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Abstract: Nowadays, different machine learning approaches, either conventional or more advanced,
use input from different remote sensing imagery for land cover classification and associated deci-
sion making. However, most approaches rely heavily on time-consuming tasks to gather accurate
annotation data. Furthermore, downloading and pre-processing remote sensing imagery used to be a
difficult and time-consuming task that discouraged policy makers to create and use new land cover
maps. We argue that by combining recent improvements in deep learning with the use of powerful
cloud computing platforms for EO data processing, specifically the Google Earth Engine, we can
greatly facilitate the task of land cover classification. For this reason, we modify an efficient semantic
segmentation approach (U-TAE) for a satellite image time series to use, as input, a single multiband
image composite corresponding to a specific time range. Our motivation is threefold: (a) to improve
land cover classification performance and at the same time reduce complexity by using, as input,
satellite image composites with reduced noise created using temporal median instead of the original
noisy (due to clouds, calibration errors, etc.) images, (b) to assess performance when using as input
different combinations of satellite data, including Sentinel-2, Sentinel-1, spectral indices, and ALOS
elevation data, and (c) to exploit channel attention instead of the temporal attention used in the
original approach. We show that our proposed modification on U-TAE (mIoU: 57.25%) outperforms
three other popular approaches, namely random forest (mIoU: 39.69%), U-Net (mIoU: 55.73%), and
SegFormer (mIoU: 53.5%), while also using fewer training parameters. In addition, the evaluation
reveals that proper selection of the input band combination is necessary for improved performance.

Keywords: convolutional neural networks; deep neural networks; land cover classification; machine
learning; random forest; Sentinel-1; Sentinel-2; transformer models

1. Introduction

Modern techniques in Earth observation and remote sensing combine multi-temporal
data from different satellites to extract important information that is useful in decision
making [1], as well as in land cover/land use classification [2].

The EU’s Copernicus Sentinel constellation offers both optical (e.g., Sentinel-2 [3]) as
well as synthetic aperture radar (SAR, Sentinel-1 [4]) data. Similarly, other satellite-based
products (e.g., Landsat-5, Landsat-7, and Landsat-8 [5] provided in cooperation between
NASA and the U.S. Geological Survey) supply high-quality, free data capable of estimating
parameters related to land use and environmental issues [6]. The free and open data policies
adopted by the EU Copernicus program and by NASA and the U.S. Geological Survey can
be considered as a milestone of space technology [7].

Land cover and land use (LCLU) is rapidly changing due to natural and anthropogenic
factors, including natural and man-made disasters, as well as human activities. Important
cues regarding serious environmental problems and risks can be provided to managing
authorities by monitoring LCLU changes. For this reason, accurately assessing LCLU maps
and their alterations is crucial for the effective management of natural resources and the
continuous monitoring of environmental changes [8]. Towards this aim, LCLU monitoring

Remote Sens. 2023, 15, 2027. https://doi.org/10.3390/rs15082027 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15082027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8465-6258
https://doi.org/10.3390/rs15082027
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15082027?type=check_update&version=2


Remote Sens. 2023, 15, 2027 2 of 18

models were formulated to evaluate changes in land cover and use patterns for diverse
applications, e.g., land cover and use changes were used to monitor coastal zone areas [9]
and wetland zones [10].

The rapid development in space technologies and the growing number of Earth
observation satellites’ sensors produce an expanding amount of data. However, producing
land cover maps from these data is a complicated, labour intensive, and time-consuming
process [11]. Since land cover maps are difficult to create, they usually have limited
temporal resolution. For instance, EU Corine land cover products [12] are only available
for years 1990, 2000, 2006, 2012, and 2018, while the recent European Space Agency (ESA)
WorldCover products [13] are only available for years 2020 and 2021. Therefore, it is
significant to create machine learning models that can accurately create land cover maps
from satellite data to enhance the monitoring of land cover changes.

Conventional machine learning techniques are commonly employed for managing
these medium resolution satellite image time series. Prior work on land cover classification
utilised algorithms, such as random forest [14,15], hidden Markov models [16,17], or
support vector machines [18], to classify manually designed features, such as spectral
statistics and phenological metrics [19,20]. As consumer computing power is significantly
increasing [21], and the cost is decreasing, deep learning methods are gaining popularity
due to their ability to extract more representative features by processing large amounts
of data. For instance, convolutional neural networks (CNNs) were adopted from the
wider field of computer vision to establish spatial representations of satellite imagery
or image time series [22–24]. In addition, network architectures based on CNNs, such
as the well-known U-Net model that was initially recommended for biomedical image
segmentation [25], are able to automatically produce meaningful pixel-based (semantic)
image segmentation. For this reason, the U-Net model and its variants were already utilised
in many remote sensing problems to produce accurate segmentation masks, including land
cover and use prediction [26–30].

The transformer architecture [31], originally proposed to handle sequential data in
natural language processing (NLP) tasks, captures long-range dependencies using self-
attention layers, instead of traditional CNNs or recurrent neural networks (RNNs) that can
encode efficiently only local dependencies, i.e., between neighbouring elements.

Due to their efficiency, transformers were used extensively in numerous computer
vision tasks. A systematic review of recent advances in remote sensing based on transform-
ers is made in [32]. In particular, the work of [33] introduces vision transformers for image
recognition tasks, representing an image as a sequence of patches and processing it via a
conventional transformer encoder, similar to those used in NLP tasks.

In semantic segmentation, Zheng et al. [34] proposed the segmentation transformer
(SETR), which attained state-of-the-art results for standard semantic segmentation bench-
marking datasets, demonstrating that using transformers on this task is a viable option. In
order to improve the computational efficiency on large images and to obtain multi-scale
features, architectures such as the pyramid vision transformer (PVT) [35] or Swin trans-
former [36] were proposed. Extending this work, the SegFormer architecture [37] managed
to achieve a new state-of-the-art performance level regarding efficiency, accuracy, and
robustness across three semantic segmentation datasets that are available to the public. This
improved performance is mainly due to a novel positional-encoding-free and hierarchical
transformer encoder and a lightweight All-MLP decoder that produces a potent, powerful
representation without involving complicated and computationally intensive modules.

Garnot et al. [38] introduced a modified version of the original transformer encoder
by Vaswani for classifying crops in predefined agricultural parcels, based on the Sentinel-
2 image time series. The architecture, named PSE + TAE, used pixel-set encoders to
extract learned statistics of spectra distribution in the spatial dimensions of the parcels
and is shown to compare favourably with other transformer-, CNN-, and RNN-based
architectures. However, further modifications in the temporal encoder transformer were
introduced in [39], in order to avoid inessential computations and parameters, while
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preserving a significant level of expressiveness and flexibility. This highly optimised version
of the encoder transformer, namely the lightweight temporal encoder transformer (LTAE),
was integrated within a U-NET-like architecture, namely U-TAE, in [40] for semantic
segmentation of the multispectral satellite time series. Although this approach can also be
applied for land cover classification, the use of the satellite image time series as an input
has significant disadvantages: (a) this data can be very noisy due to clouds, calibration
errors, etc., and (b) memory requirements are significantly increased as the number of input
images and channels increases. To address these issues, we propose to use the Google
Earth Engine platform [41] to preprocess satellite data within a specific time range from
multiple sources, such as Sentinel-2, Sentinel-1, and ALOS elevation, in order to create
image composites with reduced noise, by using a temporal median filter. Furthermore, we
modify the U-TAE approach to use channel attention for calculating weights to different
channels, instead of the temporal attention used in the original approach.

The main contributions can be summarised as follows:

1. We create Sentinel-2 and Sentinel-1 composite images at 12 coastal, riparian or lakeside
locations in Greece corresponding to specific time ranges within the year 2020. The
resulting images, each containing 17 channels, along with associated land cover
annotation from the ESA WorldCover product, will be freely provided as an open
dataset for training DL models for land cover classification;

2. We use this dataset to train a modified U-TAE approach, which uses band attention
instead of temporal attention;

3. We evaluate the performance obtained by selecting as input different band combina-
tions and;

4. We perform a comparative performance evaluation of the proposed approach with
two state-of-the-art deep semantic segmentation (U-NET, SegFormer) architectures
and one traditional ML algorithm (random forest).

2. Materials and Methods
2.1. Overview

An overview of the proposed approach is illustrated in Figure 1. More specifically,
Sentinel-2 and Sentinel-1 composite images are created and pre-processed using Google
Earth Engine from 12 coastal, riparian, or lakeside locations in Greece corresponding to
specific time ranges within the year 2020. The resulting images are split into 256 × 256 tiles
and associated labels are obtained from the ESA WorldCover product. Training of the
different ML/DL approaches is performed using input data from 11 regions, while the
last region is used for testing. The following subsections will describe in more detail
this methodology.
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2.2. Regions of Interest

From both a physical and anthropogenic geographical perspective, Greek landscapes
represent three different, albeit highly variable and historically changing, geographical
entities [42], namely (a) island, (b) coastal, and (c) inland landscapes. In order to create
the training set, eleven region of interests (ROIs) were selected, namely three island cities
(Chalcida in Euboea, Mytilene in Lesvos, and Agios Nikolaos in Crete), four coastal cities
(Kavala, Alexandroupoli, Preveza, and Northeastern Laconia) and four lakeside or riparian
inland regions (Edessa, Kastoria, Kozani, and Karditsa), as shown in Figure 2. The ROI
used for testing is the greater region of Thessaloniki, which includes Thermaikos Gulf
and the Axios Delta National Park. The area was chosen as the Greek pilot site for the
EPIPELAGIC project [43], as it is a coastal area that contains three river deltas and has
different land uses as well as various economic activities, which in many cases have
significant environmental impacts.
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2.3. Remote Sensing Data Selection

We opt to use satellite data from Sentinel-2 (Level 2A) [3] and Sentinel-1 (GRD) [4]
missions, within the year 2020 (two median six months images, January to June and July
to December) as well as associated spectral indices and digital elevation model (DEM)
products are used for the creation of the training and testing datasets. The corresponding
annotations are obtained from the ESA WorldCover v100 project.

Specifically, we use Sentinel-2 Level-2A images with 12 multispectral bands (resolu-
tions of 10, 20, and 60 m/pixel) representing surface reflectance. However, similarly to [38],
the noisy atmospheric bands (i.e., bands for aerosols and water vapor with 60 m/pixel) are
omitted since they cannot provide any useful information, as on all images, cloud masks
are applied.

Additionally, the Sentinel-1 GRD (S1) data used are the backscatter intensities that
can be measured from each of two polarization channels, namely VH and VV. The active
microwave data from the synthetic aperture radar (SAR) has enormous potential for
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mapping and monitoring land cover, notably in identifying the water bodies and wetland
vegetation [4]. This is due to the capabilities of day and night observation, as well as
cloud penetration.

Furthermore, to improve the overall land cover classification, three indices derived
from the Sentinel-2 mission were included: the normalised difference vegetation index
(NDVI) [44], the normalised difference built-up index (NDBI) [45], and the normalised
difference water index (NDWI) [46], which are calculated based on the Equations (1)–(3):

NDVI =
NIR − RED
NIR + RED

(1)

NDBI =
SWIR1 − NIR
SWIR1 + NIR

(2)

NDWI =
GREEN − NIR
GREEN + NIR

. (3)

NDVI provides important cues regarding the existence of live green vegetation. It
is often used to monitor drought, forecast agricultural production, and assist in forecast-
ing fire zones and desert offensive maps. NDBI distinguishes urban areas with higher
reflectance in the shortwave infrared spectral range and therefore it is used to specify
human settlements, as well as other infrastructure. Finally, high values of NDWI are used
to identify water bodies.

Additionally, the 30 m resolution digital surface model (DSM) from the ALOS World
3D—30 m (AW3D30) v3.2 product released in 2021 from the Japan Aerospace Exploration
Agency (JAXA) was selected to supply auxiliary data, namely elevation and slope, that can
be useful for detecting land cover. Figure 3 illustrates different bands from the input data
set used for testing.
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The annotation data used for training and evaluation was obtained from the European
Space Agency (ESA) WorldCover v100 v3.2 product [13], released in 2021. This product
provides a global land cover map for the year 2020 at 10 m resolution based on Sentinel-1
and Sentinel-2 data. It consists of eleven land cover classes, namely trees, shrubland, grass-
land, cropland, built-up, barren/sparse vegetation, snow and ice, open water, herbaceous
wetland, mangroves, and moss and lichen. Three classes (snow and ice, mangroves, and
moss and lichen) are not present in the ROIs used for this study and were omitted. As
shown in Figure 4, the dataset is greatly unbalanced, with more than half of the dataset
belonging to two classes (trees and open water), while three classes (herbaceous wetland,
built-up, and barren/sparse vegetation) are underrepresented (0.8%, 2.8%, and 3.1% of the
dataset, respectively).

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. Visualisation of different bands from the input dataset. 

The annotation data used for training and evaluation was obtained from the Euro-
pean Space Agency (ESA) WorldCover v100 v3.2 product [13], released in 2021. This prod-
uct provides a global land cover map for the year 2020 at 10 m resolution based on Senti-
nel-1 and Sentinel-2 data. It consists of eleven land cover classes, namely trees, shrubland, 
grassland, cropland, built-up, barren/sparse vegetation, snow and ice, open water, herba-
ceous wetland, mangroves, and moss and lichen. Three classes (snow and ice, mangroves, 
and moss and lichen) are not present in the ROIs used for this study and were omitted. As 
shown in Figure 4, the dataset is greatly unbalanced, with more than half of the dataset 
belonging to two classes (trees and open water), while three classes (herbaceous wetland, 
built-up, and barren/sparse vegetation) are underrepresented (0.8%, 2.8%, and 3.1% of the 
dataset, respectively). 

 
Figure 4. Bar chart showing the distribution of the eight classes in the dataset. 

  

33.60%6% 16.50%13.30%2.86%3.10% 23.80%0.84%

TreesShrublandGrasslandCroplandBuilt-upBarren / sparse vegetationOpen waterHerbaceous wetland

Figure 4. Bar chart showing the distribution of the eight classes in the dataset.

2.4. Remote Sensing Preprocessing

Google Earth Engine (GEE) is a platform for scientific analysis and visualisation of
geospatial datasets. GEE also provides application programming interfaces (in JavaScript
and Python) and other tools for the analysis of large datasets [41]. Pre-processing was
performed remotely using Python in GEE, resulting in a single multichannel image for each
ROI, which was then downloaded locally.

Specifically, regarding the Sentinel-2 Level 2A multispectral imagery, a two-step
preprocessing procedure is used: first, all available images in the year 2020 with less
than 5% cloud coverage are selected and any cloud and cirrus pixels are masked-out using
the QA60 cloud mask. At the second stage, a temporal median filter is applied to each
pixel of the selected images, resulting in a single, noise-free composite multispectral image.
Similarly, regarding Sentinel-1 SAR GRD imagery, a temporal median filter is applied to
each pixel of all available images in the year 2020, resulting in a single multichannel image
composite. Finally, two additional channels are generated from the DSM band of the ALOS
AW3D30 product, i.e., the elevation (ELEVATION) value in meters provided for each pixel,
as well as the slope (SLOPE) in degrees, which was computed using a built-in GEE function.
All bands and products were resampled to 10 m/pixel resolution to achieve the same
resolution of the WorldCover product.

2.5. Land Cover Classification Algorithms

In the following, we briefly introduce our proposed modified version of U-TAE as well
as two other popular semantic segmentation algorithms, namely the CNN-based U-Net
and the transformer-based SegFromer. We also present the well-known random forest
algorithm, which is often used for land cover classification. In more detail:

(a) U-Net with temporal attention encoder (U-TAE) [40]: This model encodes a mul-
titemporal image sequence in the following steps: (1) a shared multi-level spatial
convolutional encoder embeds each image in a simultaneous and independent way,
(2) a temporal attention encoder creates a single feature map for every level by stack-
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ing the temporal dimensions of the resulting sequence. Specifically, in order to reduce
the memory and computational requirements, for every pixel it produces temporal
attention masks at the lowest resolution, which are then spatially interpolated at all
resolutions. (3) A convolutional decoder calculates features at every resolution level
and the final predicted segmentation mask is produced as the output of the highest
resolution level;

The architecture uses group normalisation with 4 groups. The input of the original
network was modified by changing the shape of the image time sequence from T × C
× H × W to C × 1 × H × W, with T the number of temporal instances, C the number
of channels, and H × W the height and width of each image. The first two dimensions
were permuted to take advantage of the attention module of the U-TAE architecture and to
ensure channel-wise attention.

(b) U-Net [25]: This is a U-shaped architecture with an encoder and a decoder that
extends the fully convolutional networks segmentation for semantic segmentation [47].
Through a step-by-step downsampling operation, high-level features from the encoder
are extracted, while the decoder gradually upsamples these features and combines
the output with skip connections to return the feature map to the size of the input.
The use of skip connections is important to enable feature reusability and stabilise
training and convergence;

(c) SegFormer [37]: This is a hierarchical transformer architecture that extends the seg-
mentation transformer (SETR) proposed in [34]. In the encoding stage, efficient
transformer modules are used, while in the decoding stage, multilayer perceptrons
(MLPs) are applied. Specifically, a transformer encoder that has a hierarchical struc-
ture outputs multiple features, each divided by ascending powers of two without
positional encoding. This increases performance even if the training and testing resolu-
tions are different. A lightweight MLP decoder aggregates information from different
layers, combining both local and global attention to produce powerful representa-
tions. Advantages of the proposed algorithm include: (i) the hierarchical transformer
structure, which significantly reduces the computational cost without restricting the
effective receptive field, (ii) the positional-encoding free encoder, and (iii) a simple,
straightforward, and very efficient decoder;

(d) The random forest (RF) algorithm [48] is an ensemble learning algorithm, i.e., com-
bines multiple ML models to obtain the final solution to classification or regression
problems. In this case, we used multiple decision trees for land cover classification.
Decision tree-based classifiers were widely studied over the past two decades and
were used in many practical applications, including remote sensing, due to several
advantages: the concept is intuitively appealing, training is relatively simple, and
classification is fast. Unlike many machine learning models that function as “black
boxes”, a decision tree is an explainable machine learning algorithm and its logic can
be fully understood by simply visualising the decision tree. Random forest algorithms
for classification use a learning method that builds a set of decision trees during
training and outputs the average prediction of the individual trees. Random decision
forests are preferred because they avoid the tendency of decision trees to overfit on
the training set. Although some degree of explainability is lost as the number of
decision trees increases, it is still possible to determine feature importance in a trained
RF model.

2.6. Implementation Details and Metrics

In the case of the three DL algorithms, the training process was implemented using
PyTorch and was run on a NVIDIA RTX 3080 with 12 GB of memory. To overcome the
memory constraints and requirements for images of fixed size, all training and testing
images are split into non-overlapping square tiles of size 256 × 256. Thus, 4258 training
and 204 square tiles were created and all DL algorithms were trained on all available tiles
of size 256 × 256.
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The U-TAE model was run using the official code repository, where the required
changes to the model architecture were made to use channel attention instead of temporal
attention. The initial learning rate value is 10−3, with an Adam optimiser and cross-entropy
loss. Due to memory constraints, the U-TAE model was run using a batch size of 2, with
the exception of the 17B combination, which used batch size of 1 (Table 1).

Table 1. Input band combination dictionary.

Code Input Channels

3B B2, B3, B4
4B B2, B3, B4, B8
6B B2, B3, B4, B8, B11, B12
10B B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12
IND NDVI, NDBI, NDWI
S1 VV, VH
DEM ELEVATION, SLOPE
13B 6B + IND + S1 + DEM
17B 10B + IND + S1 + DEM

The SegFormer and the U-Net models were run using the mmsegmentation code-
base [49], for efficient development and experimentation. The SegFormer models had a
starting learning rate of 6 × 10−5, a polynomial learning rate schedule, and an AdamW
optimizer [50]. The U-Net model used a SGD optimiser with a starting learning rate of
10−2. The batch size is 8 and cross-entropy loss for both models.

Data normalisation was performed on all deep learning algorithms by calculating
(X-mean)/standard deviation, where X is the corresponding value, mean and standard
deviation are concerning each corresponding image. This normalisation technique was
seen to improve the accuracy of the results in preliminary tests that were omitted from
the paper.

During training of the three deep learning models, no augmentation techniques were
used. Furthermore, the U-Net and SegFormer models were adapted to accommodate
multichannel image training, as the original techniques were developed for 3-channel
RGB images.

Regarding the RF algorithm, in order to reduce the memory and computational
requirements, a sampling grid is defined in all training images and only pixels on this
sampling grid are considered for training. Experiments showed that the optimal grid cell
size was equal to 64. The parameters of the random forest classifier were selected using
the GridSearch function. For example, when using 17 bands, the optimal parameters are:
(a) number of trees: 41, (b) minimum samples in order to split a tree: 10, and (c) minimum
number of leaf samples on a leaf node: 2.

To evaluate the results of the algorithms, two metrics were used: overall accuracy
(OA) and mean intersection-over-union (mIoU). In semantic segmentation tasks, mIoU is
widely used as an evaluation metric. It is a measure of how well the predicted segmentation
map aligns with the ground truth segmentation map. Another important metric in every
classification task is overall accuracy (OA). OA is the ratio of the correctly classified samples
to the total number of samples, as shown in Equation (4). More specifically:

OA =
TP + TN

TP + TN + FP + FN
(4)

where TP (FP) is the number of true (false) positives and TN (FN) is the number of true
(false) negatives. On the other hand, mIoU is defined as the average of the intersection-over-
union (IoU) values between each predicted class and ground truth class across all pixels in
an image, i.e.,

mIoU =
1
C ∑C

1 IoUC (5)
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where C is the total number of classes and IoU:

IoU =
TP

TP + FP + FN
. (6)

3. Results
3.1. Experimental Results

In the experiments, we use different band combinations as input. For more clarity, in
Table 1, we provide a dictionary of codes describing each band combination used.

The experimental results for the models are presented in Table 2. The highest mIoU and
OA values were obtained using the U-TAE and U-Net models with the 13B combination,
while the SegFormer model and its variations demonstrate generally inferior performance.

Table 2. Comparisons between the three deep learning models and random forest, with different
input band combinations. Highest overall is U-TAE with 13B combination (red), followed by U-NET
with 13B combination (blue).

3B 6B 13B 17B

OA(%) mIoU(%) OA(%) mIoU(%) OA(%) mIoU(%) OA(%) mIoU(%) Params (In Millions)

Random Forest 39 22.28 60 31.16 68 39.69 68 38.89 0.24

SegFormer B0 63.04 37.91 82.78 49.99 84.15 53.50 77.65 46.14 3.7

SegFormer B2 71.29 40.09 80.28 48.96 80.28 47.39 80.96 48.96 27.5

SegFormer B5 75.84 40.30 82.40 49.61 83.48 52.80 80.28 48.92 84.6

U-NET 74.02 43.44 80.90 51.17 83.99 55.73 79.85 49.05 29.0

U-TAE 71.08 38.88 76.67 47.54 84.89 57.25 80.26 47.27 1.1

The U-TAE model yields better results than the other two DL models, with much
fewer parameters. In Figure 5a we can see that with 13 band input the U-TAE model
both outperforms the other two in mIoU score, and is lighter in parameters. In Figure 5b,
the chart shows the mIoU scores of Table 2, where U-TAE is clearly outperforming the
other models.
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Figure 5. (a) The mIoU score for each model in regard to its parameters. (b) The effect of band input
on each model’s mIoU score. The highest overall result is achieved by U-TAE.

It is also noteworthy that increasing the input bands from 13 to 17 actually decreases
the score. That means that not all the information in the input is beneficial to the accuracy
of the model, and the addition of certain bands can actually reduce it. All models show a
decline in the metrics when moving from Sentinel-2 6 bands to 10 bands, suggesting that
more is not always better. In the following ablation study, we will try to further investigate
this phenomenon.

Aside from the metrics, it is important that the model also has good recall, precision,
and overall more concise class predictions. In Figure 6a–d we see that the U-TAE model has
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the best recall and precision compared to the other models. Additionally, the U-TAE model
predicts the classes with less representation in the dataset, i.e., barren/sparse vegetation,
built-up, and herbaceous wetland, with fewer misclassifications, i.e., FPs and FNs.
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Figures 7 and 8 illustrate the ground truth segmentation map of the testing set (Thes-
saloniki), and the predicted segmentation maps of each model for 13B. From the generated
maps we can see that the U-TAE model is able to capture the minute intricacies of the area
better than the other models. For instance, the SegFormer and U-Net models cannot classify
the small grassland regions in the upper left part of the map as well as the U-TAE model.
We can also observe that the U-TAE model is better at mapping the built-up class, thus
representing the urban regions of the area more accurately. Figure 9 illustrates qualitative
prediction results for selected regions of the testing dataset, clearly demonstrating the
superior performance of the U-TAE model.
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3.2. Band Combination Ablation Study

We conducted a study on the effects of using different band combinations as input
to the modified U-TAE model, which achieved the highest mIoU (57.25%). The purpose
of this study is to assess the importance of each band in real-world applications and to
determine the band combinations that yield optimal results, avoiding use of unnecessary
noisy information.

The combination of the 6B (from S2), S1, and DEM bands appeared to be the most
successful input to the U-TAE model (mIoU: 57.58%), surpassing even the previous highest
mIoU, which used additionally the IND bands. From Figure 10, it can be inferred that the
addition of IND bands generally tends to confuse or hinder the model accuracy. On the
contrary, the addition of DEM information seems to significantly improve results, indicating
that the model benefits by the knowledge of the geographical terrain.

We also experimented with the 6B combination to examine the relative importance of
RGB bands. Specifically, we used only the three thermal infrared S2 bands (NIR, SWIR1,
and SWIR2), combined with the S1 and DEM bands. This configuration yields a result
that is significantly higher than many other combinations (Figure 10) of information we
examined, with a mIoU score that is close to the two highest. Thus, we observe that the
infrared information is at least as important as the RGB, if not more, given that the mIoU
decreases by only 1.24% when omitting the RGB bands.
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4. Discussion

Recently, the utilisation of deep learning approaches using input from remote sensing
images for land cover and land use classification gained popularity [51], as it can overcome
limitations of already available products [52]. In this paper, we utilise a modified version
of a robust semantic segmentation approach based on temporal attention, namely U-TAE,
for land cover classification. We evaluate its performance by combining different remote
sensing data and compare results against two other deep learning approaches, namely
U-Net and SegFormer, as well as a traditional ML method, RF.

The use of deep learning for land cover classification by fusing multispectral and SAR
data started in early studies [53], where both Sentinel-1 as well as Landsat 8 data are used;
Ref. [54] implemented a U-Net network for large-scale land cover classification using only
RGB Sentinel-2 images and hand-labeled annotation, achieving promising results. In [55], a
dataset containing 27,000 labeled and geo-referenced images is constructed for land use
and land cover classification, while a correspondng benchmark based on CNNs is also
provided. In [56], a large-scale project is presented, exploiting cloud-based systems and
using ML for land cover classification.

While some studies suggested that the NDVI and the NIR band are the most important
bands for land cover classification considering vegetation [57], we also recommend incor-
porating Sentinel-1 data, as they enhance the ability to identify vegetation. This conclusion
is supported both by our results as well as by the results of [58], which demonstrate the
benefits of fusing Sentinel-2 and Sentinel-1 data. Another study, Ref. [59] highlighted
that ML algorithms may outperform conventional DL algorithms when large datasets are
not available.

Recently, transformer-based approaches were also widely used for land cover and crop
classification with Sentinel 2 imagery [38,60–63], but mainly employ temporal attention.
Scheibenreif et al. [64] used large datasets of unlabelled remote sensing data (Sentinel-2
and Sentinel-1 image pairs) for self-supervised pre-training of vision transformers. Such
self-supervised transformer-based methods can offer great potential; as the labeling of large
remote sensing datasets is a very tedious procedure, such self-supervised approaches have
strong potential.

We believe that in the near future, transformer-based architectures, which employ
self-attention to differentially weigh parts of the input signal based on their significance,
will play a crucial role in advancing remote sensing land cover classification. Transformers
already demonstrated impressive results in numerous ML applications, although in certain
cases, CNNs may still outperform them. Additionally, transformer models are highly
parallelizable, and thus suitable for processing large datasets in a reasonable time frame.

Some limitations of the proposed approach include the fact that temporal attention is
actually replaced by band attention, while a combination of both could provide improved
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results. Furthermore, any errors in the WorldCover product (or other similar products in
the future) that are used as ground truth will inevitably be propagated in our proposed
approach. Finally, another challenge is the dynamic nature of some land cover classes, such
as agriculture, wetlands, etc., which are often changing from time to time. This makes it
more difficult to accurately determine land cover, when a longer time frame is used.

5. Conclusions

The results of this paper indicate that deep learning (DL) algorithms demonstrate
significantly superior performance against traditional machine learning (ML) algorithms
in the land cover classification field. It is also noteworthy that all algorithms demonstrate
similar behaviour for specific band combinations, with the best performance obtained by
the 13B combination. This suggests that the information contained within these bands is
critical for accurate classification. This assumption is justified by the provided ablation
study, where we highlighted the importance of S1 (VV and VH bands) as well as DEM
(ELEVATION and SLOPE bands), which were seen to significantly affect the algorithm
performance. Furthermore, the NIR, SWIR1, and SWIR2 Sentinel-2 bands seem to offer
important information, as they result in good performance even without the addition of
RGB bands. Furthermore, the modification of the U-TAE algorithm to provide channel
(instead of temporal) attention seems to be promising for land cover classification. The
U-TAE algorithm’s efficiency and simplicity, with the least amount of parameters compared
to other DL algorithms, makes it an appealing choice. This is a significant outcome, as it
highlights U-TAE’s potential to outperform not only conventional DL algorithms, such as
U-Net, but also advanced hierarchical transformer-based algorithms, such as SegFormer.
Based on the results obtained in this study, future work will involve the classification of 3-
month image composites using the U-TAE. Furthermore, we plan to use similar approaches
to directly assess land cover changes through time. This approach could provide valuable
insights into land use changes and their potential impact on the environment, enabling
more effective strategies for land management.

Finally, we need to note that all land cover classification approaches examined in
this paper, including U-TAE, are actually pixel-based. Extensions towards object-based
(or “panoptic” in ML terminology) segmentation were already proposed [40]. This is an
interesting future direction, but also more challenging, as the shape of the land cover
“objects” is arbitrary, and is expected to have higher complexity.
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