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Abstract: This paper focuses on the cooperative navigation of heterogeneous air-ground vehicle 

formations in a Global Navigation Satellite System (GNSS) challenged environment and proposes a 

cooperative navigation method based on motion estimation and a regionally optimal path planning 

strategy. In air-ground vehicle formations, unmanned ground vehicles (UGVs) are equipped with 

low-precision inertial navigation measurement units and wireless range sensors, which interact 

with unmanned aerial vehicles (UAVs) equipped with high-precision navigation equipment for 

cooperative measurement information and use the UAVs as aerial benchmarks for cooperative 

navigation. Firstly, the Interacting Multiple Model (IMM) algorithm is used to predict the next 

moment’s motion position of the UGVs. Then regional real-time path optimization algorithms are 

introduced to design the motion position of the high-precision UAVs so as to improve the 

formation’s configuration and reduce the geometric dilution of precision (GDOP) of the 

configuration. Simulation results show that the Dynamic Optimal Configuration Cooperative 

Navigation (DOC-CN) algorithm can reduce the GDOP of heterogeneous air-ground vehicle 

formations and effectively improve the overall navigation accuracy of the whole formation. The 

method is suitable for the cooperative navigation environment of heterogeneous air-ground vehicle 

formations under GNSS-challenged conditions. 

Keywords: air-ground vehicle formations; motion estimation; geometric dilution of precision; 

cooperative navigation 

 

1. Introduction 

With many advantages of low loss, zero casualties, and high mobility, unmanned 

motion vehicles are widely used in military and civilian fields, such as reconnaissance 

and strike, search and rescue, environmental monitoring, and resource exploration [1–3]. 

The characteristics and advantages of various unmanned vehicles are different. Fixed-

wing UAVs have fast maneuverability, a wide field of view, and are not restricted by 

terrain [4]. Rotary-wing UAVs have a simple structure, low cost, good concealment, and 

are easy to transport and deploy on a large scale [5]. Unmanned ground vehicles (UGV) 

have the characteristics of considerable size and strong carrying capacity [6]. The 

formation composed of UAVs and UGVs can cooperate in complex, unknown, and 

dynamic environments to accomplish tasks through multidimensional sensing, 

information interaction, and collaborative interoperability. At present, various countries 

are conducting research on cross-domain collaboration projects, including the SHERPA 

project proposed by the European Union, which aims to build a system for searching and 

rescuing people in mountainous areas using aerial and ground-based unmanned 

platforms [7]. The ROBOSAMPLER project funded by Portugal aims to use rotary-wing 

UAVs and UGVs to build a hazardous substance sampling platform suitable for complex 

wild environments [8]. In offensive swarm-enabled tactics, the United States uses a multi-
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platform unmanned swarm system composed of UGVs, fixed-wing, and rotary-wing 

UAVs to conduct reconnaissance on targets in a simulated urban environment [9]. 

Heterogeneous air-ground vehicle formations have good development potential in 

various fields, among them, formation navigation and positioning technology is an 

important part of the formation control system. This paper proposes a cooperative 

navigation algorithm for air-ground vehicles to ensure the overall positioning 

performance of formations and takes into account the respective advantages and 

shortcomings of different unmanned vehicles in environmental perception and 

movement characteristics. We construct a heterogeneous air-ground cooperative system 

through aerial UAVs for wide-range high-altitude observation and UGVs for close 

reconnaissance, which has the advantages of distributed functions, high system survival 

rate, and high efficiency [10–12]. The cooperative navigation algorithm can reduce the 

number of sensors carried by the vehicles and reduce the performance requirements of 

the navigation system on the on-board computing platform. Meanwhile, the use of 

distributed cooperative navigation architecture can overcome the problems of poor 

scalability and weak anti-destruction capability of traditional centralized navigation 

architecture and reduce the communication burden among vehicles. 

Accurate positioning information is the critical factor affecting heterogeneous air-

ground vehicle formations’ ability to execute various tasks. Satellite navigation is the 

primary method used by air-ground vehicle formations to achieve their respective 

positioning. Nevertheless, GNSS-challenged situations may occur in air-ground vehicle 

formations when executing missions in areas, such as buildings and jungles, caused by 

occlusion [13,14]. The GNSS system is easily interfered within the complex battlefield 

environment due to low signal power [15]. The positioning accuracy of ordinary GNSS 

equipment cannot meet the intended requirements of the navigation system, and in some 

situations, requiring high accuracy need to be equipped with high precision satellite 

navigation equipment such as Real Time Kinematic (RTK). However, equipping each 

vehicle with such a device is too expensive and difficult to implement. Satellite 

independent navigation means currently include scene matching, terrain matching, 

astronomical navigation, visual navigation, and so on [16–19], but the above navigation 

sensors are no longer applicable under the high dynamic motion characteristics, lower 

computational performance, and complex environmental constraints of unmanned 

vehicles. Therefore, improving the positioning accuracy through cooperative navigation 

methods has become the current research hotspot for air-ground vehicle formations 

navigation [20–22]. 

In order to improve the overall localization performance of motion vehicle 

formations, many scholars have researched multi-source fusion algorithms. Vetrella et al. 

proposed a cooperative navigation method that incorporates inertial, magnetometer, 

available satellite pseudorange, cooperative UAV position, and monocular camera 

information, effectively improving the navigation performance of UAV swarms in GPS-

constrained situations [23]. Indelman et al. proposed a method for distributed vision-

aided cooperative localization and navigation of multiple inter-communicating 

autonomous vehicles based on three-view geometric constraints, allowing localization 

when different vehicles observe the same scene [24]. GAO et al. proposed an on-board 

cooperative positioning scheme based on integrated ultra-wideband (UWB) and GNSS 

that can obtain better positioning accuracy than the decimeter level [25]. Xiong et al. 

integrated the use of satellites, ground stations, inertial, inter-node ranging and speed 

measurement, and random signal sources to achieve cooperative positioning between 

vehicles [26]. 

Under the computational performance constraint of the navigation platform, the 

positioning accuracy can be improved by the preferential selection of the available 

cooperative navigation information. Therefore, numerous scholars have conducted 

corresponding research on the influence of the position distribution of each vehicle in the 

cooperative navigation system on positioning accuracy. Chen et al. proposed a 
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cooperative dilution of precise (C-DOP) calculation method combining ranging error, 

clock error, and position error of cooperative UAVs to analyze the positioning error of 

UAV swarm under different formations [27]. Heng et al. proposed a generalized theory 

where lower bound on expectation of average geometric DOP (LB-E-AGDOP) can be used 

to quantify positioning accuracy and demonstrated a strong link between LB-E-AGDOP 

and best achievable accuracy [28]. Huang et al. used the collaborative dilution of precision 

(CDOP) model to specify the effect of relative distance measurement accuracy, the 

number of users, and their distribution on localization [29]. Causa et al. proposed a 

concept of the generalized accuracy factor and investigated the accuracy calculation 

method of cooperative configuration based on visual measurement. The experimental 

results showed that the UAV swarm could achieve meter-level positioning accuracy with 

the aid of visual measurement under the appropriate cooperative configuration [30]. 

Sivaneri et al. used the UGV to assist another UAV for positioning, thus improving the 

positioning geometry of the UAV with a low number of satellites [31]. Although there are 

numerous studies on cooperative navigation systems, they mainly focus on the 

acquisition and fusion methods of navigation information. There is no in-depth research 

on improving the cooperative navigation accuracy of air-ground vehicle formations 

through the configuration optimization of formations. 

A new approach for cooperative navigation of heterogeneous air-ground vehicle 

formations is proposed in this paper. Firstly, we use the IMM algorithm to predict the 

motion state of UGVs, then construct a cost function based on the GDOP value of the 

whole air-ground vehicle formation. Then, it traverses the motion range of UAVs and 

selects the position where the minimum cost is located as the position where UAVs should 

arrive at the next moment. Finally, the UGVs localization calculation is completed by 

fusing the cooperative range values through the Kalman Filter. The simulation results 

show that the method proposed in this paper can achieve the effect of real-time 

optimization of configuration, reduce the error of cooperative navigation, and provide 

guidelines for the deployment and mission execution of heterogeneous air-ground vehicle 

formations. 

2. Measurement Model 

The following scenario is considered in this paper, as shown in Figure 1, 

heterogeneous air-ground vehicle formations execute missions in complex scenarios (e.g., 

urban areas, forests, canyons, etc.). In the above scenario, the GNSS signal received by 

UGV is easily interrupted and deceived due to obstacle blockage and active jamming, so 

the regional navigation and positioning system is constructed by UAVs to provide 

positioning service for UGVs. The UGVs accept the absolute position information of the 

UAVs and the inter-range information broadcasted by the air reference, then complete 

their own positioning calculation through the spatial geometry constraint relationship. In 

terms of navigation sensor configuration, UAVs flying at higher altitude are equipped 

with high-precision navigation equipment, such as high-precision IMU, differential GPS, 

and altimeters. UGVs that execute missions in urban alleyways carry lower accuracy IMU 

and other navigation equipment. Navigation data and sensor data are shared between all 

vehicles via a wireless network. 
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Figure 1. Schematic of cooperative navigation. 

For the cooperative navigation system shown in Figure 1, we can introduce two 

navigation coordinate systems: Earth-Centered, Earth-Fixed (ECEF) and geographic 

coordinate system, denoted by e  and g , respectively. All high-altitude UAVs are 

denoted by H ; ground-based UGVs are denoted by G . The position parameters of 

vehicles , ni   are denoted as [   ]i i i ix y z=p  [   ]
n n n n

x y z   =p , where Gi  Hn  . The 

speed parameters are denoted as , , ,[   ]i i x i y i zv v v=v  , , ,[   ]
n n n nx y zv v v   =v . 

Wireless ranging exists now with many kinds of measurement methods, such as 

Time of Arrival (TOA), Time Difference of Arrival (TDOA), Received Signal Strength 

Indication (RSSI), and so on. For the distance measurement error, the RSSI measurement 

method distance measurement error is generally modeled as a log-normal distribution 

[32]. Most of the TOA-based methods are modeled as zero-mean Gaussian random 

variables in the line-of-sight case [33]. In the non-line-of-sight (NLOS) case, the ranging 

error is generally modeled as the superposition of the distance difference, measurement 

noise, and NLOS error due to clock error [34]. 

Assuming a zero-mean Gaussian distribution for the range error and perfect clock 

synchronization for all the high-altitude UAVs, the range values in this paper are of the 

following form. 

2 2 2( ) ( ) ( )

n n n

n n n n

i i i

e e e e e e

i i i i

r d ct n

d x x y y z z

  

   

 



= + +

= − + − + −
 (1) 

where 
n id   denotes the actual distance between vehicle i  and vehicle n ; c  is the 

speed of light; 
n

t  is the clock error; 
2(0, )in N   is Additive White Gaussian Noise 

with mean zero and variance 
2 ; the superscript e  indicates the ECEF coordinate 

system. 

The problem of localization in NLOS environments is described in the literature 

[35,36] and is not analyzed in this paper. 

3. Cooperative Navigation System 

For the cooperative navigation scenario depicted in Figure 1, high-altitude fixed-

wing UAVs and rotary-wing UAVs can provide cooperative navigation information 
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assistance to UGVs, and the accuracy of the final cooperative navigation is not only related 

to the accuracy of the navigation sensors but also to the flight configuration of the UAVs. 

Since different types of vehicles have different speeds and states during movement, UGVs 

need to adjust their driving state according to the actual environment, such as bypassing 

obstructions. The whole heterogeneous air-ground vehicle formations cannot execute the 

mission in a fixed configuration. UAVs need to adjust the flight configuration in real-time 

according to the position of the UGVs. 

The merit of the configuration can be measured by Dilution of precision (DOP), 

which can correlate the configuration with the positioning accuracy, and the DOP based 

on inter-vehicles wireless range is calculated as follows. 

Set the approximate position of the vehicle i  as [   ]e e e e

i i i ix y z=p  and the approximate 

clock difference as 
n

t , after neglecting the measurement noise and NLOS error in 

Equation (1), the Taylor expansion at 
e

ix  and retaining the first-order term yields, 
n ir   

can be denoted as follows. 

n n n n n

e e e

i x i y i z ir h x h y h z c t     =  +  +  −   (2) 

where (   )
n n nx y zh h h    is the direction cosine of the vehicle n  to vehicle i ; 

(   )e e e

i i ix y z    is the difference between the approximate position of the vehicle i  and the 

actual position; 
n

t  is the deviation between the accurate and approximate clock 

difference. 

Equation (2) can be extended to the following form. 

1 1 1 1

2 2 2 2

1

1

1

             

nn n n n

e
i x y z i

e
i x y z i

e

i

i x y z

e

i i

r h h h x

r h h h y

z

c tr h h h

H

   

   

   







     
     
      =     
     

−          

= x

 (3) 

Based on Equation (3), the position and clock deviation vectors of the vehicle can be 

obtained as: 

T 1 T( )e

i i i iH H H− = x r  (4) 

The error covariance of the deviation vector can be defined as: 

T 1 T T 1 T T

T 1 2

cov( )

( ) cov( )[( ) ]

( )

e

i

i i i i i i

i i

H H H H H H

H H







− −

−



= 

=

x

r  (5) 

GDOP is then defined as the square root of the trace of 
T 1( )i iH H −

. The GDOP of all 

UAVs with respect to the vehicle i  is defined as: 

T 1GDOP ( )i itr H H −  (6) 

For the whole cooperative navigation system, each UGV calculates its position by 

IMU and fuses the cooperative information from UAVs by the Kalman filter. At the 1k −  

moment, the UGVs need to predict their position at the k  moment by the IMM 

algorithm; so as to judge the position that UAVs should reach when the sum of GDOP 

corresponds to all UGVs at the k  moment is the smallest; so that the configuration of 

the whole cooperative navigation system can be adjusted in real-time to provide the UGVs 
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with the optimal cooperative information. Therefore, the cooperative navigation 

algorithm proposed in this paper is divided into three main parts: position prediction of 

UGVs, cost function calculation and optimal position selection of the high-altitude UAVs, 

and inertial/co-ranging value fusion of UGVs. 

3.1. Position Prediction of UGVs 

In order to carry out the route planning of high-altitude UAVs, the position of UGVs 

at the 1k −  moment needs to be estimated first. Ground unmanned vehicles have strong 

mobility on the ground, and the rapid switching of their movement modes leads to drastic 

changes in parameters, such as heading, velocity, and acceleration, etc. The traditional 

single-model filter has a slow convergence speed and poor stability in the accuracy of state 

estimation and prediction for targets in a highly dynamic motion state, and this paper 

introduces multi-model filters to predict the position of UGVs at the k  moment. 

The core of the IMM algorithm lies in describing the target’s maneuver using a set of 

models and filters working in parallel, corresponding to different maneuver states, 

switching between models follows a known Markov process, and the final estimate is a 

weighted value of all model state estimates [37,38]. The commonly used models are 

mainly the uniform velocity model, uniform acceleration model, current statistical model, 

Singer model, and so on [39,40]. In order to effectively characterize the maneuvering 

characteristics of the unmanned vehicle in ground motion, and to improve the robustness 

of the IMM filter and reduce the computational effort of the system, the uniform velocity 

model and uniform acceleration model are used to describe the motion state of each 

ground vehicle in this paper. The specific steps of the IMM algorithm designed in this 

paper are as follows. 

Step 1 Input interaction module. , [1 for CV model, 2 for CA model]i j  , [1, , ]k K  

A. Mixing Probability Calculation. 

|

2

1

( 1| 1) ( 1) /

( 1)

i j ij i j

j ij i

i

k k p k c

c p k

 


=

− − = −

= −
 (7) 

where | ( 1| 1)i j k k − −  represents the transition probability of the state estimation of model 

i  at the 1k −  moment to model j  at the k  moment, ( 1)i k −  denotes the model 

probability of model i  at the 1k −  moment, jc  is the normalization factor, ijp  is the 

transfer probability from model i  to model j . 

B. Mixing state estimation and Covariance matrix Calculation. 

2

0 |

1

2

0 |

1

0

T

0

ˆ ˆ( 1 | 1) ( 1| 1) ( 1| 1)

ˆ ( 1| 1) ( 1| 1){ ( 1| 1)

ˆ ˆ                        [ ( 1 | 1) ( 1| 1)]

ˆ ˆ                           [ ( 1 | 1) ( 1| 1)] }

j i i j

i

j i j i

i

i j

i j

k k k k k k

k k k k k k

k k k k

k k k k





=

=

− − = − − − −

− − = − − − −

+ − − − − − 

− − − − −





x x

P P

x x

x x

 (8) 

where ˆ ( 1 | 1)i k k− −x  and ( 1 | 1)i k k− −P  are the state estimation and the covariance 

matrix of model i  at the 1k −  moment, respectively. 

Step 2 Model filter estimation module. 

A. one-step prediction for sub-model 
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0

T T

0

ˆ ˆ( | 1) ( 1| 1)

ˆ ˆ( | 1) ( 1| 1) ( )

j j

j j

k k k k

k k k k k

− = − −

− = − − +

x Fx

P FP F GQ G
 (9) 

where ,F G  are the state transfer matrix and the system noise matrix of the model, 

respectively, and the state equations of the uniform velocity model and the uniform 

acceleration model are shown in the literature [41]. ( )kQ  is the variance matrix of the 

system noise. 

B. position prediction 

2

1

ˆ ˆ( | 1) ( | 1) ( 1)j j

j

k k k k k
=

− = − −x x  (10) 

where ˆ ( | 1)k k −x  is the estimated value of the position of UGV at the k  moment. 

Step 3 Update of model probability module. ( 1, 2)j =  

A. Filtered residuals 

T

ˆ( ) ( ) ( | 1)

ˆ( ) ( | 1)

j j j j

j j j j j

k k k k

k k k

= − −

= − +

 Z H x

S H P H R
 (11) 

where ( )j kZ  is the position output obtained by fusing the IMU/co-ranging values of the 

vehicle at the k  moment, as described in Section 3.3, and jH  is the measurement 

matrix. 

B. Kalman filter gain calculation 

T 1ˆ ( | 1) ( ( ))j j j jk k k −= −K P H S  (12) 

C. Sub-model measurement update 

T T

ˆ ˆ( | ) ( | 1) ( )

ˆ ˆ( | ) ( ) ( | 1)( )

j j j j

j j j j j j j j j

k k k k k

k k k k

= − +

= − − − +

x x K

P I K H P I K H K R K
 (13) 

D. Mode Probability Update ( 1, 2)j =  

First, the likelihood function is calculated with the following equation. 

( ) ( ( ),0, ( ))j j jk k k = N S  (14) 

where ( )j k  is the likelihood function, ( ( ),0, ( ))j jk kN S  denotes the Gaussian density 

function of ( )j k  with zero mean and covariance ( )j kS . The updated model 

probabilities are denoted as: 

2

1

( )
( )

( )

j j

j

i i

i

k c
k

k c



=


=


 

(15) 

Step 4 Estimation fusion module. 

2

1

2

1

T

ˆ ˆ( | ) ( | ) ( )

ˆ ˆ( | ) ( ){ ( | ) [ ( | )

ˆ ˆˆ               ( | )][ ( | ) ( | ) ]}

j j

j

j j j

j

j

k k k k n

k k k k k k k

x k k k k k k





=

=

=

= +

− −





x x

P P x

x x

 (16) 
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The first two steps in the above steps are completed at the 1k −  moment, thus 

predicting the position of the UGVs at the k  moment. The last two steps are performed 

after the completion of the vehicle IMU/co-ranging assistance at the k  moment to 

update the model data of the IMM algorithm. 

3.2. Cost Functions and Path Planning Strategies 

The positioning accuracy of the UAVs depend on the ranging error, the air-based 

reference position error, and the UAVs configuration distribution. The range error is 

mainly determined by the clock difference between the two vehicles, the air-based 

reference position error mainly depends on the GNSS positioning accuracy, and the above 

two points are determined by the sensor hardware performance, so the UAV needs to 

dynamically adjust the flight position to form different formation configurations to 

provide cooperative navigation services for the UGVs. After the predicted position of the 

UGVs at the k  moment, the position prediction value needs to be used to plan the 

position of the UAVs to achieve the optimal configuration. Path planning algorithms are 

mainly classified into three categories, namely traditional path planning algorithms, 

sampling-based path planning algorithms, and intelligent bionic algorithms, among 

which the A* algorithm is the mainstream algorithm in the field of path planning at 

present [42,43]. The advantage of the A* algorithm is its rapid response to the environment 

and high computational efficiency. It is a heuristic search algorithm that allows the UAV 

to quickly plan a route and generate maneuver control commands with known starting 

and ending points [44]. 

This paper combines the need of real-time configuration optimization and the idea 

of the sparse A* algorithm to propose a real-time memoryless path optimization method. 

Taking the current position of the UAV as the center and dividing the neighborhood space 

to establish a grid centered on the UAV, that is, the area to be extended, and the 

combination of all the UAVs’ areas to be extended, is called the search space. Traversing 

all the combinations of ways in the search space to find the grid position corresponding 

to the minimum cost, that is, the planning position of the UAV at the next moment. First, 

we establish the cost function on the voyage. 

3.2.1. Cost Function Establishment 

In the cooperative mission execution of heterogeneous air-ground vehicle 

formations, borrowing the A* algorithm for trajectory planning from the literature [45], 

the cost can generally be divided into two parts, namely the route flight cost and the 

GDOP cost. The route flight cost mainly includes the distance flown, as it will determine 

the duration of the UAV, and the route flight cost can also include the distance from the 

target point if there is a target point for the mission. The GDOP cost is the sum of the 

GDOP values corresponding to each UGV during the execution of the mission. There is a 

coupling relationship between the GDOP cost and the route flight cost, so the two need to 

be considered together. 

The cost function is defined as: 

( ) ( ) ( )t t t= +J g r  (17) 

where ( )tg  denotes the GDOP cost, and assuming that the number of ground vehicles is 

N , ( )tg  can be designed as: 

1

1

( ) GDOP
N

i

i

t
=

= g  (18) 
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where ( )tr  denotes the flight cost of the route, and assuming that the number of aerial 

vehicles is M , ( )tr  is designed as: 

2

1

( )
n

n

M

t 
 =

= r D  (19) 

In Equations (18) and (19), 1  and 2  are the weights of GDOP cost and route 

flight cost, respectively, which 1 2    can be adjusted and used to choose whether to give 

priority to guaranteeing the GDOP value or reducing the flight distance. In this system, 

the fixed-wing UAVs are selected as the aerial benchmarks, and the movement speed is 

larger than that of the rotary-wing UAVs, which can reach the preset position quickly, so 

1  is set to 1/3 and 2  is set to 2/3. 
n

D  denotes the distance flown by the UAV n  

from the 1k −  moment to the k  moment. 

3.2.2. Path Planning Strategy 

When establishing the area to be extended for UAVs, the constraints of UAVs need 

to be considered simultaneously, including the maximum movement step maxL , minimum 

movement step minL , maximum pitch angle max , minimum flight height minH , and 

minimum collision avoidance distance minR  between two UAVs. According to the current 

position of the UAVs and the constraints, the path planning process is as follows. 

A. Search space establishment 

As shown in Figure 2, the region to be extended for the high-altitude UAVs is 

established with the current position as the center and the constraints. 

 

Figure 2. Diagram of the UAV to be expanded area. 

Split the area to be extended, as shown in Figure 2. The horizontal profile of the area 

to be extended is a circle, as shown in Figure 3, and the circle can be split into l  parts, 

each of which has a vertical profile of a sector ring, as shown in Figure 4. 
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Figure 3. Horizontal section of the area to be expanded. 

Divide the sector ring into n  copies along the radius direction and m  copies along 

the arc direction, so that the area to be expanded is divided into m n l   expansion 

nodes. The combinations of extended nodes of M  airborne UAVs have ( )Mm n l   

ways, and the combinations that do not satisfy the height constraint and the minimum 

collision avoidance distance constraint are removed, and the remaining combinations will 

constitute the search space at the 1k −  moments. 

 

Figure 4. Vertical section of the annular sector. 

B. Calculation of the cost function 

Based on the UGVs’ location predicted by Equation (10), all node combinations in the 

search space are traversed, and the corresponding generation value is calculated 

according to Equation (17) to find the least costly node combination as the location where 

the UAVs should arrive at the k  moment. 

C. Path Planning 

The positions obtained in step B are only isolated coordinate points and need to be 

combined with the motion characteristics of the UAV to plan a motionable route, and the 

specific route planning algorithm can be found in the literature [46]. 
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3.3. Inertial/Co-Ranging Value Fusion Method for UGVs 

When the UAVs establish the aerial benchmarks, the UGVs complete the cooperative 

information interaction and distance calculation through the data chain with the UAVs, 

and the Kalman filter needs to be used to complete the navigation information fusion. 

Under the Kalman filtering framework, the system state equation is constructed by using 

the position and attitude information obtained from the inertial sensors as state quantities; 

then the best state estimate of the previous moment is combined with the equation of 

motion to complete the one-step prediction; finally, the relative distance is used as the 

observed quantity to construct the measurement update equation, and the above 

operations are cycled to complete the cooperative navigation and positioning solution 

[47]. Compared with the cooperative navigation technique based on factor graph theory, 

the Kalman filter has the advantages of high computational efficiency, good real-time 

performance, and low communication load requirement, which can be realized by 

engineering [48]. 

3.3.1. State Equation 

In the process of UAV route planning, it also continuously sends range signals and 

position information, and after receiving this information, the UGV can fuse it with its 

own inertial information to make effective corrections to the inertial information. 

Using the geographic coordinate system as the navigation coordinate system, the 

state vector of the UGV i  navigation system is defined as follows [49]. 

T

[         

                ]

g g g g g g

x y z x y z

bx by bz rx ry rz x y z

v v v L h        

     

=

  

X
 (20) 

where the superscript g  represents the geographic coordinate system. where 

  g g g

x y z   and   g g g

x y zv v v    are platform angle error and velocity error of east, north, and 

up directions, respectively.   L h    are, respectively, latitude error, longitude error, 

and altitude error.      bx by bz rx ry rz       are the gyro constant drift errors and the first-

order Markov drift errors, respectively;   x y z    are the accelerometer biases. 

The state equation can be constructed according to the defined state vector 

= +X AX BW  (21) 

where A  is the linearized INS error states matrix, B  is the noise transfer matrix, W  

is the system process noise with multivariate mean normal distribution with variance 

INSQ , whose value is determined by the accuracy of gyroscope and accelerometer. 

3.3.2. Measurement Equation 

The measurement equation of the filter can be defined as 

INS= +Z H X V  (22) 

where Z  is the observation vector related to the wireless ranging measurements, INSH  

is the observation matrix, V  is the measurement noise of wireless ranging with R . The 

observation vector and observation matrix are defined as: 

1 1

2 2

,

,

,n n

INS i

INS i

INS i

 

 

 







− 
 

− 
=  
 
 − 

r r

r r
Z

r r

 (23) 
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6 9[0   0 ]g

INS n i e n =H H H  (24) 

where 
g

eH  is the transformation matrix that converts   L h    to   e e ex y z   , which 

satisfies the following formula: 

2

( )sin cos ( )cos sin cos cos

( )sin sin ( ) cos cos cos sin

[ (1 ) ]cos 0 sin

N N

g

e N N

N

R h L R h L L

R h L R h L L

R f h L L

  

  

− + − + 
 

= − + +
 
 − + 

H  (25) 

where NR  is the radius of curvature in prime vertical, f  denotes the earth oblateness. 

3.4. Description of the Cooperative Navigation Method 

The structure of the heterogeneous air-ground vehicle formations cooperative 

navigation method proposed in this paper is given in Figure 5. Combining the methods 

and strategies proposed in Sections 3.1–3.3, the steps of the cooperative navigation 

method are as follows. 

 

Figure 5. Cooperative navigation method structure. 

Step 1: Initialization 

Initialization of the whole cooperative navigation system according to the 

constraints, such as motion characteristics and task requirements of the heterogeneous air-

ground vehicle formations, including the establishment of the cost function, the initial 

model probability, and model transfer probability assignment in the IMM algorithm. 

Step 2: Location estimation of all UGVs 

At the current moment, using the two steps 1 and 2 described in Section 3.1, the 

position estimates ˆ ( | 1),i k k i− Gx  of all UGVs are obtained. 
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Step 3: Establishment of UAVs’ search space and selection of the minimum cost 

combination 

According to the position estimation value ˆ ( | 1)i k k −x  of the UGV and the current 

position 
n

x  of the UAV, the area to be extended is constructed by combining the 

relevant constraints, and the area to be extended of all UAVs is partitioned and combined 

into the search space. The generation value of all node combinations in the search space 

is calculated according to Equation (17), and the location combination with the lowest cost 

is selected as the target location of the UAV at the next moment. The UAV uses the target 

position for path planning and flight control. 

Step 4: Inertial/co-ranging fusion filter of UGV 

The UAVs continuously broadcasts range measurement signals and position 

information during flight. After receiving the signals and decoding the distance, the UGVs 

can fuse and filter them with their inertial guidance information according to Equations 

(21) and (22). It is worth noting that the filtering frequency need not be consistent with the 

frequency of the UAV path planning, and the frequency of the UAV path planning can be 

reduced in order to reduce the computation. 

Step 5: IMM sub-filter filtering and fusion 

After the position of the ground vehicle is corrected, the model parameters and 

model probabilities of the IMM algorithm are updated by using the corrected position and 

velocity as measurements and completing the two steps (3), (4) described in Section 3.1. 

Step 6: Return to Step 2. 

4. Simulation Results 

4.1. Sensor Configuration and Simulation Scenario 

In order to verify the effectiveness of the proposed method, heterogeneous air-

ground vehicle formations are simulated for the scenario shown in Figure 1. This paper 

gives a simulation environment with five UAVs and three UGVs with a simulation time 

of 1200 s. The UAVs’ initial altitude distribution is from 1000 to 1500 m, and the unmanned 

vehicle performs horizontal orientation maneuvers on the ground without a wide range 

of changes in altitude. The initial positions of the UAVs and UGVs are shown in Figure 6. 

 

Figure 6. Initial location of air-ground vehicle formations. 

All UAVs are equipped with high-precision navigation equipment, such as RTK, INS, 

and range and communicate with UGVs through wireless networks; UGVs are equipped 

with INS and use wireless range information to assist in positioning. Wireless ranging 
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uses time division multiple access (TDMA) mode of operation, using time 

synchronization. In addition, signal arrival time measurement is an important means to 

achieve the ranging between UAVs and UGVs, and its ranging error source is mainly 

equipment delay. The simulation parameters of the sensors carried by the UAVs and 

UGVs are shown in Table 1. 

Table 1. Sensor configuration and simulation parameters. 

Sensor Parameter Value 

GNSS 

Position noise standard dev. 0.1 m 

Initial clock difference 40 ns 

clock drift 50 ns/s 

Update Frequency 1 Hz 

Gyroscope 

Random constant drift 0.1 °/h 

White noise 0.1 °/h 

First-order Markov drift 0.1 °/h 

First-order Markov correlation time 3600 s 

Update Frequency 50 Hz 

Accelerometer 

First-order Markov drift 10−4 g 

First-order Markov correlation time 1800 s 

Update Frequency 50 Hz 

Wireless ranging 
Ranging noise 10 m 

Update Frequency 1 Hz 

4.2. Results and Analysis of the Simulation 

Based on the above simulation conditions, the localization accuracy of the UGVs is 

simulated and analyzed. In order to verify the localization performance of the algorithm 

in this paper under the high dynamic motion state of multiple vehicles, three motion 

trajectories are designed for the UGVs. No. 1 and No. 3 UGVs are simulated in complex 

environments, such as urban alleys with high-speed, sharp turns characteristics, while the 

No. 2 UGV is in low-speed motion mode. The trajectories of UGVs are shown in Figure 7. 

To verify the effectiveness of the conversion of different motion models in the IMM 

algorithm, this UGV will have different motion modes, such as acceleration, uniform 

speed, and different time stagnation in the whole process. They are combined with the 

optimal configuration solution of UAVs and real-time position dynamic adjustment to 

complete the cooperative navigation and positioning of UGVs. 

 

Figure 7. Trajectories of UGVs. 
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For the traditional space-based area cooperative navigation system, a nonlinear 

optimization algorithm is often used to solve the target positioning information, based on 

the idea of the satellite pseudo-range single-point positioning algorithm. In order to verify 

the representativeness of the cooperative navigation algorithm (DOC-CN) based on 

motion estimation and the regional real-time path planning strategy proposed in this 

paper, and also to verify the effect of UAVs’ configuration changes on the overall 

navigation and positioning performance of the formation, the text algorithm is compared 

with the direct localization method based on a two-step least square algorithm (TSLS) [50] 

and the fixed configuration cooperative navigation method (FC-CN) [51]. The GNSS, 

inertial sensor, and range sensor parameters are kept the same in the three algorithms. 

The simulation results of the positioning of UGVs are shown in Figures 8 and 9. 

 

Figure 8. Position error of UGV1. 

 

Figure 9. Position error of UGV2. 

As can be seen from Figures 8 and 9, the cooperative navigation algorithm based on 

motion estimation and the regional real-time path planning strategy proposed in this 

paper has been significantly improved in terms of positioning accuracy compared with 

the remaining two navigation and positioning algorithms. The nonlinear filtering 
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algorithm does not require high accuracy for initial value setting and can achieve fast 

convergence, however, its algorithm only solves the optimal solution from spatial 

measurements and ignores the temporal state correlation, so the localization error 

fluctuates more when relying only on the range value for cooperative navigation. The 

fixed configuration cooperative navigation algorithm is used to reduce the influence of 

the convergence target maneuver, but the overall positioning accuracy is lower than that 

of the cooperative navigation algorithm proposed in this paper. 

The flight trajectory of the UAV optimized by the DOC-CN algorithm is shown in 

Figure 10, and the GDOP value is kept minimum during the flight. To quantitatively 

analyze the positioning errors of three UGVs under different methods, the root mean 

square error (RMSE) was used for the UGVs, and the results are shown in Table 2. The 

equation for the position estimation error in Table 2 is shown in Equation (26). 

2 2 2

E N UE Err Err Err= + +  (26) 

where  E NErr Err  and UErr  are the estimate errors in east, north, and up (ENU) directions, 

respectively. 

 

Figure 10. Optimized trajectories of UAVs. 

Table 2. Statistics of position error. 

Number Position Error 
RMSE/m 

TSLS FC-CN DOC-CN 

UGV1 

Longitude 13.04 4.78 3.32 

Latitude 18.61 5.74 2.48 

Altitude 10.78 5.04 1.52 

3-D 25.15 9.00 4.41 

UGV2 

Longitude 13.39 4.93 1.98 

Latitude 17.06 5.58 2.69 

Altitude 8.21 5.04 1.22 

3-D 23.19 8.99 3.56 

UGV3 

Longitude 13.38 5.08 1.87 

Latitude 17.72 5.87 2.53 

Altitude 8.10 4.80 1.01 

3-D 23.64 9.13 3.30 
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From Table 2, it can be seen that the UGVs only use the TSLS direct localization 

algorithm in 3-D localization errors of 23.19 m~25.15 m. The interactive multi-model can 

improve UGVs’ positioning performance in high dynamic motion mode. The UGVs use 

the FC-CN localization algorithm in 3-D localization errors of 8.99 m~9.13 m, and the 

positioning accuracy is nearly 1.78 times better than traditional methods. On this basis, 

the cooperative navigation algorithm based on motion estimation and regional real-time 

path planning strategy proposed in the text maintains a positioning accuracy of 3.30 

m~3.56 m, and the overall positioning accuracy is 7.3 times better than the original 

algorithm. 

To demonstrate the overall improvement in the level of positioning performance of 

all UGVs in the formation, the cumulative distribution function is used to describe the 

probability distribution of the magnitude of all UGVs’ positioning errors, and 50 Monte 

Carlo experiments are conducted in this paper in order to reflect the stability of the 

algorithm in this paper. Figure 11 compares the cumulative distribution of the UAVs and 

UGVs positioning estimation errors. Using conventional methods, only 9.8% of the 

positioning error is less than 5 m. The percentage of less than 5 m localization error 

supported by the DOC-CN algorithm can reach 91.2%. 

 

Figure 11. Positioning error CDF comparisons. 

In summary, it can be demonstrated that the DOC-CN algorithm can significantly 

improve the positioning accuracy of UGVs in complex environments such as urban 

alleyways. This allows UGVs to obtain similar positioning performance as UAVs, thus 

improving the overall positioning performance of heterogeneous formations. 

5. Conclusions 

In this paper, for the situation of satellite navigation signal challenged in cities, hills, 

and valleys, we use the techniques of multi-dimensional sensing of navigation 

information, wireless ranging information interaction, and cooperative interoperability 

between heterogeneous air-ground vehicle formations to complete real-time navigation 

and positioning of UGVs. In this method, the DOC-CN algorithm is divided into three 

steps. First, the location of the UGV is predicted by the IMM algorithm. Then, aerial 

benchmarks are established by calculating cost functions and the path planning 

algorithm. Finally, the SINS solution platform is constructed to obtain the continuous 

position information of the UGVs. 

The simulation shows that the DOC-CN algorithm proposed in this paper is 

significantly superior to that of traditional cooperative positioning methods such as TSLS 
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and the FC-CN method. It can realize the navigation and positioning requirements of 

UGVs in a certain area under the GNSS-challenged environment and improve the overall 

formation’s positioning accuracy. Moreover, the next step is to embed the flight control 

program and navigation algorithm into the hardware platform and complete the practical 

validation. 
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