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Abstract: Snow density varies spatially, temporally, and vertically within the snowpack and is the
key to converting snow depth to snow water equivalent. While previous studies have demonstrated
the feasibility of retrieving snow density using a multiple-angle L-band radiometer in theory and
in ground-based radiometer experiments, this technique has not yet been applied to satellites. In
this study, the snow density was retrieved using the Soil Moisture Ocean Salinity (SMOS) satellite
radiometer observations at 43 stations in Quebec, Canada. We used a one-layer snow radiative
transfer model and added a τ − ω vegetation model over the snow to consider the forest influence.
We developed an objective method to estimate the forest parameters (τ, ω) and soil roughness (SD)
from SMOS measurements during the snow-free period and applied them to estimate snow density.
Prior knowledge of soil permittivity was used in the entire process, which was calculated from the
Global Land Data Assimilation System (GLDAS) soil simulations using a frozen soil dielectric model.
Results showed that the retrieved snow density had an overall root-mean-squared error (RMSE) of
83 kg/m3 for all stations, with a mean bias of 9.4 kg/m3. The RMSE can be further reduced if an
artificial tuning of three predetermined parameters (τ, ω, and SD) is allowed to reduce systematic
biases at some stations. The remote sensing retrieved snow density outperforms the reanalysis snow
density from GLDAS in terms of bias and temporal variation characteristics.

Keywords: snow density; SMOS; multiple-angle; passive microwave remote sensing

1. Introduction

Snow cover plays a critical role in terrestrial hydrological, climatological, and ecologi-
cal processes. It influences the energy balance on the land surface, based on its high albedo
and low thermal conductivity [1]. The measurement of snow water equivalent (SWE) is
important to understand the timing and magnitude of snowmelt runoff [2]. However, when
there have been multiple continental or large-scale snow depth remote sensing products,
the corresponding snow density product required to convert snow depth to SWE is still
limited. Snow density, SWE, and snow pressure are not as widely measured as snow depth
at stations. When the passive microwave remote sensing technique at the Ku- to Ka-band
was used to retrieve the snow depth for more than four decades [3], observations at these
frequencies were rarely used to estimate snow density. Instead, after the snow depth is
retrieved, the error in snow density auxiliary information becomes an important source
of SWE uncertainty [4]. At a high frequency, snow volume scattering cannot be neglected.
The influences of the snow depth and snow grain size on the brightness temperature (TB)
are much higher than that of snow density. The coherency between scattered waves from
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snow particles [5] results in a sophisticated relationship between TB and snow density,
which is differently understood by different snow radiative transfer models [6]. Therefore,
to estimate snow density, the lower-frequency channel is better suited for its retrieval as it
is more sensitive to snow refraction rather than snow volume scattering [7,8].

Snow density varies spatially, temporally, and vertically, influenced by the snow
compaction rate and snow compaction time [9–11]. The use of a fixed snow density (for
example, 240 kg/m3) will result in an overestimated SWE in the early snow season and
an underestimated SWE in the late snow season [12–14]. The CCI+ Version2 (CCIv2) SWE
product [13] utilized time-varying snow density functions according to snow classes [15].
The empirical method that calculates the snow density as a regression function of the snow
depth, day of year, and snow classes [16] is unable to capture the spatial and inter-annual
variability [17]. In a warming climate, the direct observation of snow density can be of
great value to detect the increased occurrence of rain-on-snow events.

In the field, the most commonly used method to measure snow density is to weigh
the snow in a container of a fixed volume [18]. Dielectric permittivity measurement [19],
micro-computed tomography [20,21], and neutron-scattering probes [22] can also be used to
measure snow density. After being inter-calibrated against the gravimetric measurements,
these techniques are either fast in the field or of fine vertical resolution [23–25]. Snow
density can also be estimated by L-, C-, and X-band synthetic aperture radar (SAR) data.
The study in [26] utilized the change in surface scattering caused by snow, and estimated
the snow density using a parameterized backscattering model simplified from the Inte-
gral Equation Model (IEM) [27]. In recent years, with the development of full-polarized
SAR, surface [28,29] and volume scattering [30,31] components were extracted from dif-
ferent signal decomposition methods to establish empirical or physical relationships with
snow density.

After the launch of the Soil Moisture Ocean Salinity (SMOS) [32] satellite for soil
moisture observation purposes in November 2009, the multiple-angle L-band radiometer
became an additional type of sensor applicable for snow density estimation. The revisit
frequency of SMOS is two to three days, which makes it suitable for studying temporal
snow density variation and supporting daily SWE products. Preliminary studies on the
physical [8] and the practical feasibility [7] of snow density retrieval using ground-based
radiometer observations have been conducted. It was found that the existence of snow on
the bare soil changes both the propagation angle of microwaves inside the snow medium
and the refraction at the air–snow and snow–soil boundaries. With the increase in snow
density, the propagation angle becomes steeper, the emissivity at the horizontal polarization
increases, and the emissivity at the vertical polarization increases at small incidence angles
and decreases at large incidence angles. Because of the large contrast between the L-band
wavelength and snow grain size, volume scattering generated by snow particles can be
neglected [7,8,26]. This means that the computational cost to calculate snow TB and retrieve
the snow density can be largely reduced. Using the simplified snow radiative transfer
model, the studies in [7,33,34] successfully estimated the snow density in tower-based
radiometric experiments. However, if the snow density retrieval algorithm is moved from
ground-based to space-borne instruments, it will be challenged by stronger observation
noise, emission from other land surface types, and the Radio Frequency Interference (RFI)
from human activities. Whether the snow density is retrievable becomes uncertain.

Therefore, the scientific goal of this article is to retrieve the snow density from SMOS
satellite observations, according to the theory in [7,8]. The study area is Quebec, Canada,
determined by the availability of ground measurements and the appropriate terrain condi-
tion. Forests in Quebec should be considered using space-borne observations in theory. To
minimize the impact of forests during snow density retrieval, the τ-ω vegetation model
was utilized. The prior knowledge of soil permittivity was introduced and calculated from
the Global Land Data Assimilation System (GLDAS) simulated soil temperature and total
soil water content [35,36] using a frozen soil dielectric model [37]. We also developed a
method based on objective optimization to determine ω, τ, and soil roughness (SD) using
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the SMOS observations in the snow-free period and applied them subsequently to estimate
the snow density in the snow season. With the predetermined parameters and the prior
knowledge, the ill-posed problem of snow density retrieval was greatly relieved.

This paper is organized as follows. Section 2 introduces the study area and datasets
utilized. Section 3 describes the forward emission model and the retrieval algorithm.
Section 4 shows the snow density retrieval results. Sections 5 and 6 are the Discussion and
Conclusions, respectively.

2. Study Area and Datasets
2.1. Study Area

The study area is located in Quebec, Eastern Canada (45◦N–63◦N, 57◦W–80◦W), with
elevation above sea level from −3 to 1081 m (Figure 1). Characterized by cool temperatures
in summer and abundant snowfall in winter, this area includes eight different terrestrial
ecozones [38]. Snow in this region has large spatial variability, with a snow cover duration
ranging from 120 days in Southern Quebec to 240 days in Northern Quebec, and an annual
maximum SWE from less than 100 mm at low altitudes to more than 300 mm at high
altitudes [39,40].

Figure 1. Spatial distribution of stations in Quebec, Canada. International Geosphere-Biosphere
Programme (IGBP) land surface types are represented in colors according to the MODIS-MCD12Q1
product. Stations marked with stars and triangles are stations with good and bad retrieval perfor-
mances, respectively, described in detail in Section 4.

2.2. Datasets
2.2.1. The SMOS Brightness Temperature Dataset

The SMOS mission launched by the European Space Agency [32] provides L-band TB
at multiple observation angles and dual polarizations. The SMOS Level 1C (L1C) product
is provided in the ISEA-4H9 grid (icosahedral Snyder equal area earth fixed) with a spatial
resolution of 43 km on average [41]. However, the observations in some areas are affected
by the RFI. We employed a two-step regression approach, developed in [42], to smooth the
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angular dependence of the SMOS L1C TB product. The method can largely remove outliers
and reduce the observation uncertainty, which was validated in [43]. In the post-processed
product, the SMOS TB was resampled to fixed incidence angles at 40◦ and from 2.5◦ to 62.5◦

with an interval of 5◦. Observations at all angles from ascending orbits with an overpass
time of 6:00 AM were used for snow density retrieval. The study period was from October
2019 to June 2020.

2.2.2. In-Situ Snow Measurements

The in-situ snow measurements come from the Canadian historical Snow Water Equiv-
alent dataset (CanSWEv3.0) [44,45], which contains both the snow depth and snow water
equivalent at the same station. The entire dataset has measurements from 2832 stations in the
1928–2021 period. In our study area and period, there are 43 stations with elevation < 1000 m.
According to the International Geosphere-Biosphere Programme (IGBP) classification ac-
quired from the MODIS MCD12Q1 product [46], stations in the south are located in highly
forest-covered areas, including evergreen needleleaf forests, mixed forests, and woody
savannas, whereas the remaining are mostly located in the savanna region. Stations falling
within grids with a dominant IGBP type of water bodies were removed.

2.2.3. Other Auxiliary Datasets

To calculate the ground permittivity, we introduced the simulated total soil water
content and soil physical temperature at 0–10 cm from the Global Land Data Assimilation
System (GLDAS) Noah model product [35,36]. A soil dielectric model was used to calculate
the frozen soil permittivity [37], and the required soil texture (sand, silt, and clay contents)
and soil bulk density were extracted from the Harmonized World Soil Database [47]. In the
TB calculation, the vegetation temperature was considered the same as the air temperature
from GLDAS, whereas the snow temperature was calculated as the mean of the GLDAS
soil temperature and air temperature. The snow temperature has a very small influence on
the imaginary part of snow permittivity. To calculate the influence of the forest canopy, we
introduced the forest cover fraction from the MODIS MOD44B product [48].

3. Methods
3.1. Forward Emission Model

The radiative transfer model used to describe the emission of the soil–snow–vegetation
system is an empirical rough soil reflectivity model [49], coupled with a simplified snow
emission model neglecting absorption and scattering coefficients [7] and a τ − ω vegetation
model [50]. For an SMOS grid with a forest cover fraction of FC , the measured TB can be
written as in Equation (1), which includes an open snow component (of areal fraction of
1 − FC ) and a forest-covered snow component (of areal fraction of FC ):

Tp
B= Tp

B, f FC+Tp
B,S (1 − FC ) (1)

where Tp
B is the satellite-observed TB at polarization p (p = H or V), Tp

B,S is the open snow
TB, and Tp

B, f is the snow-emitted TB observed above the forest canopy. The SMOS grid is
considered fully snow-covered.

Tp
B, f is expressed as a three-component model as [50]:

Tp
B, f= Tp

B,S γ + TC (1 − ω) (1 − γ)+TC (1 − ω) (1 − γ) rp γ (2)

where TC is the vegetation physical temperature. ω is the effective scattering albedo
accounting for the volume scattering of the canopy [51], and γ is the vegetation attenuation
factor. The first component is the snow emission attenuated by the vegetation canopy,
the second component is the thermal emission from the forest propagated upward, and
the third is the thermal emission from the forest propagated downward, reflected by the
snow and attenuated by the vegetation canopy. ω and γ are assumed independent of
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polarization in this study. γ is expressed as γ = exp (− τ secθ), where τ is the vegetation
optical depth (VOD) and θ is the observation angle. rp is the effective surface reflectivity of
the snow–soil system.

Due to the low-loss characteristic of snow cover in the L-band [52], the simulation of
Tp

B,S in this study utilized the simplified snow emission model neglecting snow absorption
and volume scattering, as [7]

Tp
B,S= ap

G TG+ap
S TS+ap

sky Tsky (3)

where TG, TS, and Tsky are the soil physical temperature, snow physical temperature, and
downwelling sky TB, respectively. If the snow is homogeneous, the Kirchhoff coefficients
ap

G, ap
S, and ap

sky can be expressed as

ap
G =

(1−sp
G) (1−sp

S) tS
1+r2

S sp
G sp

S− rS (s p
G+sp

S)−t2
S sp

G sp
S

ap
S =

(1−sp
S) (1−rS−tS) (1−rSsp

G+tSsp
G)

(1−rSsp
G) (1−rSsp

S)−t2
S sp

G sp
S

ap
sky =

(1−rSsp
G) (s

p
S+rS (1−2sp

S))+sp
G (1−2sp

S) t2
S

(1−rSsp
G) (1−rSsp

S)− t2
S sp

G sp
S

(4)

where sp
G is the snow–soil interface reflectivity, sp

S is the specular air–snow interface reflec-
tivity, and rS and tS are the reflectivity and transmissivity of the snow layer, respectively.

When there is no absorption, no volume scattering assumptions are made for snow,
tS = 1 and rS = 0. The Kirchhoff coefficients can be simplified to

ap
G =

(1 − sp
G) (1 − sp

S

)
1 − sp

G sp
S

ap
S = 0ap

sky = 1 − ap
G (5)

where ap
G can be used as 1 − rp in Equation (2).

We evaluated the reasonability of neglecting absorption and volume scattering at the
L-band using the Microwave Emission Model of Layered Snowpacks (MEMLS) based on
the Improved Born Approximation (IBA) [53,54], and found that the sensitivity of the snow-
emitted TB to snow depth is only 0.018–0.072 K per m, using an exponential correlation
length of 0.18 mm.

To calculate sp
G, a semi-empirical QHN model [55,56] with frequent-independent

coefficients [49] was used (Equations (6) and (7)). It allows the use of one parameter, the
standard deviation of height (SD), to model the rough soil surface reflectivity, which is
easier to fit than models using two parameters:

sp
G =

(
(1 − QR) sp∗

G +QR sq∗
G

)
exp (− HRcosNRp θ) (6)

HR= (
a1SD

a2SD+a3

)6
(7)

where sp∗
G and sq∗

G are calculated from the soil permittivity using Fresnel equations [57]
at polarization p and q (e.g., q = V if p = H and vice versa). The soil dielectric model
developed in [37] was used to calculate the soil permittivity. The remaining parameters
were optimized as QR = 0.075, NRV = 1.503, NRH = 0.131, and HR is a function of SD, with
coefficients as a1 = 0.887, a2 = 0.796, a3 = 3.517 [49].

3.2. Retrieval of Predetermined Parameters (τ, ω, SD) in Snow-Free Period

To reduce the difficulty in snow density estimation, three unknown parameters (τ, ω,
SD) were predetermined based on SMOS observations in the snow-free period. We assumed
that the values of the three parameters remain constant over time and are independent of
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polarization. Using the soil permittivity from GLDAS, we calculated the error between
the simulated and the observed SMOS TB during the snow-free period, using different
combinations of τ, ω, and SD.

TB, error(τ, ω, SD) = ∑tn
t=1 ∑θn

θk=θ ∑p=H,V

(
Tp

B, obs(θk, t)− Tp
B, mod(θk, t, τ, ω, SD)

)2
(8)

TB, error was calculated from days within 2 weeks before the onset or after the end
of the snow season. The searching ranges of τ, ω, and SD were τ from 0 to 0.5 with a
step of 0.01, ω from 0 to 0.4 with a step of 0.01, and SD from 0 to 100 mm with a step of
1 mm. It was found that a few combinations of τ, ω, and SD gave similarly small TB, error.
We extracted the first 0.1% smallest TB, error and found the corresponding τ, ω, and SD
combinations (see Figure 2 as an example for the HQ-CM4L station). Later, the values of
these τ, ω, and SD combinations were averaged, and the single combination closest to the
averaged value was chosen as the final estimate.

Figure 2. The histogram of (a) soil–snow interface roughness SD, (b) canopy single scattering albedo
ω, and (c) transmissivity τ determined by SMOS-observed TB during the snow-free period at station
HQ-CM4L in Quebec, Canada. The red vertical lines are the final estimations of τ, ω, and SD.

3.3. Retrieval of Snow Density

After determining the three unknown parameters, it is possible to calculate soil and
vegetation emissions. Subsequently, the snow density can be retrieved using a cost func-
tion as

CF(ρ S) =∑θn
θk=θ ∑p=H,V

(
Tp

B, obs(θk)− Tp
B, mod(θk, ρS )

)2
(9)

The searching range for snow density (ρS) was 50 to 500 kg/m3 with a step of 1 kg/m3.
ρS with the smallest CF(ρ S) will be considered as the retrieved snow density. Figure 3 is
the flow chart for the entire snow density retrieval process.

Figure 3. Flow chart for snow density retrieval.
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3.4. Objective Postprocessing Method to Reduce Retrieval Uncertainty

Snow density retrieval is sensitive to the predetermined parameters τ, ω, and SD.
In our study, we found that using SMOS measurements from different periods to fit τ,
ω, and SD can lead to different results. Better performance can be achieved by using
SMOS measurements before or after the snow season, which varies by station. This is
due to changes in bias in the simulated snow-free TB using the same GLDAS dataset and
predetermined parameters, with the impacting factors unknown. To reduce uncertainty
and ensure objectivity, we generated three sets of τ, ω, and SD fitted from before, after,
and before and after the snow season, and we generated three sets of snow density time
series as candidates. Abnormal snow density time series can be recognized by counting the
occurrence of abnormal daily snow density values reaching the 50 or 500 kg/m3 searching
boundary limit. The remaining snow density time series will be averaged to obtain the
final retrieval result.

4. Results
4.1. Performance of Multiple-Angle Brightness Temperature Simulation

To examine the behavior of the forward model in matching the SMOS observations,
Figure 4 shows examples of simulated and observed TB for one station during the snow
density retrieval. It shows that for the HQ-CM4E station, the simulated TB matched well
with the SMOS-observed TB, except for large incidence angles at horizontal polarization
and unstable snow conditions (Figure 4a). On 29 November 2019 (Figure 4a), the relatively
low-biased TB at small angles and the complex snow condition during this season resulted
in an underestimation of snow density. However, in Figure 4b–f, the errors between the
retrieved snow density and in-situ measurements were within 45 kg/m3. For example, on
6 December 2019, the estimated snow density was 155 kg/m3 with an error of 3.5 kg/m3,
and on 16 February 2020, the estimated snow density was 206 kg/m3 with an error of
5.9 kg/m3. On 16 February 2020 (Figure 4d), the increased snow density compared to
previous months was retrieved from an increased TB in small incidence angles, a decreased
TB in large angles at vertical polarization, and an increased TB at horizontal polarization.
On 8 April 2020 (Figure 4f), the model-simulated soil permittivity and the retrieved snow
density significantly increased compared to previous examples, which may have been
caused by melt–refreeze events in this season.

4.2. Performance of Snow Density Retrieval at Example Stations

Figures 5 and 6 show the time series of retrieved snow density using the retrieval
method described in Sections 3.2 and 3.3 at six different stations, and we compared them
with the CanSWE ground measurements and reanalysis snow density from GLDAS. The
GLDAS product provides the snow depth and snow water equivalent, which allows us to
calculate the average snow density along the snow profile. Among 43 stations, some have
better retrieval performance than others. Therefore, we have selected and presented three
examples with good performance in Figure 5 and three examples with poor performance
in Figure 6.

As shown in Figure 5, the retrieved snow density captured the increasing trend of
the observed snow density from 100~200 kg/m3 in the early and mid- snow season to
300~400 kg/m3 in the late snow season. The root-mean-squared error (RMSE) varies from
52.7 kg/m3 to 67.9 kg/m3 for different stations. The mean bias is smaller than 25 kg/m3,
which is approximately 10% of the mean snow density. If we only consider the retrievals
during relatively stable snow conditions (December to March), the RMSE can be reduced
to 36.7~42.1 kg/m3, but the changes in R and bias are complex, because the snow density
variation range is reduced. In the late snow season, the remote sensing retrieved snow
density is noisier than the in-situ measurements. However, in the early and mid-snow
season, the GLDAS reanalysis dataset underestimates the snow density compared to the
measurements. Therefore, the SMOS-retrieved snow density outperforms the GLDAS
reanalysis in the time series variation characteristic. In the late snow season after April, the
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snow density increases due to melt–refreeze events and snow compaction, and it decreases
due to new snowfalls. The observed, SMOS-retrieved, and GLDAS snow density fluctuate
at the same pace but with different magnitudes. The shape of the SMOS-retrieved snow
density is closer to that of GLDAS, whereas the variation in the observed snow density is
smaller in general.

Figure 4. Examples of SMOS-observed TB (triangles) versus the forward-model-simulated TB (lines)
to fit the observations. τret and ωret are the retrieved snow density, τ, and ω, respectively. εG, gldas is
the soil permittivity calculated from the GLDAS soil simulations.

As shown in Figure 6, the snow density retrieval results with poor performance show
systematic biases, with a mean bias ranging from −77.5 kg/m3 to 108.7 kg/m3. However,
although the RMSE increases to 90.9~131.6 kg/m3, the unbiased RMSE (ubRMSE) is within
47.5~74.2 kg/m3, which is comparable to the results in Figure 5. The ubRMSE can be used
to remove the contribution of systematic bias to RMSE. The small ubRMSEs imply that the
variation trend of the observed and the retrieved snow density is still consistent. We found
that all three stations in Figure 6 are located close to water bodies, which may be frozen or
unfrozen in winter depending on the air temperature and the size of the lake. Additionally,
it is possible that the lake was unfrozen when the vegetation and soil roughness parameters
were fitted in the snow-free season, but frozen when we were estimating the snow density.
In this case, the influence of the lake on snow density retrieval is quite complex and will
need to be explored in future research. We also found that the SMOS TB at the stations
in Figure 6a,b is similar to that of the stations in Figure 5. However, the SMOS TB at the
station in Figure 6c is much lower than that of the stations in Figure 5, for approximately
20–30 K; therefore, the retrievals were underestimated instead of overestimated. When
the retrieved snow density shows positive or negative biases at the three stations near the
lakes, the GLDAS snow density consistently biases low in the early and mid-snow season.
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Figure 5. Time series (left) and scatterplots (right) of in-situ and retrieved snow density at the three
stations with good performance among 43 stations: (a) HQ-CM4E, (b) HQ-CM4L, (c) HQ-CM4J,
compared with the GLDAS snow density. In the right subplots, all points (pink triangles and green
circles) and the statistics in the upper left corner present the validation in the entire snow season
(October to June), whereas green circles and the statistics in the lower right corner present the
validation from December to March. R is the Pearson correlation coefficient with the confidence
interval of 95%, bias represents the mean bias, RMSE is the root-mean-squared error, and ubRMSE is
the unbiased root-mean-squared error.

4.3. Validation of Retrieved Snow Density at All Stations

In Figure 7, the snow density retrieval performance is summarized from 43 stations
to test the robustness of our retrieval algorithm. Figure 7a,b show the scatterplots of the
SMOS-retrieved and GLDAS snow density against the measured snow density, respectively.
It shows, from all validation stations, that the retrieved snow density has an RMSE of
83 kg/m3 and a Pearson correlation coefficient of 0.5 with measurements, whereas the
GLDAS snow density has a lower RMSE of 76 kg/m3 and a higher correlation of 0.7.
However, the GLDAS snow density has an overall underestimation of 48 kg/m3, and the
absolute bias is significantly higher than that of the retrieved snow density (9.4 kg/m3). If
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only the December–March period is summarized, the RMSE of the retrieved snow density
improves to 72.3 kg/m3, which is comparable to that of GLDAS at 71.9 kg/m3. Near
200 kg/m3, GLDAS underestimated the snow density, whereas our algorithm overesti-
mated the snow density. The underestimation of GLDAS is from the early and mid-snow
season, as shown in Figures 5 and 6. It implies that although the retrieved snow density
contains larger noise than the reanalysis, it still has a more trustworthy temporal variation
trend and a generally unbiased characteristic. Figure 7c,d show that both the retrieved and
the GLDAS snow density biases are insensitive to the snow depth.

Figure 6. Time series (left) and scatterplots (right) of in-situ and retrieved snow density at the three
stations with poor performance among 43 stations: (a) HQ-CM3D, (b) HQ-CM4G, (c) HQ-CMPX,
compared with the GLDAS snow density. Labels and statistics in the right subplots are the same as
those in Figure 5.

Figure 8 shows the distribution of validation metrics across each station on a geo-
graphic map. It shows that stations located in the savannas in the north of Quebec tend
to have higher correlations with measurements and lower ubRMSEs. Conversely, stations
in forests and woody savannas have lower correlation coefficients and higher ubRMSEs.
However, in savannas, some stations exhibit strong overestimation and large RMSEs, with
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seven out of nine located near large water bodies. Therefore, as summarized in Figure 9
and Table 1, the average values of the validation metrics for different land cover types are
similar, because both forested and non-forested regions have their own challenges. More
statistics on snow density retrieval accuracy at each station are provided in Appendix A.

Figure 7. Scatterplots of (a) retrieved snow density and (b) reanalysis snow density from GLDAS
against observed snow density, and (c,d) the sensitivity of biases to observed snow depth (SDobs),
from October, 2019 to June, 2020 at 43 stations located in Quebec, Canada. In (a,b), the validation
metrics from the entire snow season (October to June) are presented in the upper left corner, whereas
those from December to March are presented in the lower right corner.
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Table 1. The validation metrics of retrieved snow density compared with in-situ measurements
summarized based on the MCD12Q1 IGBP classification.

MCD12Q1
IGBP Clas-
sification

R Bias
(kg/m3)

RMSE
(kg/m3)

ubRMSE
(kg/m3)

Measurement
Number

Station
NumberOctober

–
May

December
–

March

October
–

May

December
–

March

October
–

May

December
–

March

October
–

May

December
–

March

October
–

May

December
–

March

evergreen
needleleaf

forest
0.35 −0.19 −33.44 −12.95 78.55 52.97 71.08 51.36 93 62 1

woody
savannas 0.55 0.39 −16.81 22.27 85.81 77.07 84.15 73.78 1011 680 4

mixed
forest 0.47 0.48 12.5 3.67 76.59 49.53 75.56 49.39 393 258 10

savannas 0.5 0.25 −11.37 20.01 82.8 73.76 82.01 70.99 2664 1816 28

ALL SITES 0.5 0.29 9.44 18.33 82.89 72.31 82.35 69.95 4161 2816 43

Figure 8. Distribution of Pearson correlation coefficient (R) (a), mean bias (Bias) (b), root-mean-
squared error (RMSE) (c), and unbiased (ubRMSE) (d) of retrieved snow density at stations on map.
The background is the MCD12Q1 IGBP classification.
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Figure 9. Summary of Pearson correlation coefficient (R), mean bias (Bias), root-mean-squared error
(RMSE), and unbiased (ubRMSE) of retrieved snow density at different stations. Different colors
represent different dominant IGBP land surface types from MCD12Q1.

5. Discussion

In this paper, the snow density retrieval accuracy is influenced by the following factors.
Firstly, soil permittivity is a key parameter that affects the L-band multiple-angle TB.
However, our retrieval algorithm uses the soil permittivity calculated from the reanalysis
dataset as a known variable to support snow density estimation. Secondly, the vegetation
and soil roughness parameters (τ, ω, SD) were assumed the same in snow-free and snow-
covered periods. However, at least τ and ω were found to vary with the air temperature in
subzero conditions, especially at low frequencies [58]. Thirdly, natural snow is a layered
medium. However, we neglected the possible vertical variation in snow density in the
snow profile, although the study in [7] mentioned that the retrieved snow density may
be closer to the bottom snow density instead of the average. Fourthly, factors such as wet
snow can make snow density retrieval impossible or unreliable. The ice lens and snow crust
formed during the freeze–thaw process can complicate the snow stratigraphy, increase
the refraction inside the snow, and make the current retrieval algorithm less accurate.
These factors were not considered in this paper, as simplifications were made to make
snow density retrievable from satellites. Additionally, the snow density retrieval may be
influenced by SMOS observation errors, footprint differences in different incidence angles,
lakes (frozen or unfrozen), ice, and complex landscapes, etc.

In-situ measurements used to calculate the error of our retrieval algorithm were from
the point scale, with a single site inside each SMOS grid. Therefore, differences in scale
between the retrieved and the measured snow density may result in an overestimation of
the uncertainty of our algorithm.

In the previous section, we noted that the retrieved snow density showed stronger
biases at some stations. Figure 10 shows that the systematic bias can be corrected if the
three predetermined parameters (τ, ω, SD) are artificially tuned to match the measured
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snow density. However, this result assumes that the target snow density is provided. As
shown in Figure 10, the bias can be reduced to below 15 kg/m3 at all three stations.

Figure 10. Time series and scatterplots of in-situ and retrieved snow density using manually adjusted
predetermined parameters (τ, ω, SD) at the three stations: (a) HQ-CM3D, (b) HQ-CM4G, (c) HQ-CMPX.

To analyze the GLDAS snow density bias compared to the measurements, we ex-
amined the relationships between GLDAS and the in-situ snow depth (SD) and snow
water equivalent (SWE), as seen in Figure 11a,b, respectively. The figures reveal that many
GLDAS SD values between 50 and 100 cm are unbiased but the corresponding SWEs are
underestimated. Additionally, some SDs in the deep snow range are seriously under-
estimated. Figure 11c provides an example of one station to explain this phenomenon.
GLDAS SD coincides well with in-situ measurements in the early snow season and begins
to underestimate after mid-January due to the underestimated snowfall amount in GLDAS
before the snowmelt. After the snowmelt onset (which occurs almost simultaneously for
GLDAS and the station in mid-March), the GLDAS snowpack melts faster than the station,
because it has less SWE to melt and the single-layer snow scheme utilized in the Noah
model overestimates snowmelt speed [59]. Melt–refreeze events can dramatically increase
the snow density. Therefore, during the snowmelt period, GLDAS overestimates the snow
density compared to in-situ measurements.
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Figure 11. Scatterplots of (a) observed SD (snow depth) against reanalysis SD from GLDAS, (b) ob-
served SWE against reanalysis SWE from GLDAS, and (c) time series of observed SD and GLDAS SD
at station HQ-CM4L.

6. Conclusions

This study conducted snow density retrieval experiments based on L-band multiple-
angle SMOS satellite observations and compared the results with the in-situ measurements
from 43 CanSWE stations in Quebec, Canada. A forward model was used to describe
the emission of the soil–snow–vegetation system. The vegetation and soil roughness
parameters were objectively determined using SMOS TB in the snow-free period and
applied to estimate the snow density. The new retrieval method achieved bias of 9.4 kg/m3

and an RMSE of 83 kg/m3 for snow density at all stations. Currently, some stations show
large systematic biases, but these biases can be reduced.

The need for prior information about soil permittivity could be a challenge for satellite-
based snow density retrieval. Similarly, to estimate the unfrozen soil water content under
the snowpack, a previous study [60] introduced the snow density from the Snow Data
Assimilation System (SNODAS) reanalysis dataset [61]. Whether we can develop a method
to simultaneously estimate the snow density and soil permittivity from satellites, as with
ground-based experiments, remains to be seen.

This paper extended the snow density retrieval from a ground-based radiometer to
satellite application and established a method to solve the forest influence problem at coarse
resolutions. Although the satellite-retrieved snow density is noisier than that of GLDAS,
it is generally less biased and shows better time series variation characteristics. Thus,
estimating the snow density from satellites using SMOS has scientific value. We anticipate
a lower RMSE for SMOS-retrieved snow density if the vegetation and soil roughness
parameters can be better estimated and the water body influence can be properly treated.
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Appendix A

Table A1. The validation metrics of retrieved snow density compared with in-situ measurements at
each station.

Stations

R Bias
kg/m3

RMSE
kg/m3

ubRMSE
kg/m3 Measurement Number

October
–

May

December
–

March

October
–

May

December
–

March

October
–

May

December
–

March

October
–

May

December
–

March

October
–

May

December
–

March

HQ-CM3T 0.35 - −33.44 −12.95 78.55 52.97 71.08 51.36 93 62
HQ-CM2Z 0.7 0.50 111.85 122.96 124.44 126.09 54.53 27.91 104 69
HQ-CM4C 0.83 0.65 49.63 51.61 72.24 64.25 52.49 38.27 103 69
HQ-CM2N 0.76 0.37 −29.4 −40.16 69.71 61.65 63.21 46.77 104 72
HQ-CM3G 0.71 0.57 12.45 13.95 79.65 69.60 78.67 68.18 107 73
HQ-CM5L 0.6 0.41 −24.41 −3.22 61.96 47.67 56.95 47.56 105 70
HQ-CM4G 0.3 0.01 108.75 118.57 131.65 123.14 74.19 33.26 104 70
HQ-CMMZ 0.77 0.49 −34.98 −31.97 64.34 50.26 54 38.78 109 72
HQ-CMPP 0.56 0.12 −19.03 4.16 75.63 65.49 73.19 65.36 93 59
HQ-CM3Q 0.56 0.37 11 9.67 69.13 48.37 68.25 47.39 84 58
HQ-CM2W 0.66 0.27 −21.54 −23.67 72.96 59.21 69.71 54.28 101 68
HQ-CM4A 0.36 0.46 −49.88 −32.27 98.15 58.26 84.53 48.51 94 64
HQ-CM4H 0.36 0.40 12.14 31.34 71.24 51.31 70.19 40.63 105 70
HQ-CM3V 0.3 0.31 −0.17 15.82 73.74 40.10 73.74 36.84 99 61
HQ-CMLQ 0.77 0.56 −16.64 −2.34 60.38 46.01 58.05 45.95 98 63
HQ-CM4L 0.42 0.29 23.64 14.16 67.88 37.56 63.63 34.79 102 60
HQ-CM4N 0.73 0.43 −15.63 −8.07 55.39 40.87 53.14 40.07 107 71
HQ-CM3P 0.43 - 31.69 52.68 76.22 75.39 69.32 53.93 103 69
HQ-CMPX 0.66 0.15 −77.45 −61.53 90.86 69.38 47.51 32.05 88 55
HQ-CM2U 0.82 0.55 62.91 69.30 90.03 81.75 64.4 43.36 109 71
HQ-CMPN 0.6 0.32 −26.66 −6.69 80.53 60.57 76 60.20 96 67
HQ-CM2K 0.82 0.65 25.48 33.71 46.8 38.72 39.26 19.05 105 64
HQ-CM3H 0.73 0.63 44.79 52.42 81.05 75.35 67.55 54.13 109 72
HQ-CM4D 0.62 0.37 40.4 49.10 77.74 71.73 66.41 52.30 97 67
HQ-CM5H 0.74 0.25 42.72 52.34 73.61 78.72 59.95 58.80 99 64
HQ-CMKW 0.63 0.58 4.12 18.10 61.56 49.20 61.42 45.75 115 73
HQ-CM4M 0.63 0.52 −76.54 −72.32 100.48 92.70 65.09 57.99 88 66
HQ-CM4E 0.62 0.46 −22.16 −2.25 62.7 36.71 58.65 36.64 103 70
HQ-CM4F 0.71 0.65 −16.36 −1.53 65.08 49.54 62.99 49.51 105 71
HQ-CM3L 0.35 0.08 23.48 19.26 105.1 106.59 102.44 104.84 53 49
HQ-CM3U 0.36 - −26.36 −11.21 92.11 60.07 88.26 59.01 87 61
HQ-CM3Y 0.56 0.32 18.96 13.59 71.88 50.40 69.33 48.53 83 57
HQ-CM3D 0.5 0.31 98.86 102.81 114.94 106.53 58.64 27.91 107 70
HQ-CM3C 0.56 0.13 91.9 120.15 117.25 131.32 72.81 53.00 101 68
HQ-CM2X 0.05 - −22.72 −20.42 111.01 89.50 108.66 87.14 79 57
HQ-CM3F 0.79 0.67 −18.01 −33.46 75.39 65.92 73.2 56.80 86 66
HQ-CM2S 0.42 0.08 18.14 34.92 72.66 59.12 70.36 47.71 98 66
HQ-CM4J 0.8 0.83 6.98 30.42 52.69 42.14 52.23 29.16 108 66
HQ-CMBS 0.62 0.21 −5.73 10.30 56.53 44.99 56.24 43.79 100 63
HQ-CMRS 0.22 - −70.72 −66.93 114.79 89.79 90.43 59.85 79 57
HQ-CM3Z 0.79 0.70 −17.54 −17.85 61.28 48.86 58.72 45.48 99 71
HQ-CM2M 0.64 0.61 90.63 106.50 108.32 113.65 59.33 39.68 97 65
HQ-CM3S 0.37 0.08 35.6 44.35 100.46 88.04 93.94 76.05 80 60

ALL SITES 0.5 0.29 9.44 18.33 82.89 72.31 82.35 69.95 4161 2816
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