Shenyang LST data to verify the accuracy of LST in this study.
Figure 3 shows the results of linear fitting. The Pearson correlation coefficients were 0.825,
0.852 and 0.829, with a root-mean-square error (RMSE) of 1.173, 2.728 and 2.247 in 2000,
2010 and 2020, respectively. This indicates that the inverse LST and validation data in this
study are well correlated and suitable for use in subsequent studies.
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3.2. Spatial and Temporal Differences in LST

Figure 4 shows the spatial distribution of and temporal changes in LST in Shenyang
from 2000 to 2020. Over 20 years, the area of Shenyang’s high-temperature region continued
to expand. The average LSTs of Shenyang were 29.49 ◦C, 31.08 ◦C and 32.47 ◦C in 2000,
2010 and 2020, respectively, exhibiting an increasing trend, according to Table 3. The
temperature difference was growing in 2000, 2010 and 2020, with values of 32.99 ◦C,
41.40 ◦C and 45.55 ◦C. In addition, the standard deviation (SD) of the mean LST also
widened, with 3.37, 3.69 and 3.85 in the three periods, respectively. These results indicate
that LST in Shenyang tends to deteriorate, which is accompanied by a significant increase
in heterogeneity.
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Table 3. Maximum, minimum, temperature difference, mean and SD of LST from 2000 to 2020.

Years Maximum Minimum Temperature Difference Mean SD

2000 51.19 18.20 32.99 29.49 3.37
2010 58.26 16.86 41.40 31.08 3.69
2020 55.49 9.94 45.55 32.47 3.85

The results of the hotspot analysis (Getis–Ord Gi*) show the spatial clustering charac-
teristics of LST in 2000, 2010 and 2020 (see Figure 5). Overall, the central urban area always
contained hotspots, while the suburban area near water and vegetation contained most of
the cold spots. Over a period of 20 years, the clustering areas of hot and cold spots tended
to expand. In 2000, the regions described as hot and cold spots accounted for 12.67% and
9%, respectively; in 2010, they were 15.4% and 7.85%, respectively; and in 2020, they were
19.22% and 13.57%, respectively (see Figure 6). In addition, the hotspots formed by the
Hun River and its surrounding areas in the central urban area have gradually disappeared,
resulting in the gradual separation of hotspots in the central urban area along the Hun
River over a period of 20 years and the formation of two separate heat islands across the
north and south banks of the Hun River.
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Figure 7 shows the expansion patterns of the hotspot areas acquired using the SDE.
The gravity center of the ellipse was always in the center of Shenyang, near the border
of Tiexi and Heping Districts. From 2000 to 2010, the gravity center shifted 1123.44 m
to the southwest, while in the following decade, it shifted 496.43 m to the northwest.
The rotation angle of the ellipse can reflect the development direction of the hotspot
regions, as shown in Table 4. From 2000 to 2010, the rotation angle of the ellipse increased
clockwise from 32.38 degrees to 45.96 degrees. Then, from 2010 to 2020, the rotation angle
decreased counterclockwise from 45.96 degrees to 40.58 degrees. These rotations indicate
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that the direction of the hotspot was altered over the 20-year period and elongated in
the northeast–southwest direction. The ratio of the long axis to the short axis expresses
the spatial dispersion of the hotspot regions. From 2000 to 2020, the ratio first decreased
and then increased, showing the development trend of hotspot regions from dispersion
to concentration.
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Table 4. Parameters of SDE from 2000 to 2020.

Period Long Axis (m) Short Axis (m) Rotation Angle (◦) Long Axis/Short Axis

2000 14,470.69 9353.01 32.38 1.55
2010 13,487.69 9398.77 45.96 1.44
2020 16,063.52 10,266.19 40.58 1.56

LSTs for different land types also show significant variations (Table 5). Over the
20-year period, the mean values of LST increased significantly for all land use types. The
impervious surface was consistently the hottest land use type, with mean LST values of
33.69 ◦C, 35.75 ◦C and 36.80 ◦C in the three periods, respectively. The mean LST for forests
in 2000 was 28.06 ◦C, making it the coldest land use type. However, in 2010 and 2020,
it was replaced by water, with mean LSTs of 26.49 ◦C and 29.74 ◦C, respectively. This
confirms that natural surfaces covered by water and forests can effectively reduce the
ambient temperature.

Figure 8 shows the results of superimposed hotspot analysis and land use types.
Over 75% of the cold spot regions were concentrated in croplands near water bodies over
the 20-year period. In addition, more than 79% of the hotspot regions were covered by
impervious surfaces. It can be inferred that the construction land in the urban core of
Shenyang leads to the aggregation of hotspots of LST. Conversely, large areas of cropland
on the outskirts of the city lead to the clustering of cold spots.

Table 5. Mean and SD of LST for each land type from 2000 to 2020.

Year
Cropland Forest Grassland Wetland Water Impervious Surface

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

2000 28.12 1.94 28.06 1.32 28.73 1.86 29.66 3.14 28.79 2.91 33.69 3.56
2010 29.47 1.80 29.00 1.45 30.09 1.79 31.12 1.73 26.49 2.68 35.75 3.53
2020 30.73 2.55 30.25 1.71 31.86 2.32 30.78 1.33 29.74 2.42 36.80 3.15
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3.3. The Driving Mechanism of LST
3.3.1. Factor Detection Analysis

Since only one delineated grid contained wetland, it was difficult to quantify the
effect on the heterogeneity of LST. In the subsequent analysis, wetland was excluded. The
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analysis results of class-level factor detection are shown in Table 6. Over the 20 years, some
landscape configuration indices of cropland, water and impervious surface significantly
influenced the spatial differentiation of LST (p < 0.1). The explanatory power of PLAND and
LPI for the LST of impervious surfaces was consistently above 51%, while that for the LST
of cropland was consistently above 27%. This means that the area factor of cropland and
impervious surface is critical to LST heterogeneity. The explanatory power of FRAC_AM
for the LST of impervious surfaces was 18% in 2000 and 20% in 2010, respectively. However,
by 2020, it had dropped to 11% and was no longer significant. This may imply that the
shape factor of the impervious surface has a reduced driving force on LST. Moreover, in
2010, the explanatory power of LPI and FRAC_AM for the LST of water was 37% and 16%,
respectively, indicating that the area factor and shape factor of water may also affect LST.

Table 7 shows the results of factor detection at the landscape level. Under the premise
that significance was always satisfied, the average factor explanatory power at the land-
scape level was as follows: NDBI > FVC > nighttime light > population density > MNDWI
> FRAC_AM. Among all the landscape configuration indices, only FRAC_AM had an
explanatory power that was always greater than 10% and was always significant. In con-
trast, other factors had weaker explanatory power (less than 10% or not significant) for the
heterogeneity of LST. Overall, the landscape composition indices and the human activity
indices are more important for LST heterogeneity, with an average explanatory power
greater than 40%, while the landscape configuration indices are secondary drivers.

Table 6. Results of the class-level factor detector.

Classify CL FR GL WT IS

PD
2000 0.02 0.05 0.06 0.09 0.12
2010 0.03 0.07 0.12 0.06 0.11
2020 0.03 0.08 0.15 0.01 0.08

LPI
2000 0.27 *** 0.14 0.06 0.03 0.52 ***
2010 0.33 *** 0.10 0.02 0.37 * 0.59 ***
2020 0.32 *** 0.19 0.00 0.14 0.52 ***

ED
2000 0.02 0.12 0.06 0.06 0.05
2010 0.03 0.10 0.09 0.28 0.04
2020 0.02 0.16 0.10 0.07 0.05

FRAC_AM
2000 0.05 0.03 0.02 0.06 0.18 ***
2010 0.01 0.06 0.02 0.16 * 0.20 ***
2020 0.01 0.08 0.02 0.03 0.11

PLAND
2000 0.27 *** 0.15 0.07 0.05 0.51 ***
2010 0.34 *** 0.11 0.05 0.36 0.60 ***
2020 0.34 *** 0.19 0.04 0.12 0.53 ***

*** p < 0.01. * p < 0.1.

Table 7. Results of the landscape-level factor detector.

Classify 2000 2010 2020 Mean

Landscape composition indices
NDBI 0.90 *** 0.93 *** 0.92 *** 0.92
FVC 0.88 *** 0.67 *** 0.86 *** 0.80

MNDWI 0.57 *** 0.29 *** 0.52 *** 0.46

Human activity indices Population density 0.59 *** 0.63 *** 0.55 *** 0.59
Nighttime light 0.63 *** 0.69 *** 0.61 *** 0.64

Landscape configuration indices

PD 0.02 0.06 0.06 0.05
LPI 0.06 0.12 *** 0.07 *** 0.08
ED 0.04 0.10 *** 0.08 0.07

FRAC_AM 0.14 *** 0.22 *** 0.13 *** 0.16
CONTAG 0.08 0.12 *** 0.06 0.09

SHDI 0.05 0.09 *** 0.08 *** 0.07

*** p < 0.01.



Remote Sens. 2023, 15, 2075 14 of 24

3.3.2. Risk Detection Analysis

The drivers that were significant contributors to LST heterogeneity over 20 years were
selected for risk detection analysis. Figure 9 presents the results of class-level risk detection.
The LST of cropland decreased with increasing PLAND and LPI, while the opposite was
true for that of impervious surfaces. In addition, the LST of cropland varied considerably
in the first two classes of PLAND and LPI. The LST of impervious surfaces, in contrast,
increased rapidly in the latter two classes of PLAND and LPI. However, these differences
diminished over time for cropland and impervious surfaces.
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In the landscape-level risk detection analysis, the relationship between different drivers
and LST differs significantly (Figure 10). The NDBI, population density and nighttime light
were positively correlated with LST, which means that the development of construction
land, the growth of the population and the increase in the socioeconomic level will increase
LST. Compared to the NDBI, population density and nighttime light, FVC had a near-linear
negative association with LST. For FRAC_AM, LST always decreased rapidly in the first
two levels and showed a constant negative correlation in the subsequent levels. In addition,
the MNDWI was found to show a significant nonlinear association with LST. LST increased
rapidly with increasing levels of MNDWI, peaking between levels 7 and 8. At subsequent
levels, LST decreased rapidly.

3.3.3. Interaction Detection Analysis

Figures 11 and 12 show the results of interaction detection at the class level and the
landscape level, respectively. The q-values of the interactions between different drivers
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all showed bidirectional enhancement or nonlinear enhancement (dark underline). Bidi-
rectional enhancement means that the effect of the interaction between drivers is stronger
than their individual effects, while nonlinear enhancement means that the interaction
between drivers exceeds the sum of their individual effects. That is, in the present study,
the superposition of any two drivers enhances their effects on the heterogeneity of LST.
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At the class level, LPI∩ED (61%), PLAND∩ED (65%) and PLAND∩FRAC_AM (58%)
for impervious surfaces had the strongest interactions in 2000, 2010 and 2020, respectively.
LPI∩ED (37%), PLAND∩ED (41%) and PLAND∩ED (43%) for cropland also showed strong
interactions in 2000, 2010 and 2020, respectively. It was also found that LPI∩FRAC_AM
for water had 52% and 33% of the interaction in 2010 and 2020, respectively. PD, ED and
FRAC_AM had weaker explanatory power in single-factor detection, but their explana-
tory power for LST heterogeneity could be significantly enhanced when combined with
other factors.

Among the landscape-level interactions, the NDBI was the main contributor to LST
heterogeneity at different times. In 2000, NDBI ∩nighttime light and NDBI ∩population
density had the strongest interactions on LST heterogeneity. In 2010, NDBI ∩nighttime light
and NDBI ∩FVC had the highest contribution to LST heterogeneity. Finally, NDBI ∩FVC
and NDBI ∩SHDI had the strongest interaction effects on LST heterogeneity in 2020. The
explanatory variables that possess the strongest interactions at the landscape level involve
all three categories, implying that the interactions among landscape composition indices,
landscape configuration indices and human activity indices have a significant effect on the
spatial differentiation of LST.

4. Discussion
4.1. Spatial and Temporal Differences

Researchers in urban ecology believe that the UTE reflects the result of the surface and
atmospheric energy balance [11]. The study of the spatial and temporal differentiation of
the UTE is fundamental to understanding ecological change and urban development [12,31].
From 2000 to 2020, LST in Shenyang continued to rise. The hotspots consistently extended in
the northeast–southwest direction, and the hot/cold spots in the city center and its suburbs
kept expanding. These findings indicate that rapid urbanization has indeed resulted in the
deterioration and spatial heterogeneity of the UTE [58].

Among all land use types, we found that the hotspot regions were always concen-
trated on impervious surfaces. Impervious surfaces, including impervious landscapes and
exposed surfaces in cities, are thought to always increase urban temperatures by holding
heat and reducing evaporative cooling [59]. It is noteworthy that, although water and
forest were always the land types with the lowest mean values of LST, the cold spots in
Shenyang were always clustered in croplands near water during the 20 years. This may be
influenced by the area of land cover [60]. As shown in Table 8, cropland was always the
dominant land type in the study area, with a consistent percentage of over 58%, although it
continued to decrease. In contrast, forest and water continued to expand, but the sum of
the areas never exceeded 9%. For the whole study area, the smaller area proportions make
it difficult to form spatial clusters with significant cold spots in forest and water. However,
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the growth of large areas of crops in summer, such as corn and rice, can lead to an increase
in surface soil moisture and evapotranspiration and thus can promote the clustering of cold
spots [61,62].

Table 8. Percentage of area occupied by different land types from 2000 to 2020.

Land Use Type Percentage in 2000 Percentage in 2010 Percentage in 2020

Cropland 62.80% 59.88% 58.70%
Forest 6.17% 6.27% 6.42%

Grassland 5.39% 5.69% 3.98%
Wetland 0.01% 0.01% 0.02%

Water 1.71% 1.70% 1.96%
Impervious surface 23.92% 26.45% 28.92%

Overall 100% 100% 100%

An interesting phenomenon is that the LST hotspots in the Hun River and its surround-
ing areas in the central city of Shenyang have been disappearing over the past 20 years,
creating two heat islands to the north and south along the Hun River. This may be due to
the pollution control and ecological protection of the Hun River. As an important industrial
city in China, Shenyang has well-developed food and chemical industries, but the uncon-
trolled discharge of pollutants led to extremely serious pollution of the river until 2002 [63].
The Shenyang municipal government then embarked on river management and gradually
established the landscape corridor to optimize the quality of the river and its surrounding
ecology [63]. Through these measures, the LST in the area has also been reduced, gradually
creating a corridor separating LST hotspots.

4.2. Driving Mechanism at the Class Level

The relationship between the landscape configuration and LST varies considerably
across land types at the class level. On longer time scales, the PLAND and LPI of crop-
land and impervious surfaces were always the main landscape configuration indices that
affected LST. The intensity of LST decreases as the area and patches of cropland increase,
while the opposite is true for impervious surfaces. As part of the urban green space,
the positive impact of the increased size and abundance of cropland on LST is associ-
ated with increased irrigation and an increased scale of transpiration during crop growth
peaks [64,65]. Furthermore, the aggregation and large-scale expansion of built-up land can
lead to a reduction in surface infiltration and surface moisture, which in turn leads to the
deterioration of LST [66].

It is noteworthy that the LST of cropland always decreased rapidly in the first
two levels of LPI and PLAND, and the LST of impervious surfaces always increased rapidly
in the last two levels of LPI and PLAND. This implies that the transpiration cooling effect
of cropland on LST occurs rapidly with increasing area and abundance [67]. Moreover,
when the impervious surface increases to a certain extent, unrestricted urban expansion
leads to difficulties in finding a balance between urban development and urban ecology,
resulting in a rapid rise in LST [68]. However, over the 20-year period, the difference in
LST increased for each level of PLAND and LPI, and the relationship between PLAND,
LPI and LST gradually changed from nonlinear to near-linear. This can be attributed to
rapid urbanization [69]. Rapid urbanization has led to massive urban expansion, rapid
land cover changes and ever-increasing LST. In this case, while the PLAND and LPI of
cropland and impervious surfaces still have effects on LST, their marginal effects are more
difficult to specify, and further attention needs to be paid to the interaction of landscape
configuration to maximize LST reduction.

For other landscape configuration indices, even if the individual explanatory power
was not strong, the interactions between them tended to enhance their impact on LST.
This implies that the complex synergy of factors is more important than the role of a
single factor [38]. The strongest explanatory power of the interactions appeared in the area
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and shape indices of the impervious surface, including LPI, PLAND, ED and FRAC_AM.
This suggests that the combination of area, abundance, shape and connectivity patterns
of different patches of impervious surface needs to be focused on when optimizing the
UTE [70]. The PLAND, LPI and ED of cropland also showed strong interactions, suggesting
that the combined configuration of the area, abundance and patch connectivity patterns
of cropland also needs to be taken into account. Attention also needs to be paid to the
interacting configurations of the LPI and FRAC_AM of water, as they also showed stronger
interactions in 2010 and 2020.

4.3. Driving Mechanism at the Landscape Level

Landscape composition and human activities are key drivers that influence LST at
the landscape level. The NDBI, population density, and nighttime light were significantly
and positively correlated with LST from 2000 to 2020. During the rapid expansion phase of
cities, population migration and economic activity can increase anthropogenic heat release
and LST [71,72]. In contrast, FVC showed a significantly negative correlation with LST.
Urban green areas can promote air ventilation by improving the thermodynamic properties
of the land surface, which can help reduce LST in urban areas [71,73]. Unlike previous
studies, the MNDWI and LST were not always significantly negatively correlated, but
rather, there was a threshold effect. The positive effect of the MNDWI on LST could be
attributed to the fact that the remote-sensing images were acquired at night and in late
summer. Gunawardena et al. [74] showed that urban heat island intensity is greatest at
night and in late summer, which may lead to warming effects on water bodies. In addition,
we speculate that LST will rapidly decrease when the surface water content reaches a
certain threshold.

The landscape configuration indices had less explanatory power for LST at the land-
scape level than at the class level. This finding might further indicate that the configuration
of land cover is more valuable than that of the entire landscape when studying the driving
forces of LST [75,76]. However, we still found strong explanatory power for FRAC_AM
for LST at the landscape level. Complex landscape patches can lead to a reduction in
LST, especially in the first two levels of FRAC_AM. Zhao et al. [27] argued that the shape
complexity of urban landscapes should receive more attention when aiming to reduce the
LST of cities, which is consistent with our findings.

With the exception of the MNDWI and FRAC_AM, all drivers showed a near-linear
correlation trend with LST over 20 years, similar to the results at the class level. This
suggests that more attention also needs to be paid to the interaction of drivers at the
landscape level during the rapid urbanization phase.

The two variables with the strongest interaction effects on LST were constantly chang-
ing over 20 years. However, one of the interacting variables always included the NDBI.
The single explanatory power of the NDBI for LST is very strong, but the explanatory
power can still be enhanced by its interaction with other factors, such as nighttime lighting,
population density, FVC and SHDI. These findings emphasize the importance of built-up
areas in LST at the landscape level. At the same time, urban planners need to pay attention
to the combination of buildings and vegetation, population, economic activity and the
diversity of the landscape when optimizing the UTE.

4.4. Impact on Urban Planning

This study explored the spatial and temporal differentiation characteristics and driving
mechanisms of the UTE. In addition, the differences in driving mechanisms across different
stages of urbanization were investigated. The results of this study may therefore have
important implications for UTE-based urban planning. At the landscape level, due to
the high correlation between the NDBI, population density and nighttime light and LST,
the high density of buildings, concentrated population and frequent economic activities
can have a significant impact on UTE deterioration. Therefore, urban sprawl and human
activities should first be strictly controlled during rapid urbanization. FVC and FRAC_AM
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are significantly negatively correlated with LST, so during rapid urbanization, increasing
vegetation cover and landscape diversity can help to rapidly optimize the UTE, for example,
by creating pocket parks and landscape corridors in high-density urban cores and increasing
the protection of ecological reserves in the outskirts of cities. The marginal contribution
of the MNDWI to LST suggests that the stock of water bodies should be maintained, their
quality should be improved, and large lakes should be built on the outskirts of the city.
At the class level, the relationship between PLAND and LPI and LST for cropland and
impervious surfaces indicates that an ecological red line for cropland should be drawn, and
continuous cropland should be built on the outskirts of the city to avoid the encroachment
on cropland caused by concentrated urban development during rapid urbanization. The
integration of the main drivers at the landscape level and class level allows for the efficient
optimization of the UTE during rapid urbanization.

In the later stage of rapid urbanization, the development of large urban areas is
constrained, and the marginal contribution of a single driver to UTE is reduced. At this
stage, therefore, urban planners need to focus on the interactions between drivers to
maximize the reduction in LST. Firstly, according to our study, the combination of the area,
abundance, shape and patchy connectivity patterns of impervious surfaces needs to be
focused on. This means that when controlling urban sprawl, attention should also be paid
to the diversity of morphology and the complexity of the boundaries of urban built-up
areas. Secondly, the area, abundance and patch connectivity patterns of cropland have
strong effects on LST. This suggests that when conserving cropland, attention needs to
be paid to the size of the cropland, the type of crop and the complexity of the cropland
boundaries. Thirdly, the abundance and morphology of water can also significantly interact
with LST, and it is therefore recommended that when increasing water area, it should be
combined with a diversity of morphological features. Finally, the combination of buildings
and vegetation, population, economic activity and landscape diversity has a significant
impact on LST, suggesting that, in the later stage of rapid urbanization, urban development
should be intensified, and the ecological benefits of the landscape should be achieved by
allocating diverse vegetation and landscape functions to high-density built-up areas.

5. Conclusions

Based on three Landsat images of Shenyang city in 2000, 2010 and 2020, we investi-
gated the spatial and temporal differentiation characteristics of the UTE and its driving
mechanisms during rapid urbanization using the SDE, hotspot analysis and the geograph-
ical detector. We identified the driving mechanisms by which landscape composition,
landscape configuration and human activities affect the UTE at multiple levels. The key
findings of this study are as follows.

Firstly, the average LST in Shenyang continued to rise and had significant spatial and
temporal differentiation characteristics during the twenty-year period. The hotspot regions
extended in the northeast–southwest direction. Hotspot and cold spot areas continued to
expand in urban and suburban areas, respectively. The hotspots were always concentrated
on impervious surfaces, while the cold spots were scattered in croplands near water. Over a
period of 20 years, the hotspot in the central city has gradually been divided into two parts
along the north and south banks of the Hun River.

Secondly, the spatial configuration indices at the class level are more important than
those at the landscape level when studying the UTE. PLAND and LPI for class-level
cropland and impervious surfaces were strong drivers of LST over the 20-year period,
whereas only FRAC_AM at the landscape level had a consistently significant effect on LST.

Thirdly, as urbanization progresses, the marginal effects of some drivers on LST de-
crease, showing a near-linear correlation. At the class level, increases in the PLAND and
LPI of cropland could rapidly reduce LST, while increases in the PLAND and LPI of imper-
vious surfaces could rapidly increase LST. At the landscape level, the NDBI, population
density and nighttime light were positively correlated with LST, FVC and FRAC_AM could
effectively reduce LST, and there was a threshold for the response of the MNDWI to LST.
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However, over a period of 20 years, the nonlinear relationship between all factors and LST,
except the MNDWI and FRAC_AM, gradually shifted to a near-linear relationship.

Finally, the interaction between the drivers should receive more attention when opti-
mizing the UTE in the later stage of rapid urbanization. All class-level and landscape-level
factors had enhanced effects on LST through their interactions. At the class level, the
focus needs to be on the combination of the area, abundance, shape and patch connectivity
patterns of impervious surfaces. The combined configuration of the area, abundance and
patch connectivity patterns of cropland and the patch abundance and shape of water also
need to be considered. At the landscape level, attention needs to be paid to the integration
of buildings and vegetation, population, economic activity and landscape diversity. These
results will provide the basis for a more comprehensive understanding of the UTE and the
implementation of urban planning strategies during rapid urbanization.

Our study also has some limitations. First, our study was conducted only in Shenyang,
a typical city in cold regions. The spatial pattern of LST may vary greatly among different
cities due to differences in urban development patterns. Recent studies have concluded
that conducting studies on LST in different cities or urban clusters can avoid bias in the
results [13,77]. Second, in this study, only three remote-sensing images were selected for the
time-scale research. Although the meteorological conditions of the selected remote-sensing
images are similar and good, it is difficult to reflect the results of the study on a time scale
of 20 years with data from only three remote-sensing images. Follow-up studies could
increase the number of remote-sensing images to draw more precise conclusions. Third,
we studied only one analysis unit at 2 km*2 km. Although this unit is recognized, the
modifiable areal unit problem (MAUP) may exist, and different analysis scales may lead to
differences in the results [54]. Therefore, in future UTE studies, the inclusion of different
statistical scales should be considered to increase the accuracy of the results. Finally, the
drivers affecting changes in the UTE may not be limited to two-dimensional composition
and configuration. Three-dimensional landscape indicators, such as the floor area ratio
and shadow patterns, have been found to influence the UTE [78,79]. However, this was
not discussed in this study. The relationship between three-dimensional urban landscape
metrics and the UTE should be emphasized and combined with two-dimensional metrics
for a comprehensive analysis.
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