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Abstract: Plot-level photography is an attractive time-saving alternative to field measurements for
vegetation monitoring. However, widespread adoption of this technique relies on efficient workflows
for post-processing images and the accuracy of the resulting products. Here, we estimated relative
vegetation cover using both traditional field sampling methods (point frame) and semi-automated
classification of photographs (plot-level photography) across thirty 1 m2 plots near Utqiaġvik, Alaska,
from 2012 to 2021. Geographic object-based image analysis (GEOBIA) was applied to generate
objects based on the three spectral bands (red, green, and blue) of the images. Five machine learning
algorithms were then applied to classify the objects into vegetation groups, and random forest
performed best (60.5% overall accuracy). Objects were reliably classified into the following classes:
bryophytes, forbs, graminoids, litter, shadows, and standing dead. Deciduous shrubs and lichens
were not reliably classified. Multinomial regression models were used to gauge if the cover estimates
from plot-level photography could accurately predict the cover estimates from the point frame across
space or time. Plot-level photography yielded useful estimates of vegetation cover for graminoids.
However, the predictive performance varied both by vegetation class and whether it was being used
to predict cover in new locations or change over time in previously sampled plots. These results
suggest that plot-level photography may maximize the efficient use of time, funding, and available
technology to monitor vegetation cover in the Arctic, but the accuracy of current semi-automated
image analysis is not sufficient to detect small changes in cover.

Keywords: Arctic observing network; Arctic tundra; digital photography; geographic object-based
image analysis (GEOBIA); point frame; tundra plant communities; vegetation cover; vegetation change

1. Introduction

The Arctic is changing in response to warmer temperatures caused by global warm-
ing [1]. Warmer temperatures in the Arctic have resulted in longer growing seasons, greater
permafrost degradation and active layer thaw depth, and altered snow cover and accu-
mulation, which have the potential to influence the composition of tundra vegetation
communities [2–5]. As the composition shifts in tundra vegetation communities, climate-
related feedback cycles may be amplified, prompting widespread change in and beyond
the Arctic [6,7]. To assess and forecast change across a warming Arctic, monitoring plant
cover, structure, and community dynamics over time is critical [1,8].

Remote Sens. 2023, 15, 1972. https://doi.org/10.3390/rs15081972 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15081972
https://doi.org/10.3390/rs15081972
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5067-5960
https://orcid.org/0000-0002-0052-8580
https://orcid.org/0000-0003-1085-8521
https://orcid.org/0000-0002-4764-7691
https://doi.org/10.3390/rs15081972
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15081972?type=check_update&version=2


Remote Sens. 2023, 15, 1972 2 of 24

Time series of satellite-derived spectral indices, which are proxies for vegetation cover
and biomass, have shown greening in the Arctic tundra for more than 40 years [9,10],
while spectral browning has been detected in boreal regions [11–13]. Spectral greening
trends suggest an increase in vegetation productivity as a result of warming, whereas
spectral browning trends suggest a decrease in vegetation productivity [14]. Satellite-based
observations and trends must be validated by ground-based observations, but these data
do not always correspond spatially or temporally [14].

How patterns detected by satellites are related to patterns observed on the ground
is not well understood due to the mismatch among spatial resolution, spatial coverage,
and remote sensing approaches. A dearth of sustained surface or near-surface observa-
tions of vegetation change has limited further exploration of this scaling mismatch and
uncertainty [15–18]. Analyses of repeat plot-level photographs and both occupied and
unoccupied aircraft have been identified for their potential to bridge the data gap between
ground-based and satellite-based observations in the Arctic [19–23].

Ground-based observations can be used as a reference standard to validate remotely
sensed observations due to the precise, accurate, and repeatable nature of such measure-
ments [24,25]. The point frame method is a standard field technique for measuring in
situ vegetation cover in the Arctic [26]. Although this method is accurate, repeatable,
and robust, it is time-consuming and requires a high level of training and experience to
implement effectively [27]. Generating a sufficiently large, representative sample size using
this method is a challenge since vegetation plots are likely to be sampled at a lower spatial
and temporal frequency [27]. Additionally, traditional approaches to vegetation monitoring
in the Arctic are constrained by a multitude of factors that include, but are not limited to,
a short growing season (less than three months), extensive logistical costs, and limited
access to remote research sites. These challenges have increasingly catalyzed the adoption
of remote sensing methods in the Arctic [28–30].

Plot-level photography requires less time and less extensive training than traditional
vegetation sampling methods and has the capacity to increase the spatiotemporal extent and
resolution of vegetation surveys. Repeat photography can be analyzed retroactively and is
less prone to observer bias than sustained field surveys [31–34]. Plot-level photographs are
also advantageous because nadir image acquisition can capture complete vegetation cover
within a given field of view, whereas the analysis of point frame data is limited to the point
density of the sampling frame [31,35].

Image analysis has transitioned from pixel-based to object-based over recent years [36,37].
Object-based image analysis, developed in the biomedical and computer sciences, has been
adapted for the analysis of remotely sensed imagery, with geographic object-based image
analysis (GEOBIA) as the accepted framework [36–38]. Image objects are generated from
groups of homogeneous pixels through segmentation and then assigned to a class through
classification. Spatial, spectral, and other features within an image, additional data layers, and
expert user knowledge can be incorporated into the classification procedure, which further
offsets object-based from pixel-based approaches [39].

As high spatial resolution imagery becomes more accessible due to technological
advancements, the application of GEOBIA has become more common due to its advantages
over other approaches [40–42]. Although GEOBIA has been applied extensively to classify
vegetation cover in aerial and satellite imagery [43], relatively few studies have applied
GEOBIA to near-surface plot-level imagery [32,35,44], especially in polar regions [23,31,34].

Chen et al. (2010) [31] applied object-based image analysis to plot-level photographs
acquired in the Arctic in 2007. The cover estimates of a few dominant vegetation species
from plot-level photographs were compared using a digital grid overlay, ocular estimates
of plant cover in the field, and an object-based image segmentation scheme in which objects
were automatically derived from photographs and then manually classified to species by
a botanist. The object-based approach was the most accurate in estimating differences in
species-specific leaf area index (LAI) over space, but it was also the most time-consuming of



Remote Sens. 2023, 15, 1972 3 of 24

the three methods due to the large manual component. They did not evaluate the accuracy
of the methods by assessing the changes in vegetation cover over time.

More recently, King et al. (2020) [34] applied object-based image analysis to plot-level
photographs acquired in Antarctica from 2003 to 2014. The authors created a rule-based
framework where user-defined thresholds were applied to classify objects into healthy,
stressed, and moribund bryophyte covers. The remaining four classes (lichens, rock,
shadow, and snow) were manually digitized and masked from the images. This framework
is not applicable to most tundra communities because tundra vegetation tends to exhibit
greater species diversity, especially among vascular plants, than Antarctica [45,46]. Manual
digitization of tundra vegetation in plot-level photographs is unlikely to be a feasible
solution, as classes are more numerous, complex, and do not possess visually distinctive
boundaries. An accuracy assessment using in situ field survey data was not included in
King et al. (2020) [34].

Here, we extend previous work by applying semi-automated image analysis to the
vegetation in northern Alaska, quantifying the cover of eight complex vegetation classes
from plot-level photographs across nearly a decade. We evaluate the accuracy of plot-level
photography using in situ field survey data from the point frame method. Finally, we use
the estimates of vegetation cover from the plot-level photographs to predict vegetation
cover over space and time, scaling our approach to tundra communities with similar
composition.

We address the following questions:

1. Which machine learning model is optimal for the classification of plot-level pho-
tographs of Arctic tundra vegetation?

2. How do estimates from plot-level photography compare with estimates from the
point frame method?

3. Can we predict vegetation cover across space and time using the vegetation cover
estimates from plot-level photography?

2. Materials and Methods
2.1. Study Site

In the early 1990s, a sampling grid was established at Utqiaġvik (formerly Barrow),
Alaska (71◦19′N, 156◦36′W) by the Arctic System Science (ARCSS) program to monitor
long-term, landscape-level terrestrial change [47]. Ninety-eight 1 m2 vegetation plots were
installed at 100-meter intervals across the 1 km2 sampling grid in 2010 (Figure 1). The
98 plots are sampled once every five years due to the tremendous effort and expense of
vegetation sampling using the point frame method [27,48]. Of the original 98 plots, a subset
of 30 plots was selected for annual vegetation sampling, which evenly represented four
generalized vegetation communities based on a classification map developed from a 2002
QuickBird satellite image [49]. The 30 plots are the focus of this study. Furthermore, we
examine vegetation cover and change within a 0.75 m2 footprint in each 1 m2 plot, as the
point frame only spans 0.75 m2.

This region is classified as a wetland dominated by sedges, grasses, and mosses (class
W1) by the Circumpolar Arctic Vegetation Map [50]. Average July temperatures for the
region were historically recorded at 4 ◦C, although the region has experienced a warming
trend over the past several decades [1,51,52]. Continuous daylight is exhibited in the
Arctic for most of the growing season, which extends from early June to late August. Peak
growing season, when the plants are generally greenest and most productive, occurs from
July through mid-August [53].
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Figure 1. Map of the research site. (A) The site is stationed above the Arctic Circle (denoted by a 
white dashed line) on the Barrow Peninsula near the city of Utqiaġvik, Alaska. (B) The 30 vegetation 
plots in this analysis are represented by white squares. These plots are part of a larger collection of 
98 plots (denoted by black squares), which are evenly distributed at a 100-m interval across the 
Arctic System Science (ARCSS) grid. 

2.2. Plot-Level Photography 
Plot-level photographs were taken at waist height (approximately 1 m above the 

ground), from a near nadir perspective, centered above the plot. Although overcast con-
ditions were preferred to reduce the amount of shadow in the photograph, lighting con-
ditions were not always consistent. An object-based approach may combat inconsistent 
lighting by relying on information that is independent of color, which reduces the error 
associated with inconsistent lighting conditions [34]. 

Plot-level photographs were taken using either a Panasonic DMC-TS3 or Nikon Cool-
pix AW120 handheld camera. Images were considered high resolution since the objects of 
interest were at least three to five times larger than the number of pixels in the objects 
[40,54,55]. Automatic camera settings (no flash, fixed focus) were used to respond to nat-
ural ambient light in the environment. Images were recorded as uncompressed JPEG files 
with three visible spectral bands (red, green, and blue) and an 8-bit, unsigned radiometric 
resolution, which ranged in digital values from 0 to 255. 

Plot-level photographs were mostly collected on a biweekly basis during the growing 
season (Table S1). One set of plot-level photographs near the peak growing season was 
analyzed each year, although some substitutions occurred for photographs that were not 
vertically positioned, missing, or out-of-focus (Figure S1). Photographs were substituted 
if an adjacent sampling date contained an acceptable image. In total, 210 plot-level photo-
graphs were analyzed across seven sampling years (2012, 2013, 2014, 2015, 2018, 2019, and 
2021). In 2016, no photographs were recorded. In 2017, photographs were not suitable 
because they were taken prior to peak greenness and productivity. In 2020, photographs 
were of low resolution and incomplete. 

Figure 1. Map of the research site. (A) The site is stationed above the Arctic Circle (denoted by a white
dashed line) on the Barrow Peninsula near the city of Utqiaġvik, Alaska. (B) The 30 vegetation plots
in this analysis are represented by white squares. These plots are part of a larger collection of 98 plots
(denoted by black squares), which are evenly distributed at a 100-m interval across the Arctic System
Science (ARCSS) grid.

2.2. Plot-Level Photography

Plot-level photographs were taken at waist height (approximately 1 m above the
ground), from a near nadir perspective, centered above the plot. Although overcast condi-
tions were preferred to reduce the amount of shadow in the photograph, lighting conditions
were not always consistent. An object-based approach may combat inconsistent lighting
by relying on information that is independent of color, which reduces the error associated
with inconsistent lighting conditions [34].

Plot-level photographs were taken using either a Panasonic DMC-TS3 or Nikon
Coolpix AW120 handheld camera. Images were considered high resolution since the
objects of interest were at least three to five times larger than the number of pixels in the
objects [40,54,55]. Automatic camera settings (no flash, fixed focus) were used to respond
to natural ambient light in the environment. Images were recorded as uncompressed
JPEG files with three visible spectral bands (red, green, and blue) and an 8-bit, unsigned
radiometric resolution, which ranged in digital values from 0 to 255.

Plot-level photographs were mostly collected on a biweekly basis during the growing
season (Table S1). One set of plot-level photographs near the peak growing season was
analyzed each year, although some substitutions occurred for photographs that were not
vertically positioned, missing, or out-of-focus (Figure S1). Photographs were substituted
if an adjacent sampling date contained an acceptable image. In total, 210 plot-level pho-
tographs were analyzed across seven sampling years (2012, 2013, 2014, 2015, 2018, 2019,
and 2021). In 2016, no photographs were recorded. In 2017, photographs were not suitable
because they were taken prior to peak greenness and productivity. In 2020, photographs
were of low resolution and incomplete.
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2.3. Semi-Automated Image Analysis
2.3.1. Image Preprocessing

Images were geometrically corrected in ArcGIS Pro v. 2.8 (ESRI Inc.; Redlands, CA,
USA). Each image was registered to four ground control points, or differential global
positioning system (DGPS) coordinates, which marked the plot corners. The base of each
stake was surveyed using high-precision coordinates collected with a Trimble R8 GNSS
receiver and a 2 m survey pole in 2013. Despite some tilt over time due to freeze-thaw
cycles, the base of the stakes remained permanently fixed. Coordinates were processed
using the Post Processing Kinematic (PPK) approach in Trimble Business Center v. 2.70,
with an overall accuracy of 1 to 5 cm (Trimble; München, Germany).

Permanent physical tags in each vegetation plot delineate a 0.75 m2 footprint and help
realign the position of the point frame during annual field sampling (Figure S2). The tags
established additional ground control points within the plot images to improve alignment
of the images across all other years. Nearest neighbor resampling rectified the pixel sizes
of all images to a coarser resolution of 0.05 cm, which standardized the resolution and
allowed for direct comparison between images [34,35]. Images and their corresponding
background mask templates were exported for use in eCognition (Figure 2).
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assessed the total number of objects, not the change between pixels, so the georeferencing 
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Figure 2. Schematic of the processing pipelines to estimate relative vegetation cover using (A) plot-
level photography and (B) point frame field sampling methods. The steps to process the plot-level
photographs were guided by semi-automated object-based image analysis: data acquisition, prepro-
cessing images in ArcGIS Pro (orange), segmentation and preliminary classification in eCognition
(light blue), and development and selection of a machine learning model in R (dark blue).

Orthorectification is preferred for accurate registration because it establishes a true
nadir perspective and reduces the likelihood of an over- or under-valuation of plant
cover [56]. Although orthorectification is critical for a reliable analysis of pixel-to-pixel
change, it is not critical for a reliable analysis of change in relative vegetation cover [34,57].
We assessed the total number of objects, not the change between pixels, so the georeferenc-
ing procedure is acceptable for our analysis [34].

2.3.2. Segmentation and Preliminary Classification

An object-based approach was applied to the plot-level photographs in eCognition
Developer v. 9.5 (Trimble; München, Germany) (Figure 3). Using the background mask
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templates exported from ArcGIS Pro, chessboard segmentation was applied to mask the
exterior of each vegetation plot in eCognition. Then, image objects were generated from the
interior of the vegetation plot using the multi-resolution segmentation algorithm, which is
one of the most widespread and successful segmentation algorithms for GEOBIA [58,59].
Image objects undergo an iterative algorithm in which pixels are grouped into objects
until the threshold (defined by scale) is reached. The threshold (scale) is user-defined and
weighted by shape and compactness.
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Figure 3. Example of the image segmentation and classification of a plot. (A) The extent of the plot
image is 0.75 m2, cropped according to the footprint of the point frame. Scale is increased to show the
(B) vegetation in the plot, (C) primitive image objects as a result of multi-resolution segmentation,
and (D) final classification of the image objects using the optimal random forest model.
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Scale is unit-less, not intuitive, and depends on the heterogeneity of the image. In
general, a lower value for scale results in smaller objects, whereas a higher value for
scale results in larger objects. Shape values range from 0 to 1. A higher value for shape
generates objects that are weighted more heavily by shape, whereas a lower value for shape
generates objects that are weighted more by color. Compactness ranges from 0 to 1. Lower
compactness values generate objects that are squiggly and irregular. Higher compactness
values generate objects that are blocky, rectangular, and compact.

Although supervised and unsupervised approaches have been proposed for the au-
tomatic, objective selection of optimal segmentation parameters, there is no consensus
within the remote sensing community [60]. We applied a supervised, stepwise approach to
select the optimal segmentation parameters for our images. Although some researchers
argue that this method may lack repeatability and robustness, a trial-and-error approach to
maximize parameters can provide strong results [40,61,62].

All variables were held constant while independently adjusting each of the user-
defined parameters to observe the effect of each parameter on the image objects. The final
parameters, used consistently across all the images, were scale: 30, color/shape: 0.5/0.5,
smoothness/compactness: 0.7/0.3. Color and shape were equally adept at creating logical
image objects. A greater weight was assigned to smoothness since tundra vegetation is
rarely blocky or square.

After segmentation, we established a non-hierarchical, multi-class classification scheme
that contained ten classes: bryophytes, deciduous shrubs, forbs, graminoids, lichens, litter,
non-vegetation, shadow, standing dead, and water. Vascular plants (deciduous shrubs,
forbs, and graminoids) and non-vascular species (bryophytes and lichens) were grouped by
broad growth form. Litter and standing dead resulted from dead plant material, but these
two classes can be classified separately since they differ in characteristics and structure.
Standing dead is typically recognizable by its reflective upright stalks, while litter may be
so degraded that it is unrecognizable.

Inflorescences may appear identical or vastly different in shape, color, and size as a
result of their development within their phenological lifespan. Due to the low frequency
and lack of pattern among the inflorescences, all inflorescences were identified manually
and classified into the corresponding vegetation class. Images also contained a variety of
non-vegetation classes at low frequencies (insects, animal excrement, bare ground, fungi,
and permanent tags), but these classes were not common enough to properly train a
machine learning model. Instead, non-vegetation and water were manually identified and
masked from each image. In the rare event that an object was unidentifiable from the image,
it was also classified as non-vegetation. Finally, areas obscured by shadow were not able
to be accurately identified, so shadow was assigned its own class. In the rare event that
a mixed image object was encountered in the labeling procedure, the image object was
classified based on the majority class [63].

2.3.3. Machine Learning Classification

The caret package assembles a wide variety of classification and regression models
into a standard framework using universal syntax for R [64]. Auxiliary tasks such as data
preparation, data splitting, variable selection, and model evaluation are also integrated
into this package. We relied on caret to train, validate, and test the classification models.
Five machine learning models were implemented in this study: random forest (RF), gra-
dient boosted modeling (GBM), classification and regression tree (CART), support vector
machine (SVM), and k-nearest neighbor (KNN) (Table S2). A sampling grid was applied
to most models to find the best hyperparameters, which were tuned using the validation
data subset.

A total of 15,000 image objects were selected randomly and equally across all the plot
images, which was approximately 0.7% of the total data set (N = 2,159,693 image objects).
The image objects were visually identified by an expert as belonging to one of the eight
classes and then divided into training (70%), validation (15%), and test (15%) subsets using
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a random sampling scheme stratified by class. As a general rule for large data sets, a
minimum of 10,000 samples must be sampled [65]. There were also at least 50 samples per
class, but most classes exceeded 75 to 100 samples, which is optimal for larger data sets [65].
To adjust for class imbalance, classes were downsampled to the number of image objects in
the least prevalent class for model training and validation.

A combination of spectral, shape, and textural features, which leverage the information
in an object-based approach, were selected for analysis (Table S3). Texture features were
calculated from a gray-level co-occurrence matrix (GLCM) [66,67]. A GLCM tabulates
how often different combinations of pixel gray levels appear or exist in an image or
scene. Contrast features include homogeneity, contrast, and dissimilarity, while orderliness
features include entropy and the angular second moment. Texture features were calculated
from all bands in all directions (0◦, 45◦, 90◦, and 135◦) and therefore show directional
invariance.

Several band combinations, or spectral indices, were tested using the visible red, green,
and blue bands. Spectral indices may minimize the effects of uneven illumination [68].
Some spectral indices can provide an estimation of vegetation cover, phenological shifts,
or productivity, while others can help distinguish soil or non-living elements from living
vegetation species [19,69–74].

Features may be highly correlated in eCognition, so redundancies must be closely
examined and eliminated during model development [75,76]. Features above a 95% correla-
tion threshold were removed from analysis, resulting in 22 features for further exploration.
Since the data set in this study was not high-dimensional, it was not critical to remove
features through more rigorous testing [43,77].

We evaluated the model performance of five machine learning models using five
repeats of 10-fold cross validation. We compared the performance metrics (i.e., overall
accuracy and Kappa) of the machine learning models using paired t-tests, which were
adjusted for multiple comparisons via the Bonferroni correction.

Machine learning models were scored based on their overall accuracy (OA) and Kappa.
Overall accuracy indicates the number of image objects that were classified correctly. An
accuracy greater than 80% is a strong model, a value between 80% and 40% is moderate,
and a value less than 40% is poor [63]. Kappa accounts for the possibility of agreement
between the reference and classified data sets based on chance.

The highest-performing model in terms of overall accuracy was applied to the total
data set to classify each image. We summarized the individual class accuracy from the
top-performing model in terms of producer accuracy and user accuracy, which are the
complements of the omission and commission error rates, respectively [78]. Producer
accuracy (PA) describes the probability that a real-life object is classified correctly in the
image, whereas user accuracy (UA) describes the probability that a classified object in an
image matches the object in real-life.

2.4. Point Frame

Vegetation cover in the field was assessed using the point frame method [26,27,48]. A
gridded frame of 0.75 m2 was aligned to permanent physical tags in each vegetation plot.
The frame was leveled and positioned above the tallest plant species in the plot. A hundred
nodes, or sampling points, were distributed equally every 7.5 cm on the gridded frame. A
wooden rod was dropped at every node. Species identity, height, and live or dead status
were recorded for each encounter until the ground was reached. Plots were sampled once
within the same 14-day time frame annually from mid-July through early August.

Relative vegetation cover estimates were processed in Microsoft Access 2019 (Microsoft
Corp.; Redmond, WA, USA). Plant species were grouped into seven broad growth forms,
or vegetation classes: bryophytes, deciduous shrubs, forbs, graminoids, lichens, litter, and
standing dead. Encounters with research equipment, permanent physical tags, and open
water were removed from the data set prior to calculations of relative cover. Relative cover
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refers to the total cover of each vegetation class divided by the total cover of all vegetation
classes in a plot.

2.5. Predicting Vegetation Cover

Vegetation cover in the field was assessed using the point frame method, yielding
count-based measurements of cover. Count-based cover data are often zero-inflated and
do not conform to standard distributions. Negative covariances among taxonomic groups
are expected since the relative covers must sum to one. Therefore, a growing number
of studies have advocated for the use of the Dirichlet–multinomial model for analysis of
over-dispersed, count-based cover data [79,80].

We applied direct substitution and multinomial logistic regression to predict vegetation
cover. Direct substitution assumes a 1:1 correspondence between relative cover values
from the point frame and plot-level photography. However, we also anticipated that the
measurements from plot-level photography might not be directly interchangeable with the
measurements from the point frame due to the height and often complex structure of the
plant canopy. Therefore, we calibrated the relationship between the two methods using
vegetation cover estimates from both the point frame and plot-level photography in the
multinomial model.

Here, we used multinomial logistic regression to model (y) the point frame estimates
of cover for all vegetation classes using the image-based estimates of the cover for all
vegetation classes from the corresponding plots at each sampling time as predictors (x).
The resulting fitted model was then used to generate predictions of relative cover in each
vegetation plot in each year (plot-year). Although the multinomial models were fitted
directly to the point frame counts, we used relative rather than absolute cover to evaluate
model performance, as the null expectation is that the total number of counts in any given
vegetation class will be higher when more points are sampled in a plot.

We evaluated model performance using out-of-sample methods. We evaluated pre-
dictive performance over space or time to understand how plot-level photography might
be used to extend spatial or temporal monitoring. We partitioned the data set temporally
using an end-sample holdout method [81], using the first three years to fit the model
and the last four years for evaluation. We used a similar fraction to partition the data set
spatially, using a random 3/7 of the plots for fitting (13 plots) and the remaining 4/7 for
evaluation (17 plots). We calculated the mean absolute error (MAE) and bias of estimates of
the relative cover of each vegetation plot in each year in the holdout set using either direct
substitution or the predictions from the multinomial model, which were calibrated on the
training dataset.

To recommend plot-level photography as a substitute for the point frame method,
it is required that its performance meet the precision criterion for each application. We
therefore used mean absolute error (MAE) and bias as criteria to evaluate the utility of
estimating relative cover using plot-level photography [82]. MAE was calculated as the
average absolute difference between the predicted relative cover of vegetation in each
class and the observed relative cover in each class (mean(|(predicted − observed)|)).
Bias was calculated as the mean difference between the two relative covers in each class
((mean(predicted − observed))). Bias describes whether a predicted class was over- or
under-estimated by the model since bias accounts for directionality.

As a final test to gauge what information can be gained through plot-level photog-
raphy, we asked whether using plot-level photographs to estimate vegetation cover in
unsampled plots or years, using either direct substitution or multinomial logistic regression,
improved estimates of vegetation cover vis-à-vis a null model where we assumed that the
cover in the unsampled plots or years of the validation dataset was equal to the training-set
mean. The training-set mean is an estimate derived without plot-level photography data,
so it provides a direct way to estimate how much vegetation cover estimates are improved
with the addition of plot-level photographs. For the temporal comparison, we estimated
the relative cover of each vegetation class in each test plot-year as the mean over 2012–2014
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of the point frame relative cover per vegetation class for the corresponding plot. For the
spatial comparison, we estimated the relative cover of each vegetation class in each test
plot-year as the annual mean of the point frame relative cover per vegetation class of all the
training plots for the corresponding year.

Multinomial logistic models were fitted using the nnet package in R v. 7.3-14 (R
Core Team; Vienna, Austria). While other packages (e.g., various Bayesian methods) can
incorporate random effects into multinomial models, we did not get satisfactory model
convergence using plot and year random effects. The computational time was substantially
higher than the nnet implementation, too. Incorporation of random effects was not essential
because our design was balanced and models were compared using MAE and bias, not the
statistical significance of regression parameters.

3. Results
3.1. Comparing Machine Learning Models

The random forest model performed the best, with an overall accuracy of 60.5%
(Table 1). The gradient boosted model performed slightly worse, with an overall accuracy
of 59.8%. The computational time was greatest for the gradient boosted model. The
k-nearest neighbor model was the worst-performing model with an overall accuracy of
46.6%. All models were statistically different based on multiple comparisons of their
overall accuracies, or Kappa values (p ≤ 0.05), except for the random forest and gradient
boosted models.

Table 1. Performance of the five machine learning classification models compared across the training
and test data sets. Overall accuracy (OA) and Kappa are shown for each data set. Minimum and
maximum accuracy values are reported for the training data set, while 95% confidence intervals (CI)
are reported for the test data set. The five models were as follows: random forest = RF; stochastic
gradient boosting = GBM; classification and regression tree = CART; support vector machine = SVM;
and k-nearest neighbor = KNN.

Training Set Test Set

Model OA Min Max Kappa Run Time Model OA Lower Upper Kappa
(min) CI CI

RF 59.8 56.8 63.1 51.9 25.4 RF 60.5 58.4 62.5 52.5
GBM 60.0 57.4 63.2 52.0 36.3 GBM 59.8 57.7 61.8 51.7
CART 55.5 52.0 59.8 46.8 0.1 CART 56.2 54.1 58.2 46.8
SVM 57.4 54.9 60.7 49.3 10.6 SVM 57.4 55.3 59.4 49.4
KNN 46.8 43.1 51.3 37.6 1.9 KNN 46.6 44.5 48.7 37.6

In general, most classes demonstrated individual class accuracy above 50% using
the optimal random forest model (Table 2). Graminoids and litter exhibited high user
accuracy, and bryophytes exhibited moderate user accuracy. Deciduous shrubs had the
lowest producer accuracy (40.0%) and user accuracy (15.6%). Deciduous shrubs were
most frequently confused with bryophytes (22.9% of the time), graminoids (33.5% of the
time), and litter (21.6% of the time) in the classification. There was less confusion between
deciduous shrubs and forbs than anticipated (3.2% of the time). Lichens also had an
unusually low user accuracy (20.4%); this class was most frequently confused with litter
(39.8% of the time) and standing dead (23.1% of the time) in the classification.

Shadow was rarely confused with the other classes. Shadow was most frequently
confused with bryophytes (17.7% of the time) and litter (11.3% of the time). Shadows varied
with light intensity and canopy structure and were present to some degree in all images.
Shadow occupied between 0.36% and 41.8% of a plot image (mean = 11.5%). The least
amount of shadow overall (7.3% total) occurred in the images from 2013, while images
from 2018 had the most shadow (16.7% total).
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Intensity was ranked as the feature with the highest relative importance (Table 3).
The top five most important features were spectral or layer values. Texture features were
ranked in the middle, while most of the geometric predictors were ranked at the bottom.

Table 2. Thematic accuracy of the final random forest model on the test data set. Overall accuracy
(OA) is calculated from the bolded diagonal values along the confusion matrix, which indicate
the number of image objects that were correctly classified. Kappa accounts for the possibility of
agreement between the reference and classified data sets based on chance. Individual class accuracy
is analyzed by producer accuracy and user accuracy. Producer accuracy (PA) describes the probability
that a real-life object is classified correctly in the image, whereas user accuracy (UA) describes the
probability that a classified object in an image matches the object in real-life. Bryophytes = BRYO;
Deciduous Shrubs = DSHR; Forbs = FORB; Graminoids = GRAM; Lichens = LICH; Litter = LITT;
Shadow = SHAD; Standing Dead = STAD.

Predicted
Observed

BRYO DSHR FORB GRAM LICH LITT SHAD STAD
BRYO 178 14 3 28 0 92 27 0
DSHR 50 34 7 73 2 47 5 0
FORB 2 9 41 22 1 3 0 0
GRAM 16 16 8 270 0 35 0 4
LICH 6 3 2 20 38 74 0 43
LITT 47 8 1 18 9 431 9 6
SHAD 55 1 0 3 0 35 217 0
STAD 0 0 0 23 18 43 0 150
Totals 354 85 62 457 68 760 258 203

UA 52.0 15.6 52.6 77.4 20.4 81.5 69.8 64.1
PA 50.3 40.0 66.1 59.1 55.9 56.7 84.1 73.9
OA 60.5
Kappa 52.5

Table 3. Importance values for the features in the optimal random forest model. Importance values
were normalized to a value between 0 and 100.

Predictor Type Raw Normalized

Intensity Layer 411.4 100.0
Green Ratio Spectral 144.3 26.5
Green-Red Vegetation Index Spectral 142.6 26.0
Greenness Excess Index Spectral 116.4 18.8
Hue Layer 112.5 17.7
Density Shape 100.8 14.5
Blue Ratio Spectral 98.6 13.9
Red Ratio Spectral 95.7 13.1
Homogeneity Texture 72.5 6.7
Length-to-Width Ratio Extent 71.9 6.5
Contrast Texture 71.1 6.3
Length Extent 62.1 3.8
Standard Deviation of the Green Layer Layer 61.3 3.6
Radius of the Largest Enclosed Ellipse Shape 58.8 2.9
Entropy Texture 58.7 2.9
Standard Deviation Blue Layer Layer 56.2 2.2
Compactness Shape 55.8 2.1
Elliptic Fit Shape 55.7 2.0
Width Extent 54.7 1.8
Radius of the Smallest Enclosed Ellipse Shape 54.4 1.7
Border Length Extent 53.2 1.3
Area Extent 48.3 0.0
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3.2. Comparing Estimates of Vegetation Cover from Plot-Level Photography and Point Frame Sampling

Combining data over space (plots) and time (years), there were clear differences
between vegetation classes in the degree of correspondence between cover as estimated
from plot-level photographs versus point frame sampling in the field (Figure 4). For
example, there was little correspondence between litter estimates using the two methods,
whereas the same plot-years tended to have high amounts of graminoids using both
methods. Plot-level photography generally tended to underestimate the relative cover
of graminoids.
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Figure 4. Cover estimates derived from the point frame and plot-level photography. Each point shows
the cover of a vegetation class in each plot for each year sampled. The y-axis relates to the measured
point frame cover, while the x-axis relates to the estimates from plot-level photography. Histograms
on each axis show the distribution of values. Insets within each panel illustrate multinomial model
performance using mean absolute error (MAE) and bias. The 1:1 reference line is included as a
visual aid.

Testing the out-of-sample performance of plot-level photography to estimate vegeta-
tion cover indicated that using multinomial regression to predict point frame vegetation
cover generally led to better estimates than direct substitution and, in many cases, provided
a more precise estimate of point frame cover than a null model. However, the utility of
the plot-level photographs varied by vegetation class and whether unsampled locations or
years were tested. Out-of-sample performance of the regression models over time demon-
strated that image-based estimates lowered the MAE without increasing the bias for all
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classes except for bryophytes and standing dead vis-à-vis raw substitution (Figure S3). The
modeled image-based estimates provided lower MAE values than the temporal variability
for graminoids, litter, and standing dead (Table 4). Out-of-sample performance of the
regression models over space demonstrated that image-based estimates lowered the MAE
without increasing the bias for all classes except for forbs vis-à-vis raw substitution (Figure
S4). The modeled image-based estimates provided lower MAE values than the spatial
variability for graminoids, shrubs, and lichens (Table 4).

Table 4. Performance of the relative cover estimates of vegetation classes based on multinomial
models that use plot-level photographs as predictors of field-measured (point frame) vegetation cover
(model). For scale, measured relative cover (X) based on point frame measurements over all plots and
years is provided. The cover of vegetation in each class was predicted for holdout years (temporal)
and holdout plots (spatial). Model performance is illustrated by mean absolute error (MAE) and
bias. Temporal variability is represented as the MAE of all plots sampled during the holdout years
versus the mean of each plot for all holdout years (Figure S3); spatial variability is represented as the
MAE of all holdout plots sampled during all years versus the mean of each year for all holdout plots
(Figure S4). Values are shaded if the modeled cover in the respective class had a lower MAE than the
representative variability.

Representative Variability Model

X Temporal Spatial Temporal Spatial

MAE Bias MAE Bias MAE Bias MAE Bias

Bryophytes 14 8 6 6 1 9 6 6 0
Deciduous Shrubs 4 1 1 6 0 3 1 4 0

Forbs 4 3 0 4 −2 3 1 4 2
Graminoids 33 11 −9 11 −1 9 −7 7 4

Lichens 7 2 2 8 1 4 1 4 2
Litter 20 13 −11 7 2 12 −11 9 0

Standing Dead 17 13 12 5 0 11 10 8 0

4. Discussion

We estimated the cover of eight major plant growth forms on 1 m2 plots using semi-
automated image analysis of plot-level photographs and the traditional point frame method.
This study is one of few examining fine-scale tundra vegetation cover using remote sens-
ing techniques. Tundra vegetation has complex characteristics and structure that can
make objects difficult to identify using supervised object-based classification [28,83]. The
semi-automated image analysis pipeline consisted of machine learning models that were
evaluated against a data set of segmented objects derived from plot-level photographs that
were manually identified. The results are discussed in terms of overall model performance
(Section 4.1) and the individual class accuracies of each vegetation class (Section 4.2). We
also compare the vegetation cover estimates from plot-level photography against the esti-
mates from the point frame method (Section 4.3) and then predict vegetation cover over
space and time using multinomial models (Section 4.4). Finally, we discuss the sources of
error (Section 4.5) and provide recommendations for future studies (Section 4.6).

4.1. Comparing Machine Learning Models

We analyzed several machine learning classification models and found that random
forest was optimal for plot-level photographs of tundra vegetation. Although the ran-
dom forest and gradient boosted models were not statistically different from one another,
the random forest had the highest overall accuracy and a reasonable run time (Table 1).
Our results are consistent with other published work, where random forest had the best
performance in comparison to other common models.

A systematic comparison by Li et al. (2016) [84] revealed that ensemble-based models,
such as random forest (bagging) or Adaboost (boosting), exhibited the highest classifica-
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tion accuracy. Support vector machines also exhibited high classification accuracy [84].
Although simple decision trees can prove accurate across different segmentation scales [85],
they are often unstable at fine scales, yielding even poorer results if mixed objects are
present in the data set [84]. K-nearest neighbor, which was a popular machine learning
model in early studies due to its computational simplicity and ease of use within the eCog-
nition framework [86], generally appears unsuitable for classification due to low average
accuracies in comparison to other models [43]. These results corroborate the performance
trend across the models in our study.

On average, our reported classification accuracy was lower than other published
studies using supervised object-based classification. However, most existing studies are
focused on a larger scale and have more clearly observed differences between classes [42].
Many factors influence the performance and overall accuracy of a model, including the scale
of segmentation, feature selection, and the homogeneity of objects [84,87]. Classification
accuracy can also depend on image quality and the characteristics and complexity of the
land cover types in the images [43]. Our classification accuracy may have suffered as the
vegetation classes in our study are complex. There were mixed objects in our images as a
result of segmentation, which lowers classification accuracy [84]. Homogeneous objects
or landscapes, such as the repetitive patterns in agricultural fields, often have higher
classification accuracy. Classification accuracy also tends to decrease as the total number of
classes increases, especially above four [88]. Our study contained ten classes before two
(non-vegetation and water) were manually eliminated from the scheme.

As expected, spectral features were the most influential predictors in the random
forest classification. Spectral features measure the fundamental properties of the objects,
while texture measures the spatial relationships of pixels within an object. These features
are more likely to be independent and complement each other [85,89]. Shape features
had the least impact on the random forest classification, which validates the theory that
shape features may become more critical at greater scales [87]. Importance values should
be interpreted with care, since highly correlated, continuous predictors may be given
higher values erroneously [90]. eCognition produces features that can be highly correlated;
therefore, our analysis discusses feature importance in broad terms only [76,91].

Hue, saturation, and intensity (value), or HSV, have been shown to improve the seg-
mentation or classification of digital images [31,35,75]. HSV results from a transformation
of the red, green, and blue color spaces, which are highly correlated bands and tend to pro-
vide redundant information [92]. HSV did not improve the segmentation of the plot-level
photographs in our preliminary analysis. However, hue and intensity were both among the
top five predictors of the classification. Intensity showed significant, distinctive contrast
between vegetation classes at a cursory glance, especially in comparison to other spectral,
textural, or geometric features. In general, shadows and standing dead were on opposite
ends of the spectrum for intensity values.

Green ratio, green-red vegetation index (GRVI), and greenness excess index (GEI) were
also among the top five predictors. These indices measure similar information, regarding
the phenology and vegetation composition, from the plot-level photographs. GRVI has
performed comparably to the normalized difference vegetation index (NDVI) at the plot-
level; thus, GRVI can be used interchangeably with NDVI, usually at the expense of lower
overall accuracy [19,93,94]. The green ratio, GRVI, and GEI offer important, discriminatory
information on the vegetation classes based on their high importance values. Perhaps, these
RGB-based indices may be used as proxies to NIR-based indices when standard, low-cost
cameras are used to capture photographic information from vegetation plots.

4.2. Reliability of Vegetation Classes

Using the optimal random forest model, we found that six classes were reliably iden-
tified from the semi-automated image analysis of plot-level photography: bryophytes,
forbs, graminoids, litter, shadows, and standing dead (Table 2). Graminoids are the most
abundant vegetation class at Utqiaġvik. If graminoids can be classified accurately using this
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technique, then the impact of this dominant vegetation class can be better quantified across
the landscape. However, we were unable to reliably identify the vegetation classes: decidu-
ous shrubs and lichens (Table 2). Deciduous shrubs were often confused with other objects
that exhibited a similar size and shape. Deciduous shrubs were often over-segmented,
and perhaps a clear delineation of deciduous shrubs may improve this classification error.
Perhaps more instances of lichens were needed to train the model, given the variety of
different species at Utqiaġvik, which vary by color and structure [95]. Image analysis and
machine and deep learning approaches are expected to improve over time and may allow
for accurate classification of these two problematic vegetation classes, provided that the
images are available for analysis.

The results of the classification may have improved if the focus had been on living
vegetation only. Standing dead and litter can be difficult to identify using automatic pattern
recognition. Standing dead is primarily composed of graminoids and old inflorescences,
which tend to be tall, narrow, and reflective. Litter encompasses all dead plant material that
has fallen to the bottom of the canopy. Litter may appear round, brown, and curled shortly
after senescence or gray and formless as plant material degrades over time. Not only is it
difficult to establish a repeatable classification pattern for the machine learning models, but
the boundaries of this class may also be difficult to define during segmentation.

Shadows have been shown to confuse image analysis and lower classification accu-
racy [35]. Shadows are a common component of plot-level photography. Even in ideal,
overcast sampling conditions, shadows remained visible in the middle and lower canopies
in the digital images. It is difficult to achieve standardized lighting conditions in the Arctic,
where fieldwork is limited by a short growing season, inconsistent cloud cover, and low
sun angles [96]. Blocking direct sunlight to standardize lighting conditions may be possible
with additional equipment or a second field technician, but shadows cannot be eliminated
from the images, only minimized [31,32,34,35]. In this study, shadow was its own class,
and very little class confusion occurred except for some overlap with bryophyte and litter
cover. Bryophytes vary in color and texture, especially in response to moisture level [97].
Inundated bryophytes tend to darken in color, creating a more complicated task for the
machine learning model to distinguish an inundated bryophyte from a shadow. Litter
appeared not to have a distinctive color, shape, or size since it can vary depending on
the degree of degradation and the vegetation composition. Litter tends to be darker in
color due to degradation, so the class confusion with shadow was also justified. It may be
possible to improve the distinction between shadow, bryophytes, and litter with additional
training samples.

4.3. Comparing Estimates of Vegetation Cover from Plot-Level Photography and Point Frame Sampling

The comparison cannot be made directly between the cover estimates from the point
frame and plot-level photography methods of sampling. Each biomass encounter, or
contact, was recorded throughout the entire depth of the plant canopy using the point
frame sampling method [27,48]. Then, vegetation cover was assumed for each cell on the
sampling grid based on the number of contact hits within each cell. Plot-level photographs
only recorded the topmost visible layer but were not constrained to a sampling grid of
100 cells. Because the spatial resolution differed between the point frame and plot-level
photography, the relative cover from the point frame may not be identical to the relative
cover that was obtained through image analysis [31]. The timing of vegetation sampling
using the point frame and plot-level photography methods was often offset, which could
introduce further differences.

The change in relative cover must be interpreted carefully for both sampling meth-
ods [31,44]. Canopy density and species diversity may influence the cover estimates. A
plant can grow at different heights, angles, and locations within plots, which may influence
its detectability over space and time. Therefore, rarer vegetation classes, such as deciduous
shrubs, may be detected using the point frame method during some years but not all.
Additionally, short-statured growth forms, such as bryophytes and lichens, can be hidden
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beneath the topmost visible layer, rendering them invisible to the camera. The differences
in sampling techniques between the point frame and plot-level photography methods
may explain the weaker associations between the relative cover estimates of some of the
vegetation classes.

4.4. Using Plot-Level Photography to Predict Vegetation Cover across Space and Time

To recommend plot-level photography as a substitute for more labor-intensive point
frame sampling in the field, plot-level photography must yield accurate and unbiased
estimates of vegetation cover. Because acceptable levels of error and bias are likely to vary
based on application, we opted to compare estimates of vegetation cover derived from
plot-level photographs to a baseline estimate that assumes composition is static over either
space or time, following best practices for ecological forecasting [98]. We found image
analysis can be used to reliably estimate the cover of graminoids. Plot-level photography
can also characterize the large variability of deciduous shrub and lichen cover across
the landscape and the large variability of litter and standing dead cover over time. We
tested our approach on a subset of thirty vegetation plots in the ARCSS grid. This subset
is sampled once annually using the point frame method and up to six times seasonally
using the plot-level photography method. In contrast, the ninety-eight vegetation plots in
the ARCSS grid are sampled once every five years using the point frame method, since
this requires a large investment in terms of field crew, time, energy, and logistics. The
performance of the holdout space model on the thirty vegetation plots strongly suggests
that plot-level photographs could be used to estimate deciduous shrub, forb, and lichen
cover on the remaining sixty-five vegetation plots.

For most vegetation classes, individual plots had a relatively static composition over
time. As a result, plot-level photographs did not provide improved estimates of annual
vegetation cover. Exceptions were graminoids, litter, and standing dead, where plot-level
photography estimates tracked temporal shifts. While unbiased estimates of relative cover
were generated using plot-level photography, the estimates were not precise on a per-plot
level and lacked sufficient accuracy to capture more subtle shifts in vascular vegetation
over time within individual plots for all groups except graminoids. Improvements to our
image analysis approach may also improve the accuracy of the image-based estimates,
thereby improving how well the estimates predict relative cover on a per-plot level. Thus,
plot-level photography is a useful but imperfect method of sampling tundra landscapes. It
may add more information spatially, where there is a large compositional turnover, than
temporally, where the cover changes are subtler.

4.5. Additional Sources of Error

In addition to the sources of error discussed above, some uncertainties accumulate
throughout semi-automated image analysis. Manual object labeling was executed by an
expert with substantial field experience and skill in Arctic plant identification. Therefore,
interpretation errors were inevitable but consistent across the data set. The root mean
square error (RMSE) averaged 1.5 to 4.8 cm across sampling years due to the georeferencing
procedure (Table S4). In a few cases, the RMSE extended to 8.8 to 11.5 cm on the images
with the most severe distortion as a result of poor camera angles. Positional errors also
resulted from the error inherent in the DGPS coordinates (1 to 5 cm). Positional errors can
be minimized but not eliminated.

Accurate segmentation provides a better chance of accurate classification. In this
study, the user-dependent segmentation parameters affected the shape and size of objects,
therefore affecting the quality and number of objects generated. Perhaps a more rigorous
set of rules can be included to refine the primitive image objects in the early steps of the
object-based approach. The segmentation parameters can also be optimized using a formal
segmentation accuracy assessment [87,99]. Our approach to image analysis was limited by
both the available data set and tools of analysis, and we expect that it will be modified and
improved over time.
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Errors were also inevitable using the point frame sampling method. Positional errors
were minimized due to precise leveling and alignment of the point frame with permanent
tags in the vegetation plot. Point frame sampling can also be intensive and tiring, so
interpretation errors were possible due to the exhaustion of the field technician [100,101].
Tall vegetation can shift with the wind, so the frequency of contact hits may be skewed
during windy conditions [102]. A misclassification can result when the field technician
records incorrect information about the vegetation composition of the plot. Even so, these
errors are generally minimal and are usually rectified in post-processing pipelines. There
is strong evidence that vegetation composition and cover at the plot-level are monitored
accurately using this method of sampling [103].

4.6. Recommendations for Future Image Analysis

Recent studies have suggested that the accuracy of segmentation is assessed through
a formal accuracy assessment [87,99]. Not only can this assessment vary according to the
user, but it is often time-consuming for complex images since a formal accuracy assessment
may require the manual delineation of an independent set of reference polygons. Although
the accuracy of segmentation is an important consideration in image analysis, not all
researchers agree that a formal accuracy assessment is necessary [40,62]. Nevertheless, an
accuracy assessment would be a useful consideration for future studies.

Artificial neural networks could be explored in future comparative studies, perhaps
leading to a classification with increased accuracy. Neural networks require large, un-
correlated data sets and an in-depth understanding of the mechanism underpinning the
classifier to obtain concrete, reliable results [91,104,105]. Neural networks can be easily
over- or undertrained, resulting in spurious, noisy, and non-reproducible results [104,105].
We aim to optimize the accuracy of our segmentation before we further investigate neural
networks, as neural networks can be highly sensitive to the quality of the training data
set [106]. This remains to be studied in future works.

We encountered some limitations within ArcGIS Pro and eCognition, so our approach
to image analysis was not fully contained within either platform. We could not create
a random selection of objects in eCognition, nor could we extend this to a scale that
encompassed all the images in this study. We also found that the processing time to export
the feature list for each image was long and computationally intensive in eCognition. The
classification models also lacked the requisite transparency to understand and validate
the statistics. The limitations of eCognition were remedied by R, thus the image analysis
pipeline transitions between the three platforms (Figure 2). Moving forward, our aim is to
increase the repeatability, robustness, and accuracy of the image analysis in this study. We
seek to automate the procedure by transferring our approach from local image processing
(ArcGIS Pro, eCognition, and R) to cloud-based image processing using high-performance
computing, where Python is the preferred language.

Automatic identification and removal of water from the plot images is preferred
to manual digitization and removal. The near-infrared (NIR) band would improve the
efficiency of our semi-automatic image processing routine. The Normalized Difference
Water Index (NDWI), a water-specific index, has been used to identify and remove standing
water from remotely sensed images [107,108]. The NIR band would also permit us to
calculate and explore the impact of the Normalized Difference Vegetation Index (NDVI),
which is a widely used metric to monitor vegetation dynamics across the Arctic [109,110].
The band combinations that we can use are limited to the visible electromagnetic spectrum
and contain a finite amount of information. While we can maintain the analysis of historic
photographs with visible red, green, and blue bands, we can also benefit from technological
improvements in our equipment (i.e., multispectral sensors or LiDAR), which might allow
us to access more information across the electromagnetic spectrum, thereby improving our
classification and providing valuable insights into tundra plant canopy and characteristics.

Unoccupied aerial vehicles (UAV), or drones, may be an effective alternative to plot-
level photography. Drones are likely to be adopted as a tool to sample vegetation in the
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Arctic, as there is an increasing need for daily, flexible data collection and integration of
geospatial information across observation platforms [14,20,21,29]. The potential benefits of
drones include rapid acquisition of high-resolution images, greater ground coverage, and a
lower impact on existing vegetation, soil, and permafrost, as drones can be operated from a
single launch location. With a few necessary modifications, we expect that drone imagery
can be processed using the semi-automated image analysis pipeline from this study. In
the future, we seek to examine if drone imagery can validate tundra vegetation cover and
change, as detected using point frame and plot-level photography, to scale our results from
the ground to an aerial level.

5. Conclusions

An object-based approach was applied to high-resolution plot-level photographs with
three spectral bands (red, green, and blue) to estimate the relative cover of eight vegetation
classes. The random forest model performed better than the other machine learning models
(gradient boosted model, classification and regression tree, support vector machine, and
k-nearest neighbor) with an overall accuracy of 60.5%. Although the random forest model
required more processing time than most of the other models, the overall accuracy was
significantly higher in comparison. The gradient boosted model performed similarly, but at
the expense of a greater computational load and processing time, which made this model
less desirable for future use. In this study, random forest is the optimal machine learning
model for plot-level photographs of tundra vegetation.

Although the overall accuracy of our classifications was lower than the supervised
object-based classifications of various land cover types in previous studies [43], the separa-
tion of plant growth forms is much more difficult due to mixed objects in a complex matrix
at a fine scale. Vegetation classes (bryophytes, deciduous shrubs, forbs, graminoids, lichens,
litter, and standing dead) were also composed of many individual species, which have
different forms and characteristics. Most comparable published studies have the added
benefit of hyperspectral or multispectral bands, which results in more information to use in
the classification [111,112]. Since our spectral information was limited to red, green, and
blue bands only, we expected lower classification accuracy.

Some vegetation classes were reliably classified using plot-level photography and
semi-automated image analysis, but not all. Bryophytes, forbs, graminoids, litter, shadow,
and standing dead were reliably classified, while deciduous shrubs and lichens were not.
Perhaps a larger training data set or improvements to the shape or size of objects might
improve the individual class accuracy of problematic vegetation classes, thereby improving
the overall accuracy of the classification. We recommend including a comprehensive
accuracy assessment for segmentation parameters in future studies [87,99].

RGB-based spectral indices and layer values were the most influential in the classi-
fication. Geometric and textural features were less influential in the random forest clas-
sification; that is, these features complemented existing spectral information to a limited
degree. Therefore, we submit that valuable information can be gained through standard
imagery, which only consists of red, green, and blue spectral bands. However, technological
improvements to our digital cameras could improve our semi-automatic image analysis
routine and classification results in the future if we could access more of the electromagnetic
spectrum, notably the NIR band.

Standardized image collection methods may also improve our results. In the point
frame sampling method, positional errors were minimized by precise leveling and align-
ment with permanent tags in the vegetation plots. Although exact duplication of a scene is
not necessary to measure vegetation cover and change, minimizing the positional differ-
ences of the digital camera may reduce the positional error of the plot-level photographs,
ultimately improving our analysis of vegetation change. Perhaps a tripod with levels
attached to the frame and camera would offer more control and consistency.

Plot-level photography is a useful but imperfect method of sampling. Comparisons
to point frame estimates of vegetation cover revealed that the object-based approach to
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analyzing the plot-level photographs is useful for some applications, but it requires im-
provement before being used interchangeably with field sampling. Plot-level photography
may add more information spatially, where there is a large compositional turnover, than
temporally, where the cover changes are subtler. These limitations are likely not restricted
to plot-level photography. Assessments of remote sensing techniques to detect temporal
changes in plant biodiversity, rather than spatial comparisons, are rare due to the short
duration of most field sampling campaigns [113]. However, strong temporal variability
in the ability to detect grassland biodiversity based on hyperspectral remote sensing has
also been reported [114]. Our results also suggest that monitoring biodiversity change
over time using remote sensing techniques may be more difficult than documenting spatial
patterns. Given the urgency of understanding biodiversity loss and the rapid development
of new remote sensing platforms specifically targeting biodiversity monitoring [115,116],
we emphasize the importance of multi-year comparisons of field-based and remote sensing-
based biodiversity change studies to fully understand the potential and limitations for
change detection.

A photographic record can be revisited and reanalyzed in the future, and it is ver-
satile, quick, and cost-effective. An object-based approach to image analysis provides
reliable, although limited, information from high-resolution plot-level photographs of
tundra vegetation. Information from plot-level photographs can complement existing field
observations. Integrating both techniques is expected to maximize time, funding, and
technology to monitor terrestrial change in the Arctic.

Supplementary Materials: Supplementary figures and tables are available for download at: https:
//www.mdpi.com/article/10.3390/rs15081972/s1. Figure S1: Examples of unacceptable plot-level
photographs; Figure S2: Image of a plot; Figure S3: Model performance predicting the point frame
cover in holdout years; Figure S4: Model performance predicting the point frame cover in hold-
out plots; Table S1: Vegetation sampling dates; Table S2: List of machine learning models applied;
Table S3: List and explanation of the features calculated for each image object; Table S4: Amount of
positional error in each plot-level photograph.
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