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Abstract: As one of the most important components of urban space, an outdated inventory of road-
side trees may misguide managers in the assessment and upgrade of urban environments, potentially
affecting urban road quality. Therefore, automatic and accurate instance segmentation of road-side
trees from urban point clouds is an important task in urban ecology research. However, previous
works show under- or over-segmentation effects for road-side trees due to overlapping, irregular
shapes and incompleteness. In this paper, a deep learning framework that combines semantic and
instance segmentation is proposed to extract single road-side trees from vehicle-mounted mobile
laser scanning (MLS) point clouds. In the semantic segmentation stage, the ground points are filtered
to reduce the processing time. Subsequently, a graph-based semantic segmentation network is
developed to segment road-side tree points from the raw MLS point clouds. For the individual tree
segmentation stage, a novel joint instance and semantic segmentation network is adopted to detect
instance-level roadside trees. Two complex Chinese urban point cloud scenes are used to evaluate
the individual urban tree segmentation performance of the proposed method. The proposed method
accurately extract approximately 90% of the road-side trees and achieve better segmentation results
than existing published methods in both two urban MLS point clouds. Living Vegetation Volume
(LVV) calculation can benefit from individual tree segmentation. The proposed method provides a
promising solution for ecological construction based on the LVV calculation of urban roads.

Keywords: mobile laser scanning (MLS); individual tree extraction; instance segmentation; deep
learning; point clouds

1. Introduction

Statistics show that more than half of the world’s population lives in cities. By the
middle of the 21st century, this proportion is expected to rise to 70% [1]. The more serious
truth is that cities that account for less than 3% of the earth’s surface consume more than
75% of natural resources. Vegetation has the function of eliminating harmful pollutants,
reducing noise, regulating temperature, protecting water sources, and providing various
renewable energy sources [2–4]. If vegetation solutions can be reasonably incorporated into
urban, methods similar to urban tree inventory are bound to overcome a series of existing
challenges. To obtain comprehensive and accurate urban tree information, various emerg-
ing technologies have gradually replaced traditional manual measurement methods, such
as photogrammetry and remote sensing [5–7]. In particular, the rapidly developing LiDAR
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technology offers a promising method for capturing urban point clouds, demonstrating its
brilliance in large-scale mapping scenes [8].

LiDAR is different from images limited by low resolution, weather sensitivity, and
poor penetration, and its advantages include high precision, high resolution, and flex-
ibility [9–11]. Most importantly, they can reflect the detailed three-dimensional spatial
distribution of trees at the individual level, which provides a new perspective for tree
inventory. As we all know, urban tree inventory requires not only accurate spatial informa-
tion but also individual tree parameters [12]. For management purposes, the timely update
of spatial information such as the distribution of trees and the location of an individual
tree helps maintain reliable monitoring of urban trees. The separation of woody parts and
leaves provides a basis for the calculation of individual tree parameters such as species
classification, leaf area index (LAI) estimation, crown volume estimation, and diameter at
breast height (DBH) estimation [13–16]. Therefore, instance segmentation of urban trees
and the separation of wood and leaf points for individual trees are indispensable and
important components [17]. However, the acquired point clouds are all unorganized and
huge, which makes these two tasks technically challenging.

The above-mentioned research and results inspired us to use a deep learning network
to extract a single tree from the point cloud and further distinguish the wood–leaf points.
Therefore, in this article, we propose a new type of network applied to complex cities to
give full play to the potential and advantages of the combination of semantic segmentation
and instance segmentation [18] and contribute at least the following double aspects:

• A novel individual tree segmentation framework that combines semantic and instance
segmentation network is designed to separate instance-level road-side trees from
point clouds.

• Extensive experiments on two mobile laser scanning (MLS) and one airborne laser
scanning (ALS) point clouds have been carried out to demonstrate the effectiveness
and generalization of the proposed tree segmentation method for urban scenes.

2. Related Work

First, we briefly survey point cloud semantic and instance segmentation, which in-
spires our study. Next, we present a review of recent progress regarding individual tree
segmentation from point clouds.

2.1. Point Cloud Semantic Segmentation

Point cloud semantic segmentation is a practical solution to interpret information of
the 3D scene from point clouds, which aims to annotate each point in a given point cloud
with a label of semantic meaning [19]. Previous works solve the problem of point cloud
semantic segmentation by applying supervised classification models in accordance with
handcrafted features [20–22]. The performances of these methods usually depend on two
very important factors: distinctive hand-crafted features (i.e., geometry features, waveform-
based features, topology features, and contextual features from spatial distributions) and
discriminative classifiers (i.e., support vector machines, random forest, Hough forest, and
Markov random fields) [23–26]. However, the calculation of effective handcrafted features
requires a large number of prior knowledge, which has limited ability to learn good features
of the scanned objects [27].

To mitigate burdens in feature design, deep learning for point cloud semantic segmen-
tation has drawn increasingly considerable attention because it provides an end-to-end
solution [28–30]. Therefore, deep-learning-based methods have become the dominant
technologies in the point cloud semantic segmentation task. As discussed in [31], there are
four main paradigms of neural networks for point clouds semantic segmentation, such
as projection-based methods [32–34] that usually project a 3D point cloud into 2D images,
discretization-based methods [35–37] that usually transform a point cloud into a discrete
representation, point-based networks [38–40] that directly work on the irregular point
cloud, and graph-based methods [41–43] that construct an adjacency graph to model the
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neighboring relations among the points. On the whole, the great success in point cloud
semantic segmentation has made it easier to divide raw point clouds into several certain
types of object points, which is helpful for extracting tree points from raw point clouds [44].

2.2. Point Cloud Instance Segmentation

The goal of point cloud instance segmentation is to separate a given point cloud
into some instance-level objects. The existing methods can be roughly divided into two
groups: proposal-based methods [45–49] and proposal-free methods [50–54]. The proposal-
based methods are usually considered as the top-down strategies, which converts instance
segmentation into two sub-problems, the region proposal generation and the instance
object prediction. The proposal-based methods can simply segment the object within each
proposal, but they usually require multi-stage training and pruning redundant proposals,
resulting in more computer memory. By contrast, the proposal-free methods have a low
computational cost. The proposal-free methods depend on a bottom-up pipeline that
produces per-point predictions (such as point-wise semantic labels and center offset vectors)
then groups points of the same labels with small geometric distances into instances [55].
With the help of semantic segmentation, the proposal-free methods can generate high-
quality proposals. However, they have two main disadvantages: (1) low overlap between
predicted and the ground-truth instance, (2) false-positive instances from wrong semantic
segmentation results.

Although most existing point cloud instance segmentation methods have achieved
significant progress in indoor scene point clouds, the performance of the outdoor urban
MLS point clouds is often low since objects are locally ambiguous in many cases. In
addition, the boundaries between adjacent road-side trees are usually blurred, making
instance segmentation methods hard to be generalized to the individual tree separation
task. However, these instance segmentation methods can also provide inspiration for the
instance-level tree segmentation from urban MLS point clouds.

2.3. Individual Tree Segmentation

In the past decade, various clustering methods to varying degrees have been applied
to obtain better segmentation results. Chen et al. [56] compared four different single tree
extraction methods: Euclidean distance classification, region growing, normalized cutting,
and supervoxel segmentation, and found that the application of the N-cut method after
Euclidean distance clustering can obtain better segmentation results. Furthermore, various
automated methods for extracting individual trees from point clouds have been proposed,
which can be roughly divided into geometry-based unsupervised methods [57–59] and a
supervision method based on semantic annotation [60–62]. These methods can process
some trees with simple structures through tedious and labor-intensive parameter tuning,
but they still lack generalization ability on the instance-level separation of trees with
different shapes and canopy structures.

Benefiting from the advances in neural network architectures and their great potential
in improving the generality and accuracy of point cloud segmentation, there are several
works that successfully achieved the individual tree segmentation from the point cloud
using deep learning methods [63]. Following an idea similar to the instance segmentation,
Wang et al. [64] propose a point-wise semantic learning network to acquire both local and
global information. By avoiding the information loss and reducing useless convolutional
computations, it is an effective approach for individual tree segmentation from ALS point
clouds. To automatically extract urban trees from large-scale point clouds, PointNLM [65]
incorporates the supervoxel-based and point-wise methods for capturing the long-range
relationship. Simultaneously, a fusion layer of neighborhood max-pooling method is
developed to concatenate the multi-level features for separating the road-side trees. For
tree detection, Luo et al. [66] design a top-down slice module, which can effectively mine
the vertical structure information in a top-down way. To detect trees more accurately, Luo
et al. [66] also add a multi-branch network for providing discriminative information by
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fusing multichannel features. To extract individual urban trees from MLS point clouds,
Luo et al. [67] develop a novel top-down framework, called DAE_Net, based on semantic
and instance segmentation network. After that, the boundaries of instance-level trees are
enhanced by predicting the direction vector for isolated tree clusters.

3. Methodology

As shown in Figure 1, the proposed framework consists of two stages: road-side tree
extraction by semantic segmentation and individual tree separation by instance segmentation.
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3.1. Tree Point Extraction

Generally, an MLS system has a relatively direct scanning angle of view of the ground.
Therefore, the collected 3D points contain massive ground points, which undoubtedly
increase algorithm complexity. A fast and effective preprocessing method is adopted to
separate ground points from original point clouds to reduce the data search range of point
cloud processing. In addition, the ground points are projected and resampled to obtain
the digital elevation model of corresponding region, which is of great significance for the
subsequent calculation of tree height features.

There are often inevitable ups and downs on the ground in an entire urban scene [68].
The filtering effect of ground points is not ideal considering the influence of the accuracy of
the initial triangulated irregular network (TIN). An improved progressive TIN densification
filtering method is introduced to remove ground points. The undetermined seed points
were first selected by the extended local minimum for grids containing points. Then, the
elevations of the grids without points are interpolated using the nearest-neighbor method.
The final seed points are determined according to the judgment of the elevation difference
(ED) in the local neighborhood of thin-plate spline interpolation with the threshold. Finally,
the initial TIN is constructed and iteratively encrypted to extract the ground points [69].

The complexity of an urban scene is the main obstacle to semantically extracting
tree points, which usually contain many categories of objects as well as overlapping or
closely positioned objects [20]. This study proposes a graph convolution network (GCN)
that integrates a lightweight representation learning module and a deep context-aware
sequential module with embedded residual learning to classify urban scenes into tree and
non-tree point clouds.

Unstructured point clouds are first divided into geometrically homogeneous parts to
ameliorate non-uniform distribution and reduce computational complexity. The geometric
grouping algorithm is adopted from [41] which directly consumes original LiDAR point
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clouds generating clusters with approximately equal resolution. A sparse auto-encoder
is employed to compress and encode high-dimensional information as the embedding
to represent the geometric attributes of every patch. Moreover, the spatial position of
geometric clusters is considered to be concatenated into the final descriptor to increase
spatial relationships. To promote the formation of associated areas from geometric patches
generated from the non-ground points, an adjacency graph G = {V, E} is constructed to
model neighboring relationships among the patches. The center of precomputed patches
acts as the nodes V = {vi} in the G, and edges E =

{
eij
}

are established between each pair
of adjacent patches to allow the network to be relatively robust in handling varying point
densities. Specifically, variable adjacency is adopted instead of a fixed-size neighborhood.

There is no spatial transformer network (STN) chosen to match the groups because
the geometric groups are computed based on normalization. Specific feature extraction for
geometric groupings is performed as follows. First, node feature Fn is obtained using a
multilayer perceptron (MLP). Then, k neighboring points of the node is found using the k-
nearest neighbor (KNN) algorithm, and the neighborhood coordinates Xk

c of each node are
obtained. The spatial position information of the neighboring point feature set Fk

c obtained
through the neighborhood point subscript attributes is further encoded. This structure
encodes the 3D geometric information of nodes (the coordinates) and the connection with
corresponding neighbors (the Euclidean distance ‖Xc − Xk

c‖). An MLP with a 3-layer
fully connected structure adjusted the weights of the four spatial position information and
extracted geometric features FG. The convolution operation on the node feature and the
neighboring point feature obtained the semantic feature FS so that the extraction of the
local and context information is more detailed. Finally, the geometric features encoded by
the geometric coordinate, node association information, and neighboring point features
are weighted and summed to form the neighborhood feature set FCSG. Edge features are
determined by the filter-generating network that dynamically produces weights for filtering
edge-specific information through element-wise multiplication [70].

The last step of semantic segmentation involves group-wise labeling by employing
a GCN to classify the Voronoi adjacency graph. A residual net architecture is used for
semantic segmentation to accelerate convergence and prediction [71]. The input is a graph
with a varying number of edges and nodes, with some regular neural networks unable to
cope with such structures. Therefore, long short-term memory [72] is chosen with an input
gate while incorporating the residual connections. This technique can handle graphs with
varying sizes while avoiding the vanishing gradient problem.

Only the tree points are used for further individual urban tree segmentation from the
various classes of obtained point clouds.

3.2. Individual Tree Segmentation

After the object tree is extracted, we further carry out the individual tree segmentation
task. Traditionally, there are two commonly used individual tree segmentation methods:
the CHM-based segmentation methods [6] and the cluster-based graph cut methods [73].
CHM-based segmentation method can quickly segment tree point clouds, but the CHM
transformation can result in the loss of most crucial geometric and spatial context attributes.
By contrast, the cluster-based graph cut method can preserve 3D spatial context information.
However, too many parameters will result in high computational costs. In addition, the
regular clustering strategies are completely insensitive to the boundary, which makes fine
segmentation in the complex tree scene very difficult. Recently, point cloud processing has
achieved significant progress with the development of deep learning techniques [64–67],
which makes it possible to extract individual trees from point clouds. To effectively extract
individual trees from urban MLS point clouds, we propose a novel segmentation network
that combines the semantic information (spatial context information) of the tree category
and the instance information of each tree. In this section, we elaborate on the proposed in-
dividual tree segmentation method in three parts, namely density-based point convolution,
associatively segmenting instances and semantics in tree point clouds, and loss function
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based on metric learning. The overview of the proposed individual tree segmentation
method is shown in Figure 2.
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3.2.1. Density-Based Point Convolution (DPC)

In general, 2D convolution kernel cannot be applied to scattered and disordered point
clouds. PointNet-series networks are the earliest architectures that extract features directly
from points. PointNet uses the Multi-layer Perceptron (MLP) with shared weight to process
the point cloud by weighted summation and solves the disorder of the point cloud through
the maximum pooling operation. However, maximum pool (MP) operation is easy to cause
local information loss of point cloud. To improve the ability of point information extraction,
the weight of the convolution operator is treated as a continuous function composed of
local context information relative to the reference point. For the functions f (x) and g(x) of
d-dimensional vector x, the definition formula of convolution is shown as follows:

( f × g)(x) =
x

τ∈Rd
f (τ)g(x + τ)dτ, (1)

It can be interpreted as a 2D discrete function in the image, which is usually repre-
sented by a grid matrix. In the convolution neural network, the convolution kernel acts on
a fixed size local area for weighted sum operation. The relative position between pixels in
the image is fixed; therefore, the filter can be discretized into weighted summation with
corresponding positions in each local region.

Unlike images, point cloud data is scattered and disordered. Each point in the point
cloud is an arbitrary continuous value, rather than distributed on a fixed grid. Traditional
convolutional filters used on images cannot be directly utilized on point clouds. To make
full use of convolutional operations on point clouds, a permutation-invariant convolu-
tional filter, called PointCONV [74], is used to define the 3D convolutions for continuous
functions by

Conv(W, F)xyz =
y

(δx ,δy ,δz)∈G
W
(
δx, δy, δz

)
F
(
x + δx, y + δy, z + δz

)
dδxδyδz, (2)

where W and F are two functions, F
(
x + δx, y + δy, z + δz

)
indicates the contextual feature

of a point pi (i = 1, 2, . . . , n) in the local neighborhood E, where (x, y, z) is the center position
of this local region. There is a difference in the density between the canopy points and the
trunk points in the tree point cloud. Therefore, density information is extracted to construct
density-based point convolution, as follows:

DensityConv(S, W, F)xyz = ∑(δx ,δy ,δz)∈G S
(
δx, δy, δz

)
W
(
δx, δy, δz

)
F
(

x + δx, y + δy, z + δz
)
, (3)

where S
(
δx, δy, δz

)
represents the inverse density given the local neighborhood point(

δx, δy, δz
)
. Because the down-sampled point clouds are non-uniformly distributed, density-

based weighting is very important. The weight function W
(
δx, δy, δz

)
is constructed through

MLP. The inverse density function S
(
δx, δy, δz

)
is constructed by kernel density estimation,
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and then nonlinear transformation is realized by using MLP. The density point convolution
aiming at the arrangement invariance is constructed through the MLP with shared weight.
The density parameters of each point in the fixed neighborhood are calculated based on the
kernel density estimation function, and the density parameters are transformed nonlinearly
through MLP. The appropriate density function is learned adaptively, and the final inverse
density scale is calculated.

Figure 3 shows the operation of density-based point convolution in local regions. Cin
and Cout are the number of channels of input feature and output feature, and Ckin and
Ckout are the number of channels of input feature and output feature corresponding to
local neighborhood. The input is the local feature, Fin = pi ⊕ pk

i ⊕
(

pi − pk
i

)
⊕ ‖pi − pk

i ‖ ∈
RK×Cin , calculated by the spatial context information fusion block, which also includes
point coordinate information and other feature information (color, intensity, etc.). MLP is
implemented by a 1× 1 convolution. After the convolution, the extracted neighborhood
features Fin are encoded into the output features Fout ∈ RCout , as follow

the Fout = ∑K
k=1 ∑Cin

cin=1 S(k)W(k, cin)Fin(k, cin), (4)

where S ∈ RK represents the density scale and W ∈ RK×Cin×Cout is the output weight function.
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3.2.2. Associatively Segmenting Instances and Semantics in Tree Point Clouds

To avoid a large number of parameter adjustment processes in traditional algorithms,
the semantic information and specific instance information of individual trees are learned
adaptively to obtain the optimal parameters, which makes it possible to segment tree
point clouds that are spatially overlapping with varying shapes and incompleteness. In
this section, we map the point clouds into the high-dimensional feature space and learn
the distribution characteristics of the high-dimensional feature space based on the metric
learning method.

As illustrated in Figure 2, our segmentation network is composed by three parts: an
initial feature extraction block, two parallel decoders, and a feature fusion block. More
specifically, the initial feature extraction block is designed to construct a shared encoder
by combining DPC and PointNet++ [39]. In other words, we construct our backbone
network by directly duplicating an abstraction module of PointNet++. However, the
PointNet++ may lose detailed information due to the MP operation and has expensive
GPU memory consumption during training process. Therefore, we follow JSPNet [55] to
combine the set abstraction module of PointNet++ and three feature encoding layers of
our DPC sequentially to construct the shared encoder. Similarly, two decoders share the
same structure that is built by concatenating three depth-wise feature decoding layers of
DPC and a feature propagation layer of PointNet++. These two decoders are developed
for extracting point-wise semantic features and instance embedding, respectively. Finally,
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in the feature fusion block, different layer features are fused because the high-level layer
has richer semantic information while the low-level has much more detailed information,
which is beneficial for better segmentation.

The input of the network is the point cloud feature matrix of Na × 9. We encode the
point cloud feature as Ne × 512 by means of weight sharing. Next, the high-dimensional
feature matrix is input into the parallel decoder. In the semantic feature decoding branch,
we fuse the features of different levels form the Na × 128 of a high-dimensional semantic
feature matrix FSS through a jump connection. In the branch of case feature coding, we
output the instance feature matrix FIS by jumping to connect the pre-enhanced and post-
enhanced features. Finally, we integrate semantic features and instance features through
semantic and instance information fusion modules. As shown in Figure 2, the output of the
final feature matrix FISS is used to distinguish individual trees. The shape of FISS is Na × K,
where K is the dimension of the embedded vector. We predict the instance label of each
tree. Based on the method of metric learning, we learn the distribution law of features in
high-dimensional embedded space. We draw closer the features that belong to the same
instance object and pull out the features of different instance objects.

As shown in Figure 4, K-nearest neighbor search is adopted to find a fixed number of
adjacent points for each point in the high-dimensional instance embedding space. We use k
nearest neighbor search to generate the index matrix of the shape Na × K. According to the
generated index matrix, we use the context information fusion module to generate the local
neighborhood feature matrix of the instance space. In the semantic space, the feature tensor
with the shape of Na × K× NF is generated according to the index matrix, and each group
corresponds to the local region near a centroid in the instance embedding space. Through
Equation (5), we equalize the local examples and semantic features to each dimensional
feature to enhance the semantics and examples of centroid refinement.

x′i = Mean(xi1, . . . , xiK), (5)

where {xi1, . . . , xiK} represents the semantic and instance fusion features corresponding to
K adjacent points centered on point i in the instance embedding space.
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In the enhanced high-dimensional semantic space, we construct a local neighborhood
graph through K-nearest neighbors and use the graph attention mechanism to select more
representative semantic features to enrich case features. The F = { f1, f2, . . . , fk} and
F ∈ Rk ×m are local neighborhood feature of each node is input into the graph attention
module. m is the dimension of the feature, and k is the number of nodes. First of all, we
encode the input context feature matrix through the shared weight matrix W ∈ Rm′ ×m.
Then, we normalize the encoded features through the Softmax activation function to obtain
the self-attention coefficient corresponding to the feature matrix of each node, F, as shown
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in Equation (7), eij represents the influence of each neighborhood point feature on the node
feature. Attention matrix is generated as aij, and the activation function needs to be applied
before obtaining the nodes in the next layer. The final screening of more representative
semantic enhancement information F′ =

{
f ′1, f ′2, . . . , f ′k

}
, and F′ ∈ Rk ×m′ are shown in

Equation (8).
eij = α(W × f ), (6)

aij = So f tmax
(
eij
)
=

exp
(
eij
)

∑j∈Ni
exp
(
eij
) , (7)

F′ = σ
(
∑j∈Ni

aijw f j

)
, (8)

We combine more representative semantic enhancement information with
high-dimensional instance features to form the final high-dimensional instance feature
discrimination matrix that combines semantic information and instance information to
enhance each other.

3.2.3. Loss Function Based on Metric Learning

The loss function is the discriminant loss function used in metric learning, as shown
below.

L = Lpull + Lpush + α · Lreg, (9)

where Lpull pulls embeddings close to the mean embedding of instance, while the Lpush
makes the mean embedding of different instances separated from each other. Lreg is the
regularization item (Equation (10)), which makes the center of the instance close to the
origin and keeps the gradient always active.

Lreg =
1
I ∑I

i=1 ‖µi‖1, (10)

where µi is the average embedding of tree instance.
For individual tree segmentation, Lpull makes points on the same tree in the high-

dimensional instance space close to its center, which is defined as follows:

Lpull =
1
M ∑M

m=1
1

Nm
∑Nm

n=1[‖µm − En‖1 − δv]
2
+, (11)

where δv is the penalty margin for the center point of each instance. When the distance
between the point on a single tree and its center point is less than δv, no penalty will be
imposed. In addition, [x]+ = max(0, x); ‖ · ‖1 is the L1 norm, M is the number of the road-
side trees, Nm refers to the number of points in instance i, En represents the embedding of
points in the tree instance.

As shown in Equation (12), Lpush keeps the points of different trees away from each
other. When the distance between the centers of two tree instances exceeds 2δd, no penalty
will be imposed, so that instances can be freely distributed in space.

Lpush =
1

M(M− 1) ∑M
i=1 ∑M

j=1

[
2δd − ‖µi − µj‖1

]2

+
, (12)

During the testing, the final instance labels are obtained by using a simple mean-shift
clustering [75] on the high-dimensional embedded feature space.

3.3. Estimation of Living Vegetation Volume

Living Vegetation Volume (LVV) calculation is an important task of urban ecology
because it can objectively and accurately describe the urban greenery quality and provide a
reliable data foundation for the quantitative study on the mechanism of urban greenery
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ecological functions. Benefited from our high-quality instance segmentation results of
road-side trees, the convex hull method is adopted to calculate LVV of urban roads.

It is necessary to extract the canopy point cloud to calculate the LVV of road-side trees.
According to the definition of the principal direction in differential geometry, the direction
corresponding to the minimum curvature is adopted as the principal direction of the tree
point cloud. The main directions of leaf point clouds are messy, while the main directions
of point clouds in the branches are basically coincident. Therefore, the normal vectors of the
object points and adjacent points are used to construct a dense tangent circle and further
calculate the main direction of the tree point cloud. After that, the tree canopy is extracted
according to the axial distribution density and axial similarity of the trunk. At given point,
we judge the axial distribution density in the cylinder constructed by this point. The axis of
the cylinder is divided into n segments. The inner point of the cylinder is projected onto the
axis. The ratio of the segment occupied by the projection point to n is the axial distribution
density. The optimal threshold is 0.8. The included angle of each point in the cylinder is
then calculated, which refers to the included angle between the main direction of each point
in the cylinder and the main direction of the center point. The best threshold is 20◦. Finally,
the specific gravity of the effective point is calculated. Specifically, the effective point refers
to the point that meets the conditions that the axial distribution density is greater than the
density threshold and the included angle ratio is less than the included angle threshold.
The ratio of these points to the number of points in the cylinder is needed. The optimal
threshold is 0.8. After many tests, the height of the constructed cylinder is 10 times the
average density of the point cloud, and the radius is 2 times the average density. When
the axial distribution density is greater than 0.8, the included angle is less than 20◦, and
the specific gravity of the effective point is greater than 0.8, the constructed cylinder is
considered the best cylinder approximation of the trunk point cloud. Then, the trunk point
cloud is regionally grown until all the point clouds are processed. Finally, the region is
merged to identify the trunk point cloud and remove the trunk point cloud to complete the
canopy extraction.

From the perspective of dendrometry, the traditional LVV calculation takes the crown
width and crown height as parameters and treats the crown as regular geometry [76].
However, most of the crown shapes are variable and have no specific regular shape,
resulting in large errors. We calculate the LVV by the convex hull method and compare it
with the traditional method and the platform method.

4. Experimental Results
4.1. Dataset Description

To check the performance of the proposed method, MLS point clouds from two
different urban regions are used in the evaluation experiments. Dataset I was collected
using a Riegl VMX-450 MLS system in the summer of 2020, covering approximately 6.0 km
urban roads in Shanghai, China. Dataset II was collected using a Trimble MX2 MLS
system in Nanjing, China, covering urban road length approximately 8.0 km. For training
the neural network, 4.5 km of Dataset I and 6.0 km of Dataset II are manually labeled
for quantitative evaluation. It is worth noting that the main characteristic of these two-
point cloud datasets includes many road-side trees and the distributions of road-side trees
presenting different situations. Figure 5 shows an overview of two urban MLS point cloud
scenes. Several road-side trees are quite sparse, while others overlap heavily.
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Figure 5. The overview of two experimental datasets. These two experimental datasets are colored
by elevation of each point.

4.2. Semantic Segmentation Performances
4.2.1. Semantic Segmentation Results

Figures 6 and 7 illustrate the visual result by testing with selected point clouds from
Dataset I and Dataset II, which verifies that our semantic segmentation model is able
to achieve promising point-wise segmentation of the large-scale urban environments.
Figures 6a and 7a show the two selected MLS point clouds, colored by the elevation of each
point. Figures 6b and 7b present semantic segmentation outcomes, dotted in different colors
according to the labels. After tree and non-tree points are identified by using semantic
segmentation approach, the road-side trees are extracted from the raw urban MLS point
cloud scenes. Figures 6c and 7c illustrate the road-side tree extraction results, where the
extracted road-side tree points are overlaid on the original urban MLS point clouds. To show
more details of the road-side tree extraction outcomes, Figures 6d and 7d present close-up
results at some selected regions. Although MLS point clouds collected in urban roads are
very complex, our semantic segmentation results indicate many objects (e.g., buildings and
grounds) are effectively extracted, and the road-side trees are completely segmented.
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Figure 7. Example of urban MLS point cloud semantic segmentation on Dataset II. (a) Raw urban
MLS point cloud, (b) point cloud semantic segmentation result, dotted in different colors according
to the labels, (c) tree point extraction result, where green and gray points represent points from
trees and non-tree objects, respectively, (d) two close-up semantic segmentation results at some
selected regions.

To better present the urban MLS point cloud semantic segmentation performance
of the proposed method, we quantitatively assess the semantic segmentation results in
terms of the two commonly used evaluation metrics [20,41]: overall accuracy (OA) and
mean intersection over union (mIoU). The numerical point cloud semantic segmentation
results for Dataset I and Dataset II are listed in Table 1. As can be perceived, the proposed
method achieves excellent performance in semantically segmenting MLS point clouds with
an average OA and mIoU of (89.1%, 63.8%) and (88.8%, 64.3%) for the two MLS point cloud
datasets, respectively. From the global perspective, the OAs of Dataset I and Dataset II
exceed 88%, which demonstrates the effectiveness of our semantic segmentation model.
Meanwhile, the OAs and mIoUs of Dataset I and Dataset II show no evident performance
differences. Moreover, the IoU of road-side trees, the most important urban objects, surpass
87% in both Dataset I and Dataset II, achieving the ideal results for tree point extraction.
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Table 1. Semantic segmentation quantitative evaluation (i.e., OA, mIoU and IoU of each class, all
values in %) on Dataset I and Dataset II. Best results in bold.

Ref. OA mIoU Ground Building Tree Light Parterre Pedestrain Fence Pole Car Others

Dataset
I

[39] 61.9 45.3 60.4 59.9 60.8 62.5 45.1 9.6 7.3 34.7 78.0 34.2
[77] 52.3 37.4 58.7 29.9 50.8 49.1 29.1 10.7 33.5 8.6 81.2 38.1
[78] 52.9 40.1 60.2 67.1 53.4 50.8 13.8 15.4 2.9 60.8 78.3 4.8
[41] 85.6 61.7 88.1 81.3 81.5 82.9 60.2 30.2 26.8 50.2 90.7 50.3
[40] 80.2 59.2 80.1 82.1 65.1 79.4 65.2 70.3 3.9 23.4 91.2 12.7
[44] 82.5 61.3 79.2 77.1 90.3 89.5 45.8 56.2 30.1 66.2 88.3 10.3
[20] 75.2 49.6 72.3 80.4 70.2 79.1 23.0 33.6 78.4 8.5 96.1 30.5

Ours 89.1 63.8 85.3 88.9 87.2 90.8 25.6 59.7 34.6 49.8 95.2 20.7

Dataset
II

[39] 59.8 39.6 55.8 65.1 52.7 37.9 46.4 15.3 10.8 31.7 51.0 29.7
[77] 51.0 37.7 45.7 30.2 39.7 52.7 11.5 8.7 40.1 9.6 35.7 26.9
[78] 52.3 39.8 56.7 70.5 46.7 54.7 12.8 20.7 10.9 45.8 67.1 12.5
[41] 84.9 62.6 85.4 73.2 85.7 78.4 55.7 36.9 22.4 58.7 70.1 60.4
[40] 79.8 50.9 76.9 83.7 70.2 79.9 52.1 44.1 10.2 15.7 66.7 9.9
[44] 80.7 54.6 70.8 70.2 86.7 82.7 23.7 57.1 40.8 51.7 50.4 12.4
[20] 72.9 45.0 53.4 77.1 70.4 70.4 40.2 12.1 10.4 1.0 75.7 40.1

Ours 88.8 64.3 63.8 70.8 88.6 83.7 53.4 30.7 68.4 60.1 45.2 73.0

4.2.2. Comparison with Other Published Methods

For further semantic segmentation performance evaluation, we compare our semantic
segmentation model with existing published networks obtaining baseline results. These
networks can be viewed as reference methods, including PointNet++ [39], TagentConv [77],
MS3_DVS [78], SPGraph [41], KPConv [40], RandLA-Net [44], and MS-RRFSegNet [20].
Specifically, PointNet++ [39] is a follow-up work of PointNet [38], which is the pioneer
work directly on irregular points. It grouped points hierarchically and progressively
acquired both local and global features. TagentConv [77] is a representative model of
projection-based methods for semantic segmentation of large scenes. It introduced a novel
tangent convolution and operated directly on precomputed tangent planes. MS3_DVS [78]
is a representative model of discretization-based methods, which proposed multi-scale
voxel network architecture to classify 3D point clouds of large scene. SPGraph [41] is
one of the first methods capable of directly processing large-scale point clouds based on
an attributed directed graph, which consists of geometrically homogeneous partitioning,
super-point embedding, and contextual segmentation. KPConv [40] is a flexible point-
wise convolution operator for point cloud semantic segmentation, which proposed a
kernel point fully convolutional network to achieve state-of-the-art performance on the
existing benchmarks. RandLA-Net [44] is a lightweight yet efficient point cloud semantic
segmentation network, which utilized random point sampling to achieve vastly high
efficiency and captured geometric features by a local feature aggregation module. MS-
RRFSegNet [20] is a multiscale regional relation feature segmentation network, which
adopted a sparse auto-encoder for feature embedding representations of the homogeneous
super-voxels that reorganized raw data, and semantically labeled super-voxels based on
the regional relation feature reasoning module.

For fair comparison, we faithfully follow the experimental settings of each selected al-
gorithm that has available code. In addition, the proposed model is also compared between
the Dataset I and Dataset II. All experiments are performed on a computer equipped with
two NVIDIA GEFORCE RTX 3080 GPUs. Based on the same configurations, the quantita-
tive results on the Dataset I and Dataset II are also presented in Table 1. As can be perceived,
TagentConv [77] has the worst performance since the orientation of the tangent plane may
not be estimated well in urban road scenes with topographic relief variations. The mIoU
scores of the proposed method is the highest at present and is followed by RandLA-Net [44]
with a gap of approximately 2%, while the KPConv [40] is slightly inferior to RandLA-
Net [44] by approximately 0.4%, and SPGraph [41] achieves the fourth highest performance.
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It is worth noting that the abovementioned four methods are greatly superior to others
in general. There are a number of common categories such as ground, vegetation, and
building that are finely segmented due to the abundance of points of these categories in the
dataset. In general, while the proposed method achieves satisfying semantic segmentation
results and ranks highly, the overall segmentation performances of other state-of-the-art
deep-learning methods are far from satisfactory. In particular, some key elements of road
infrastructures have weak performances across all of the techniques.

4.3. Individual Tree Segmentation Perfromances
4.3.1. Tree Segmentation Results

The individual tree segmentation performances of two urban MLS point clouds are
estimated qualitatively. The visual samples in Figures 8 and 9 are selected with different
spatial structures of complex urban environments to show the good segmentation ability
of the proposed method. Figures 8a and 9a illustrate the road-side tree extraction results,
where the extracted road-side tree points are overlaid on the original urban MLS point
clouds. Figures 8b and 9b present individual tree segmentation outcomes, where every
road-side tree is drawn in one color. Figures 8c and 9c show some zoom-in views of the
individual tree segmentation results at some randomly selected regions. We can see that
there exist some errors in the boundary regions of segmented instance-level road-side trees;
nonetheless, it still has a high sensitivity to separate individual road-side trees.
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Figure 8. Example of individual tree segmentation on Dataset I. (a) Input tree point cloud, where
green and gray points represent points from trees and non-tree objects, respectively, (b) individual
tree segmentation result, dotted in different colors, (c) two close-up individual tree segmentation
results at some selected regions.
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Figure 9. Example of individual tree segmentation on Dataset II. (a) Input tree point cloud, where
green and gray points represent points from trees and non-tree objects, respectively, (b) individual
tree segmentation result, dotted in different colors, (c) two close-up individual tree segmentation
results at some selected regions.

To better show the individual tree segmentation results of the proposed method, we
quantitatively evaluate the individual tree segmentation performances in terms of the four
commonly used instance segmentation evaluation metrics [79]: the precision (Prec), the
recall (Rec), the mean coverage (mCov) and the mean weighted coverage (mWCov) (see
Equations (13)–(16)). The numerical instance segmentation results for Dataset I and Dataset
II are presented in Table 2, respectively. We can see that the proposed method obtains
good performance in individual tree segmentation from urban MLS point clouds with
average mPrec, mRec, mCov and mWCov of (90.27%, 89.75%, 86.39%, 88.98%) and (90.86%,
89.27%, 87.20%, 88.56%) for the two urban MLS point cloud datasets, respectively. From the
global perspective, the mPrec and mRec of Dataset I and Dataset II both exceed 89%, which
demonstrates the effectiveness of the proposed individual tree segmentation network.
Moreover, the mCov and mWCov of the instance segmentation of road-side trees surpass
86% and 88% in Dataset I and Dataset II, respectively, achieving the significant performances
for individual tree segmentation from urban MLS point clouds. Meanwhile, these four
instance-level metrics of Dataset I and Dataset II show no evident performance differences.

Prec =

∣∣TPins
∣∣∣∣Pins
∣∣ , (13)

Rec =

∣∣TPins
∣∣∣∣Gins
∣∣ , (14)

where
∣∣TPins

∣∣ represents the number of segmented road-side tree instances with an IoU
with ground truth larger than 0.5;

∣∣Pins
∣∣ refers to the total number of predicted instances

of the road-side trees, and
∣∣Gins

∣∣ indicates the number of the segmented road-side tree
instances in the ground truth.

mCov(I, P) =
1
|I|∑

|I|
a=1 max

b
IoU(Ia, Pb), (15)

mWCov(I, P) =
|I|

∑
a=1

Ia

∑
|I|
c=1 Ic

max
b

IoU(Ia, Pb), (16)

where |I| represents the number of all road-side tree instances in the ground truth. Ia
indicates the a-th road-side tree instance area in the ground truth road-side tree instance
collection, Pb refers to the b-th segmented road-side tree instance area, b refers to the number
of trees in the point cloud to be processed.
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Table 2. Instance-level tree segmentation quantitative evaluation on Dataset I and Dataset II. Best
results in bold.

Ref. Prec (%) Rec (%) mCov (%) mWCov (%)

Dataset I

[80] 80.22 80.10 79.06 81.23
[81] 82.14 81.67 82.01 83.54
[64] 84.56 85.22 83.96 85.24
[67] 86.11 85.89 84.66 86.74

Ours 90.27 89.75 86.39 88.98

Dataset II

[80] 82.54 82.69 80.12 81.95
[81] 83.96 83.42 82.45 84.02
[64] 85.47 84.55 84.23 86.33
[67] 88.53 87.86 85.74 86.78

Ours 90.86 89.27 87.20 88.56

4.3.2. Comparative Studies

To further prove the superiority of our individual tree segmentation method, we de-
signed a number of experiments and compared it with selected popular methods, including
two traditional methods (watershed-based method [80] and mean shift-based method [81])
and two deep learning approaches (SGE_Net [64] and DAE_Net [67]). To qualitatively
present the effectiveness of the proposed method for individual tree segmentation in com-
plex urban MLS point cloud scenes, a selected examples of visual results are shown in
Figure 10. Specifically, we can see that all methods obtain satisfactory results for road-trees
with consistent tree shapes in simple situations. With regard to the complex position
distribution, such as multiple trees distributed in a queue with serious spatial overlap, two
traditional methods [80,81] are fast and efficient but easy to result in omission or commis-
sion errors. By contrast, two deep learning approaches [64,67] and our method can achieve
better tree segmentation results. The main reason is that the traditional methods strongly
depend on the boundary spatial features between adjacent road-side trees and the fixed
shape assumption of road-side trees. For the deep learning methods based on the designed
neural networks, their layer structure and parameters can implicitly express the spatial
interactions between tree point clouds, facilitating the feature representations for instance
segmentation. Although the deep learning methods introduce additional computational
complexity, this degeneration should be tolerated when we conduct the individual tree
segmentation in large-scale MLS point clouds.
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Figure 10. Individual tree segmentation results with different methods. Left: individual tree seg-
mentation results; right: the error map of different results. (a) Individual tree segmentation result of
watershed-based method [80], (b) individual tree segmentation result of mean shift-based method [81],
(c) individual tree segmentation result of SGE_Net [64], (d) individual tree segmentation result of
DAE_Net [67], (e) individual tree segmentation result of the proposed method.

Furthermore, since it is relatively limited to show the advantages of the proposed
method by visual presentation, we further quantitatively compare the individual tree seg-
mentation performance of four selected baselines and the proposed method. The numerical
comparisons are also provided in Table 2 for Dataset I and Dataset II. The quantitative
comparison for individual tree segmentation among four baselines shows that the proposed
method achieves the best segmentation results on all four evaluation indicators, mPrec,
mRec, mCov, and mWCov, not only for Dataset I but also for the Dataset II. As can be
perceived, the mPrec, mRec, mCov, and mWCov of [80] are the worst at present and are
followed by [81] with gaps of approximately 1.67%, 1.15%, 2.64%, and 2.69%, while the
SGE_Net [64] is superior to DAE_Net [67] by approximately 2.30%, 1.99%, 1.10%, and 1.34%.
Because DAE_Net [67] propose to use the pointwise direction embedding to distinguish the
fine boundaries of individual road-side trees, it has more obvious improvements, compared
to [80,81], and SGE_Net [64], on both two urban MLS point cloud datasets, which reveals
that SGE_Net [64] is good at the individual tree segmentation task of the complex urban
scenes. In practical application, however, there are inevitably errors in the detected tree
centers. Therefore, from the comparison results of Table 2, we can see that SGE_Net [64]
is slightly inferior to ours in general. For example, the proposed method outperforms the
SGE_Net [64] by average improvements of approximately 3.24% in mPrec, approximately
2.63% in mRec, approximately 1.59% mCov, and more than 1.96% in mWCov. To sum up, it
is evident that the proposed method has obtained a prominent improvement compared
with the selected four reference baselines.

4.4. LVV Calculatation Results

It can be seen from Table 3, the relative error (δ1) between the adopted scheme and
the traditional method is 12.6~33.7%, and the average relative error is 16.5~19.9%. The
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trees in the real urban scene are complex and changeable, and even the same tree species
have different crown shapes. This situation leads to the fact that the true canopy profile of
trees cannot be effectively expressed, so it is difficult to find the most suitable crown shape.
In addition, due to the influence of human factors in the visual process, the error is large.
The relative error (δ2) between the adopted scheme and the platform method is 2.7~14.6%,
and the average relative error is 7.8~8.9%. The platform method does not need to consider
the tree shape to calculate the LVV, which reduces the influence of human factors and
improves the calculation efficiency. However, there is a large gap between the bottom layer
and the bottom layer of the actual tree crown in the calculation of the platform method,
resulting in a large error at the bottom layer. The calculation of the adopted scheme is
based on high-precision tree point clouds, and the used convex polyhedron approximates
the original shape of the tree crown, which can better express the space volume occupied
by the tree stem and leaf. Therefore, the obtained LVV is more accurate and does not need
to consider the tree shape, realizing the automatic calculation of LVV.

Table 3. Comparison of LVV calculation results.

This
Scheme

(m3)

Traditional
Method

(m3)

Platform
Method

(m3)
δ1(%) δ2(%)

Dataset I

Road 1 9.23 10.80 9.79 17.0 6.1
Road 2 22.70 25.56 23.32 12.6 2.7
Road 3 25.34 33.88 28.89 33.7 14.0

Average 19.9 7.8

Dataset II

Road 4 13.41 16.77 15.37 25.0 14.6
Road 5 32.11 36.48 34.29 13.6 6.8
Road 6 39.76 46.40 42.29 16.7 6.4

Average 16.5 8.9

To better reflect the accuracy of LVV calculation, the correlation coefficient (R2) is
adopted to compare the results of manual measurements and that from LVV calculated in
the proposed model. The definition of the evaluation indicator is as follows:

R2 = 1−
∑Q

q=1

(
mq −m′q

)2

∑Q
q=1
(
mq −mq

)2 , (17)

where Q denotes the number of trees; mq is the value of the manual measured LVV; m′q is
the value of LVV determined from the segmented tree point clouds; and mq is the mean
value of the manually measured LVV. To evaluate the accuracy of the calculated LVVs based
on the segmentation results of the proposed method, the calculated results are compared
with manual measured ground truths. The linear correlations between calculated values
and the manual measurements are given in Figure 11.

In the comparative results, R2 of Dataset I and Dataset II are 0.9924 and 0.9873,
respectively. The R2 of two-point cloud datasets are close to 1, showing the correlation for
tree-level LVV is high. Two fitted lines are close to y = x, showing high accuracies of our
approach to extract instance-level road-side trees.

4.5. Generalization Capability

To further show the generalization ability of our approach, an additional experiment
is carried out on an urban ALS point cloud dataset captured in Wuhan, China. This dataset
is a highly dense ALS point cloud dataset with various types of urban objects, covering
approximately 3.5 km2. The individual tree segmentation result is presented in Figure 12,
proving that our method achieved good segmentation results on the ALS point clouds.
Moreover, SGE_Net [64] and DAE_Net [67] are selected as comparison methods, and the
corresponding individual tree segmentation results are provided in Table 4. The proposed
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method outperformed the above two deep learning methods, which obtained an average
improvement of 5.56%, 3.58%, 4.78%, and 6.74% in terms of all mPrec, mRec, mCov, and
mWCov scores, respectively.
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LVV calculation result for Dataset I, (b) The validation LVV calculation result for Dataset II.
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mentation result, dotted in different colors, (e) close-up for individual tree segmentation. 
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Figure 12. Generalization result on ALS point cloud. (a) Raw point cloud, (b) semantic segmentation
result, dotted in different colors according to the labels, (c) tree extraction result, where green and gray
points represent points from trees and non-tree objects, respectively, (d) individual tree segmentation
result, dotted in different colors, (e) close-up for individual tree segmentation.

Table 4. Instance-level quantitative evaluation on ALS point clouds. Best results in bold.

Prec (%) Rec (%) mCov (%) mWCov (%)

SGE_Net [64] 81.25 80.56 79.54 78.24
DAE_Net [67] 83.45 83.74 82.99 82.01

Ours 88.23 87.94 86.12 85.74

5. Conclusions

The accurate individual tree segmentation is one of most important eco-urban construc-
tion tasks. In this study, a novel top-down framework is developed to extract individual
tree from MLS point clouds by integrating semantic and instance segmentation. In various
highway scenes, there are a large number of overlapping and irregular road-side trees in
urban roads. The semantic segmentation network is first used to semantically segment tree
points from raw point clouds. Next, an instance segmentation network is developed to
isolate individual road-side trees. The instance segmentation network consists of a shared
feature encoder, two parallel feature decoders, and a feature fusion module. To improve
network accuracy and efficiency, the loss function based on metric learning is adopted
for training. The Prec, Rec, mCov, and mWCov of (90.27%, 89.75%, 86.39%, and 88.98%,
respectively) and (90.86%, 89.27%, 87.20%, and 88.56%, respectively) are obtained from
two different MLS point cloud datasets. The achieved individual tree segmentation results
are superior to that of other published methods. Individual tree segmentation results
provide support for future eco-city analysis, such as calculating the LVV of urban roads. In
conclusion, our work offers an effective solution to individual tree segmentation.
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