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Abstract: To overcome spatial, spectral and temporal constraints of different remote sensing products,
data fusion is a good technique to improve the prediction capability of soil prediction models.
However, few studies have analyzed the effects of image fusion on digital soil mapping (DSM)
models. This research fused multispectral (MS) and panchromatic Landsat 8 (L8) bands, and MS
Sentinel 2 (S2) and panchromatic L8 bands using the Brovey, Intensity–Hue–Saturation and Gram–
Schmidt methods in an agricultural area in Yellow River Basin, China. To analyze the effects of image
fusion on DSM models, various SOC prediction models derived from remote sensing image datasets
were established by the random forest method. Soil salinity indices and spectral reflectance from all
the remote sensing data had relatively strong negative correlations with SOC, and vegetation indices
and water indices from all the remote sensing data had relatively strong positive correlations with
SOC. Soil moisture and vegetation were the main controlling factors of the SOC spatial pattern in the
study area. More spectral indices derived from pansharpened L8 and fused S2–L8 images by all three
image fusion methods had stronger relationships with SOC compared with those from MS L8 and
MS S2, respectively. All the SOC models established by pansharpened L8 and fused S2–L8 images
had higher prediction accuracy than those established by MS L8 and MS S2, respectively. The fusion
between S2 and L8 bands had stronger effects on enhancing the prediction accuracy of SOC models
compared with the fusion between panchromatic and MS L8 bands. It is concluded that digital soil
mapping and image fusion can be utilized to increase the prediction performance of SOC spatial
prediction models.

Keywords: digital soil mapping; soil organic carbon; remote sensing; satellite data

1. Introduction

Soil is a crucial component of the ecological environment and closely related to food
security and ecological functions including water retention, carbon sequestration, and
climate change mitigation [1]. Assessing the spatial characteristics of soil nutrient contents
in farmland can provide important information about soil fertility, sustainable soil man-
agement, food security and ecosystem health [2]. Digital soil mapping (DSM) techniques
are important tools to show the spatial pattern of soil nutrients in wetland [3], forest [4],
grassland [5] and farmland [6,7] areas. DSM can overcome the disadvantages of tradi-
tional soil mapping and has been widely utilized to quantify soil information with higher
temporal–spatial resolution and model accuracy, and lower uncertainty [8]. Soil properties
in agricultural ecosystems are highly dynamic and affected by human-induced activities
including irrigation, fertilization, applications of pesticide and desertification [9]. They
tend to show large spatial heterogeneity compared with other ecosystems. Unlike DSM
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research at the continental and national scales [2,10], the soil-landscape attributes of DSM
including land use, parent material, climate conditions and topographic attributes at the
county and township scales do not demonstrate strong spatial variations. As a result,
remote sensing-based spectral indices can explain the spatial distribution of soil nutrients
at the county and township scales [11]. Different remote sensing products, however, have
their own characteristics and different spatial/spectral/temporal resolutions. The spectral
indices derived from various remote sensing sensors have different capabilities to predict
soil properties. For instance, L8 bands range from the visible to thermal infrared part
of the electromagnetic spectrum. At the same time, L8 lacks a red-edge band and has
medium spatial resolution (30 m). Although the spatial resolution of some remote sensing
images including WorldView-2 and GeoEye-1 is 2 m, they do not have short-wave infrared
and thermal infrared bands [12]. Data fusion of various remote sensing products with
different spatial, temporal and spectral resolution is increasingly becoming a strong trend
in remote sensing applications, which can provide important environmental factors capable
of explaining the variations in soil properties at the local scale.

Among the advantages of data fusion is its outcome or response, which is more than
the sum of the involved components [13,14]. Improved models and scientific understanding
can be achieved through incorporating various datasets and methods that are coming from
diverse disciplines [15,16]. Various studies already proved the importance of geospatial
data fusion in different research fields. The authors of [17] fused Landsat 7 images (medium
spatial and coarse temporal resolution) and MODIS images (coarse spatial and fine temporal
resolution) to derive phenological information of an agricultural system in Germany. Data
fusion of aerial photography and LiDAR can achieve automated volcano mapping with
high accuracy [18]. The incorporation of multitemporal Synthetic Aperture Radar (SAR)
and optical data can achieve higher prediction accuracy of crop types compared with
standalone SAR or optical data [19].

The application of data fusion in DSM is still in its infancy, and the effect of data
fusion on DSM is an active research topic. The incorporation of complementary satellite
data including MODIS and S2 improved the clay content estimation of the topsoil layers
in mainland France [20]. The integration of airborne hyperspectral and proximal sensing
reduced the uncertainty of soil clay content prediction models [21]. Most research focused
on the integration of laboratory spectral or proximal sensing in DSM, and the effect of
image fusion on DSM is not clarified. The authors of [22] utilized the Brovey, Gram–Schmit
(GS), and Intensity–Hue–Saturation (IHS) methods to fuse the multispectral bands and
panchromatic band of L8, and concluded that DSM models of soil total nitrogen based on
pansharpened (PAN) L8 had slightly higher prediction accuracy than MS L8-based models.
Most of the studies utilizing image fusion just compared the DSM models based on MS
and PAN images of the same imaging platform. Few studies have explored the effects of
data fusion between different types of remote sensing images on DSM models.

Food security has long been a priority of developing countries due to the major chal-
lenges posed by the large population and limited agricultural land [23]. DSM techniques
can explore site-specific soil fertility status of the farmland and help farmers identify soil
quality problems over a large-scale agricultural area. Fusion and incorporation of different
datasets, technologies and approaches can complement each other and improve spatial
modeling of soil properties [24]. The aims of this research are to (1) analyze the relationships
between soil organic carbon (SOC) and environmental factors including remote sensing
predictors; (2) establish DSM models based on MS and fused remote sensing images, and
compare prediction performances and predicted maps of DSM models; (3) explore the
effects of the remote sensing image fusion on DSM in an agricultural fields in Yellow River
Basin, China.
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2. Materials and Methods
2.1. Study Area Description and Soil Sampling

Two townships called the Shuidao Township and Liuyuankou Township
(114◦11′–114◦26′E, 34◦49′–34◦56′N) are located in the south of the Yellow River and the
northern of Kaifeng City, Henan Province, China (Figure 1). Land Parcel A is in the south-
west of the study area (Figure 1). The study area has a typical continental warm temperate
zone monsoon climate, and there is a clear distinction between the four seasons. The
average annual temperature is 14.52 ◦C, and average annual precipitation is 627.5 mm.
The topography of the study area is dominated by plains, and its topographical relief is
uniform. The soil texture in the study area is mainly clay loam and loam. The major crop
systems are two double crop rotations including wheat (Triticum aestivum)-maize (Zea mays)
and wheat (Triticum aestivum)-cotton (Gossypium hirsutum).

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 17 
 

 

2. Materials and Methods 

2.1. Study Area Description and Soil Sampling 

Two townships called the Shuidao Township and Liuyuankou Township (114°11′–

114°26′E, 34°49′–34°56′N) are located in the south of the Yellow River and the northern of 

Kaifeng City, Henan Province, China (Figure 1). Land Parcel A is in the southwest of the 

study area (Figure 1). The study area has a typical continental warm temperate zone mon-

soon climate, and there is a clear distinction between the four seasons. The average annual 

temperature is 14.52 °C, and average annual precipitation is 627.5 mm. The topography of 

the study area is dominated by plains, and its topographical relief is uniform. The soil 

texture in the study area is mainly clay loam and loam. The major crop systems are two 

double crop rotations including wheat (Triticum aestivum)-maize (Zea mays) and wheat 

(Triticum aestivum)-cotton (Gossypium hirsutum). 

 

Figure 1. Soil sampling sites in the study area. 

Four top soil samples (0–15 cm) were taken in a 5 m grid and mixed thoroughly into a 

composite sample. There were 155 composite soil samples acquired in June 2018 (Figure 1). 

All the soil samples were stored in plastic bags after plants and debris covering the soil 

surface were removed. Those soil samples were dried for 14 days and passed through a 2 

mm sieve in the laboratory. The SOC content was determined using the Walkley–Black 

method [25]. 

2.2. Image Fusion 

One cloud-free L8 remote sensing image (Acquisition date: 11 June 2018) was col-

lected from the United States Geological Survey (USGS) website (https://earthex-

plorer.usgs.gov/, accessed on 12 March 2020). One cloud-free Sentinel-2 (Acquisition date: 

12 June 2018) was collected from the European Space Agency website (https://scihub.co-

pernicus.eu/, accessed on 12 March 2020). The co-registration of L8 and S2 data was per-

formed using the ENVI software, and the co-registration error was smaller than a pixel. 

The Brovey [26], Intensity–Hue–Saturation (IHS) [27] and Gram Schmidt (GS) [28,29] 

classical image fusion methods were applied to implement the image fusion in ArcGIS 

10.4.1. The IHS method is a color-based fusion technique where RGB (red–green–blue) 

color space is converted to the IHS color space [30]. The Brovey method is an arithmetic-

related technique, where each spectral band is first divided by the sum of the three chosen 

Figure 1. Soil sampling sites in the study area.

Four top soil samples (0–15 cm) were taken in a 5 m grid and mixed thoroughly into a
composite sample. There were 155 composite soil samples acquired in June 2018 (Figure 1).
All the soil samples were stored in plastic bags after plants and debris covering the soil
surface were removed. Those soil samples were dried for 14 days and passed through a
2 mm sieve in the laboratory. The SOC content was determined using the Walkley–Black
method [25].

2.2. Image Fusion

One cloud-free L8 remote sensing image (Acquisition date: 11 June 2018) was collected
from the United States Geological Survey (USGS) website (https://earthexplorer.usgs.gov/,
accessed on 12 March 2020). One cloud-free Sentinel-2 (Acquisition date: 12 June 2018)
was collected from the European Space Agency website (https://scihub.copernicus.eu/,
accessed on 12 March 2020). The co-registration of L8 and S2 data was performed using the
ENVI software, and the co-registration error was smaller than a pixel.

The Brovey [26], Intensity–Hue–Saturation (IHS) [27] and Gram Schmidt (GS) [28,29]
classical image fusion methods were applied to implement the image fusion in ArcGIS
10.4.1. The IHS method is a color-based fusion technique where RGB (red–green–blue)
color space is converted to the IHS color space [30]. The Brovey method is an arithmetic-
related technique, where each spectral band is first divided by the sum of the three chosen
bands and then multiplied with the panchromatic band [31]. The GS method aims to
produce a different set of bands by orthogonalizing bands of a remote sensing product [29].

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
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Multispectral (MS) L8 bands (30 m) and panchromatic L8 band (15 m) were fused into
Brovey, IHS and GS L8 images (15 m) (Figure S1). After transforming the spatial resolution
of all the S2 bands to 20 m by Resample Tool (nearest neighborhood method) in ArcGIS
10.4.1, MS S2 bands (20 m) and panchromatic L8 band (15 m) were fused into Brovey, IHS
and GS fused S2–L8 images (15 m) (Figure S3).

2.3. Environmental Data Extraction

Table S1 listed all the environmental variables in this research. Spectral reflectances
of different bands, band ratios between different bands, red band-based vegetation in-
dices including the Normalized Difference Vegetation Index (NDVI), red-edge-band-based
vegetation indices including the Normalized Difference Red-edge Index (NDVIr), bare
soil indices including the Normalized Difference Soil Index (NDSI), water indices includ-
ing the Normalized Difference Water Index (NDWI), temperature indices including the
at-satellite brightness temperature for thermal bands (T1, T2), and salinity indices in-
cluding Salinity Index 1 (SI1) were acquired from MS L8 image, PAN L8 images, MS S2
image, and fused S2–L8 images. Topographic attributes were extracted from the GTOPO30
digital elevation model (DEM) with 30 m resolution acquired from the USGS website
(https://earthexplorer.usgs.gov/, accessed on 20 March 2020). Principal component analy-
sis (PCA) is the algorithm that can identify the optimum linear combination of the original
image bands and account for most of the variation in pixel values [32]. PCA of the ArcGIS
tool was employed to derive PC scores (P1, P2 and P3) for bands of remote sensing imagery.
In addition, geographic attributes and crop types were also chosen as environmental factors
in this research. All the environmental data in Table S1 were transformed to the Universal
Transverse Mercator map projection (Zone: 50 N; Datum: WGS 1984).

2.4. Model Calibration and Validation
2.4.1. Model Calibration

Soil samples were separated into a calibration dataset (70% of the total samples:
109 samples) and a validation dataset (30% of total samples: 46 samples). The calibration
datasets were utilized to establish spatial prediction models of SOC, while the validation
datasets were utilized for validation. This research established 8 models including SOC
prediction models based on MS L8 (LT model) (spatial resolution: 30 m), Brovey L8 (LTb
model) (15 m), IHS L8 (LTi model) (15 m), GS L8 (LTg model) (15 m), MS S2 (ST model)
(20 m), Brovey fused S2–L8 (STb model) (15 m), IHS fused S2–L8 (STi model) (15 m), and
GS fused S2–L8 (STg model) (15 m). By comparing the model performance and DSM maps
of those 8 models, this research aims to reveal the effects of image fusion on DSM.

Environmental factors which are relevant to the SOC were identified using the Boruta
algorithm [33]. The Boruta algorithm is an ensemble method in which classification is
performed by voting of multiple unbiased weak classifier decision trees, and it can identify
linear and nonlinear relationships between soil properties and environmental factors [33,34].
Optimal variables identified by the Boruta algorithm (Figures 2 and 3) were utilized as
predictors to develop SOC prediction models based on random forest (RF) method.

RF is a tree-based prediction model developed by [35]. RF method can accommodate
different types of input data, and deal with non-linearity between the environmental factors
and target soil properties including SOC, and the interaction between the environmental
factors. Multiple trees were developed by using a modified bootstrap aggregation (bagging)
algorithm. Model predictions are then estimated as weighted averages across all trees. The
optimization of the number of trees (ntree), and the number of variables as a predictor at
each tree (mtry) were conducted by using different combinations of ntree and mtry. The
ntree was set between 100 and 900 at intervals of 200, and the mtry was set between 1
and 15 at 1 interval. Model establishment and soil mapping were conducted using R
packages including the “Boruta”, “randomForest”, “raster”, “caret” and “rgdal” in the R
statistical software (version: 2.1.1) (R Development Core Team, R Foundation for Statistical
Computing, Vienna, Austria, 2013).

https://earthexplorer.usgs.gov/
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2.4.2. Model Validation

Model validation was used to analyze the prediction performance of different SOC
models. The results were assessed using the coefficient of determination (R2), root mean
square error (RMSE), and ratio of performance to deviation (RPD) obtained from the
observed and predicted values of SOC [36].

3. Results
3.1. Statistical Summary of SOC Concentration

The SOC content of the topsoil (0–15 cm) ranged from 2.03 g/kg to 26.28 g/kg.
The mean values of the total, calibration and validation datasets were 11.15, 11.10 and
11.27 g/kg, with standard deviations (SDs) of 5.83, 5.75 and 6.10 g/kg. The descriptive
statistical summaries of the whole, calibration and validation dataset were similar as shown
in Table 1, showing calibration and validation datasets were representative for the model
calibration and validation, respectively.

Table 1. Descriptive analysis of SOC (g/kg) in the study area.

Data Type N Mean Median SD Min Max Range Skew CV

Total 155 11.15 10.03 5.83 2.03 26.28 24.25 0.37 0.52
Calibration 109 11.10 10.03 5.75 2.03 26.28 24.25 0.38 0.52
Validation 46 11.27 10.09 6.1 2.61 23.26 20.65 0.33 0.54

3.2. Relationships between SOC and Remote Sensing Predictors
3.2.1. Relationships between SOC and L8-Based Spectral Indices

Multiple L8-based spectral indices showed relatively strong positive or negative
linear relationships with SOC (Table 2). Band reflectances including short-wave infrared
reflectance (LTSWIR1, LTSWIR2), red reflectance (LTRed) and blue reflectance (LTBlue);
band ratios of short-wave infrared (SWIR) bands to near infrared (NIR) band (LTS2N,
LTS1N); at-satellite brightness temperatures for L8 band 11 (LTT2); and bare soil indices
including the Normalized Difference Soil Index (LTNDSI), and soil salinity indices including
Salinity Index 1 (LTSI1) had relatively strong negative correlations with SOC. In contrast,
vegetation indices including the Normalized Difference Vegetation Index (LTNDVI) and
Simple Ratio (LTSR), and water indices including the Normalized Difference Water Index
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(LTNDWI) had relatively strong positive correlations with SOC. After incorporating PAN L8
spectral indices, multiple PAN L8-based spectral indices had stronger linear relationships
with SOC compared with the MS L8-based spectral indices (Table 2). The ratio of short-
wave infrared band 1 to green band (S1G) and the NDWI extracted from GS L8 (LTg) had
stronger linear relationships with SOC than all the MS L8-based spectral indices.

Table 2. Correlation coefficients between SOC and MS and PAN Landsat 8 spectral indices.

MS Landsat 8
Spectral Indices

MS and PAN Landsat 8
Spectral Indices

Variable R Variable R

LTSWIR2 −0.638 LTgS1G −0.657
LTSWIR1 −0.638 LTgNDWI 0.647

LTP1 −0.633 LTSWIR2 −0.638
LTS2N −0.629 LTbSWIR2 −0.638
LTMSI −0.623 LTiSWIR2 −0.638

LTNDWI 0.623 LTbS1B 0.638
LTNDSI −0.623 LTbS1G 0.638
LTS1N −0.623 LTiSWIR1 −0.638
LTBSI −0.621 LTgSWIR2 −0.638
LTSI1 −0.621 LTiSI1 −0.637

LTCoastal −0.620 LTiP1 −0.635
LTRG −0.618 LTgBSI 0.634
LTRed −0.617 LTgRG −0.634
LTBlue −0.616 LTP1 −0.633
LTT2 −0.616 LTiCoastal −0.632

LTNDVI 0.615 LTS2N −0.629
LTSR 0.615 LTbS2N −0.629

Nomenclature of the variable in Table 2: remote sensing images (abbreviation in Table S1) + spectral index
(abbreviation in Table S1). Abbreviations: R, Spearman’s rank correlation coefficient.

The L8-based spectral indices selected by the Boruta algorithm were shown in Figure 2.
Those spectral indices were utilized as the predictors in the LT model (Figure 2A), the
LTb model (Figure 2B), the LTi model (Figure 2C), and the LTg model (Figure 2D). The
at-satellite brightness temperature for L8 band 11 (LTT2) had highest importance score
among all the L8 spectral indices. Principal component band 1 for L8 bands (LTP1), short-
wave infrared band reflectances (LTSWIR1 and LTSWIR2) and water indices (LTNDWI and
LTMSI) also had relatively high importance scores among all the MS L8 spectral indices
(Figure 2A). Some Brovey L8 spectral indices including the band ratios of SWIR band
1 to green band (LTbS1G), SWIR band 1 to blue band (LTbS1B), SWIR band 1 spectral
reflectance (LTbSWIR1) and principal component score 1 (LTbP1) were also selected as
optimal variables with SOC (Figure 2B). Multiple IHS L8 spectral indices including soil
salinity indices (LTiSI1 and LTiSI2), LTiSWIR1, and LTiNDWI had high importance scores
(Figure 2C). The ratio of short-wave infrared band 1 to green band (LTgS1G), and the ratio
of short-wave infrared band 1 to red band (LTgS1R) from GS L8 had relatively higher
importance scores than other spectral indices (Figure 2D).

3.2.2. Relationships between SOC and S2-Based Spectral Indices

The spectral behavior between S2-based spectral indices and SOC was similar to that
between L8-based spectral indices and SOC (Table 3). Multiple spectral reflectances includ-
ing SWIR reflectances (STSWIR1, STSWIR2) and red edge (RE) band 1 reflectance (STRE1),
band ratios including STRE1B; and bare soil indices including the STNDSI and the STBSI
had relatively strong negative correlations with SOC. The Red-Edge (RE) band-related
vegetation indices including the STNDVIr1, and STCIr1 had relatively strong positive
correlations with SOC. There is no red band-based vegetation indices such as the NDVI
and ARVI from S2 were listed in Table 3. Multiple spectral indices extracted from PAN
fused S2–L8 images had stronger correlations with SOC than those from MS S2 (Table 3).
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Soil Salinity Index 2 from IHS fused S2–L8 image (STiSI2) had the strongest correlations
with SOC among all the environmental factors. The results from Table 3 suggested the
spectral indices from fused S2–L8 images had significantly stronger correlations with SOC
compared with spectral indices from MS S2 image.

Table 3. Correlation coefficients between SOC and MS Sentinel 2 and fused Sentinel 2-Landsat 8
spectral indices.

MS Sentinel 2
Spectral Indices

MS Sentinel 2 and Fused Sentinel 2-Landsat
8 Spectral Indices

Variable R Variable R

STSWIR1 −0.575 STiSI2 −0.626
STMSI −0.572 STbSI1 −0.622

STNDWI 0.572 STiBlue −0.611
STNDSI −0.572 STiGreen −0.605
STBSI −0.563 STbBlue −0.603

STRE1B −0.557 STiMCARI1 −0.596
STSWIR2 −0.548 STiTCARI1 −0.591

STP2 0.542 STiARVI −0.590
STRE1 −0.534 STiNB 0.586

STRE3RE2 0.527 STbNDVIg 0.585
STNDVIr1 0.527 STbCIg 0.585

STCIr1 0.527 STbNG 0.585
STNRE1 0.527 STgNDWI 0.584

STRE4RE2 0.521 STgS2REP 0.583
STRE4RE1 0.521 STSWIR1 −0.575
STCoastal −0.518 STMSI −0.572
STRE3RE1 0.518 STNDWI 0.572

Nomenclature of the variable in Table 3: remote sensing images (abbreviation in Table S1) + spectral index
(abbreviation in Table S1). Abbreviations: R, Spearman’s rank correlation coefficient.

The S2-based spectral indices selected by the Boruta algorithm were shown in Figure 3.
Those spectral indices were utilized as the predictors in the ST model (Figure 3A), the
STb model (Figure 3B), the STi model (Figure 3C), and STg the model (Figure 3D). S2
Red-Edge Position (STS2REP) from MS S2 had the highest importance scores. Multiple
RE-related spectral indices from Brovey fused S2–L8 image including band ratio of RE band
4 to blue (STbRE4B), NIR band to RE band 2 (STbNRE2) and the Normalized Difference
Red-edge Index (STbNDVIr2) had high importance scores (Figure 3B). Soil salinity indices
(STiSI2, STiSI1), band reflectances (STiBlue, STiGreen, STiSWIR1), band ratio of RE bands to
other bands (STiRE3B, STiRE4B, STiRE4G), RE band-based vegetation indices (STiCIr2 and
STiTCARI2) from IHS fused S2–L8 image were identified as optimal variables (Figure 3C).
Band ratio between near infrared band to RE band 2 (STgNRE2) and SWIR1 (STgSWIR1)
from GS fused S2–L8 image had relatively high importance scores (Figure 3D). Overall,
much more fused S2–L8 spectral indices had higher correlations and importance scores
than MS S2 spectral indices.

3.3. Spatial Prediction of SOC
3.3.1. Spatial Prediction of SOC Based on MS and PAN L8 Imagery

Figure 4 showed the spatial variation of SOC based on four models (LT, LTb, LTi and
LTg) in the study area. The overall SOC concentration in the convex area adjacent to the
Yellow River (Figure 4) was at a low level in general. The farmlands which are adjacent
to the two reservoirs (Figure 4) showed relatively high SOC concentration. In addition,
overall SOC concentration in the Shuidao Township (west of the study area) was relatively
lower than that in the Liuyuankou Township (east of the study area). The linear pattern
of low SOC in village roads and delicate SOC variation of different land parcels were
clearly depicted in the maps. Figure 5 showed the difference between maps produced by
four models more clearly. Although all maps in Figure 5 showed alike spatial distribution
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of SOC, Figure 5B–D produced by PAN L8 spectral indices demonstrated more distinct
spatial variation in Land Parcel A (Figure S2) compared with Figure 5A based on MS L8
spectral indices.
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3.3.2. Spatial Prediction of SOC Based on MS S2 and Fused S2–L8 Imagery

Although model predictors used in the analysis were different, the spatial pattern
of SOC based on MS S2 and fused S2–L8 images (Figure 6) was similar to that based on
L8 images (Figure 4). The SOC in the four maps in Figure 6 shows mosaic spatial pattern



Remote Sens. 2023, 15, 2017 10 of 16

with high heterogeneity from visual analysis. The dissimilarity was more obvious from
visual analysis in Land Parcel A (Figure 7). Although all the four maps showed higher
SOC concentration in the farmlands located in the middle of the Land Parcel A (Figure S4),
the SOC map based on MS S2 spectral indices (Figure 7A) barely revealed the internal
variation of SOC in those farmlands. The other three maps, especially Figure 7D, displayed
the rectangular spatial pattern of SOC in the farmlands located in the middle of the Land
Parcel A.
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3.4. Comparison of Different SOC Models

All the SOC models based on fused spectral indices had higher prediction accuracy
and lower prediction uncertainty than those based MS spectral indices (Table 4). However,
the model performance difference between fused S2–L8 and MS S2 models is more evident
than that between PAN L8 and MS L8 models. For example, the R2 (0.67) and RPD (1.69)
of LTg were 31% and 18% higher than the R2 (0.51) and RPD (1.43) of the LT model,
respectively, and the R2 (0.57) and RPD (1.53) of STg were 58% and 23% higher than the R2

(0.36) and RPD (1.24) of the ST model, respectively.

Table 4. Validation results of different SOC models.

Models R2 RMSE (g/kg) Bias

LT 0.51 4.20 1.43
LTb 0.61 3.87 1.58
LTi 0.64 3.74 1.64
LTg 0.67 3.59 1.69
ST 0.36 8.41 1.24

STb 0.51 7.23 1.43
STi 0.52 7.10 1.45
STg 0.57 6.71 1.53

4. Discussion
4.1. Controlling Factors of SOC

Topographic attributes had relatively weak correlations and low importance scores
with SOC, suggesting they were not among the main factors that control the SOC spatial
distribution. It is noticeable that topographic attributes including elevation and slope were
relatively homogeneous in this agricultural area of North China Plain. Most environmental
factors selected as optimal variables were remote sensing predictors (Figures 2 and 3). This
suggests the importance of remote sensing predictors in predicting soil properties in plain
agricultural area. Multiple research already indicated that spectral reflectance decreases
with the increase in soil water content [37,38]. The negative correlations between spectral
reflectances and SOC from L8 and S2 imply that higher soil moisture (lower spectral
reflectance) contribute to the accumulation of SOC. The positive correlations between the
NDWI and SOC suggests the potential positive feedback between soil moisture and SOC.
The positive feedback between soil moisture and SOC confirmed the contribution of soil
moisture on soil organic carbon sequestration, which is noticed in other agricultural areas
in Canada [39] and Brazil [40].

The positive association between vegetation indices and SOC also imply that the more
vegetated farmlands are more likely to have more SOC compared with less vegetated
farmlands. Although large areas of soils were covered with plants and crops in remote
sensing images, vegetation indices become good predictors for SOC as SOC is closely
related to aboveground biomass and net primary productivity [41,42]. S2 Red-Edge Position
(STS2REP) is ranked as the most important spectral index among all the S2 spectral indices.
STS2REP was tested to have very strong relationship with leaf chlorophyll concentration,
and it is a surrogate measure of vegetation chlorophyll content [43]. The inclusion of
red-edge-band-based spectral indices as model predictors can mitigate the saturation effect
at higher canopy chlorophyll content compared with red band-based spectral indices, and
better reflect the health and function of aboveground vegetation and SOC. Most S2 spectral
indices identified as optimal variables were RE band-based spectral indices (Figure 3),
suggesting that four RE bands of S2 images have stronger capability to explain the SOC
spatial variation compared with other bands. It is possible that RE band-based spectral
indices had stronger capability in predicting the vegetation compared with NIR band-
based spectral indices, as they are more sensitive to chlorophyll content and can overcome
the saturation problem [44]. Vegetation is an important factors that can reflect the SOC
distribution due to the significant influence of the SOC on the growth status and quality of
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crops in agricultural land [45,46]. The at-satellite brightness temperature of L8 image had
the highest importance scores, indicating the strong potential of long wavelength (thermal)
bands from L8 in predicting SOC.

The large farmland areas at the north of the study area, which are also adjacent to
Yellow River, had relatively low SOC concentration. The long-term washing and flooding
caused by the Yellow River could have led to soil erosion and SOC decrease in farmland
near the river. The SOC concentration in the farmlands adjacent to the two reservoirs in
the study area was at high levels, which also suggest the effect of soil moisture on SOC. In
general, SOC is mainly affected by soil moisture and vegetation in the study area.

4.2. Effect of Remote Sensing Fusion on DSM

Various research have already proven that it is not possible to find the best remote
sensing product for DSM as different remote sensing products have their own advantages
and disadvantages in terms of spatial/spectral/temporal resolutions, purchase expenses
and data quality [47,48]. As a result, data fusion is a good method that can take advantage
of various remote sensing products and contribute to the model performance of DSM. Most
of the research did not perform the image fusion, and they just analyzed the combination
of different remote sensing sensor on digital soil mapping [49,50]. This research analyzed
the effects of data fusion between MS and PAN bands of a single remote sensing product
(L8) and two different remote sensing products (S2 and L8) on DSM. The spectral behavior
of the fused images was similar to the original MS images. For example, vegetation indices
and water indices from both the MS and fused images showed positive relationships with
SOC (Tables 2 and 3). More PAN L8 and fused S2–L8 spectral indices were selected as
optimal variables than MS L8 and MS S2 spectral indices, respectively. This suggests
that the fused spectral indices can explain the variation of SOC spatial distribution more
precisely compared with MS spectral indices. This result confirms the advantages of image
fusion, which does not only integrates the spectral information from the source images, but
also preserves the spectral information of the source images [51].

Table 4 indicates that the fusion of PAN L8 spectral indices slightly enhanced the
prediction performance of MS L8-based SOC model. It is possible that spectral information
of MS and PAN bands from L8 are similar, and the fusion between MS and panchromatic
bands from L8 could not overcome the limitation of L8 products. In comparison, the inte-
gration of fused S2–L8 spectral indices remarkably enhanced the prediction performance
of the MS S2-based SOC model. The results suggest the potential advantages of fusion
between different images on enhancing the predictive performance of DSM over fusion
between MS and panchromatic bands from a single image. The data fusion between MS S2
bands and the L8 panchromatic band overcame the limitations from a single remote sensing
sensor. Hence, both sensors’ spatial and spectral information can be utilized or partially
utilized by the data fusion techniques. Although the three SOC maps derived from PAN
L8 (Figure 5B–D) and fused S2–L8 (Figure 7B–D) had the same spatial resolution (15 m),
Figure 7B–D showed higher spatial heterogeneity and more evident patch distribution in
different farmlands compared with Figure 5B–D. In summary, the fusion between bands
from different remote sensing products has stronger effects on enhancing SOC prediction
accuracy compared with the fusion between bands from a single remote sensing product.

4.3. Prospect of Soil Spatial Prediction Models in Developing Countries

The application of DSM can pinpoint the controlling factors of the spatial pattern of
soil properties, help farmers and policy makers understand the spatial characteristics of
soil nutrient concentration, identify the farmland with low soil fertility, and implement
soil improvement measures and increase soil quality and crop production [52]. Vegetation
cover, soil moisture, surface roughness and management practices can also affect the soil
prediction model performances. Developing soil prediction models with high temporal
and spatial resolution and predictive capability has high potential to promote sustainable
farm management in developing countries such as India and China. Soil organic carbon
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stocks of Western Ghats were predicted by Quantile Regression Forest algorithm by incor-
porating derivatives of the digital elevation model, L8 and MODIS images [53]. Multiple
geostatistical and data mining methods were utilized to predict major soil nutrients in
Northwestern China, and explored the effect mechanism between the spatial pattern of
soil nutrients and farmland management practice [54]. As L8 and S2 are free to download,
and have fair spatial, spectral and temporal resolutions, they are widely used in DSM. The
results from this research also proved that the application of image fusion can not only
enhance the prediction accuracy of DSM, but also increase the spatial resolution of soil
maps. In the future, models of other soil properties can be developed using digital soil
mapping and image fusion techniques in vast agricultural areas with different topographic
and climate conditions.

5. Conclusions

MS and PAN L8 spectral indices such as spectral reflectances, soil salinity indices, the
at-satellite brightness temperature, vegetation indices including the NDVI, TVI, and water
indices including the NDWI showed relatively strong correlations and high importance
scores with SOC. Spectral reflectances, vegetation indices derived from the red edge band
including the NDVIr, CIr1 and S2REP from MS S2 and fused S2–L8 images had strong
correlations and high importance scores with SOC. More PAN L8 spectral indices were
chosen as optimal variables with SOC than MS L8 spectral indices. More fused S2–L8
spectral indices were chosen as optimal variables with SOC than MS S2 spectral indices.
In general, SOC spatial distribution is mainly affected by soil moisture and vegetation in
the study area. All the SOC models based on fused remote sensing images had higher
prediction performances compared with those based on MS remote sensing images. The
data fusion between bands from L8 and S2 has stronger effects on enhancing SOC prediction
accuracy compared with the fusion between bands from L8. Image fusion techniques can
be utilized in DSM research to increase model performance of soil prediction model, and
this research provide a new idea for future DSM research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15082017/s1, Figure S1. Remote sensing images of (A) MS
Landsat 8, (B) Brovey PAN Landsat 8, (C) IHS PAN Landsat 8 and (D) GS PAN Landsat 8 images in
the study area; Figure S2. Remote sensing images of (A) MS Landsat 8, (B) Brovey PAN Landsat 8,
(C) IHS PAN Landsat 8 and (D) GS PAN Landsat 8 images in the Land Parcel A; Figure S3. Remote
sensing images of (A) MS Sentinel 2, (B) Brovey fused Sentinel 2-Landsat 8, (C) IHS fused Sentinel
2-Landsat 8 and (D) GS fused Sentinel 2-Landsat 8 in the study area; Figure S4. Remote sensing
images of (A) MS Sentinel 2, (B) Brovey fused Sentinel 2-Landsat 8, (C) IHS fused Sentinel 2-Landsat 8
and (D) GS fused Sentinel 2-Landsat 8 in Land Parcel A; Table S1. Assembled environmental variables
in the study area. References [43,55–65] are cited in the Supplementary Materials.
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