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Abstract: The Landsat and Sentinel series satellites contain their own quality tagging data products,
marking the source image pixel by pixel with several specific semantic categories. These data products
generally contain categories such as cloud, cloud shadow, land, water body, and snow. Due to the
lack of mid-wave and thermal infrared bands, the accuracy of traditional cloud detection algorithm is
unstable when facing Chinese Gaofen-1/6 (GF-1/6) data. Moreover, it is challenging to distinguish
clouds from snow. In order to produce GF-1/6 satellite pixel-by-pixel quality tagging data products,
this paper builds a training sample set of more than 100,000 image pairs, primarily using Sentinel-2
satellite data. Then, we adopt the Swin Transformer model with a self-attention mechanism for
GF-1/6 satellite image quality tagging. Experiments show that the model’s overall accuracy reaches
the level of Fmask v4.6 with more than 10,000 training samples, and the model can distinguish
between cloud and snow correctly. Our GF-1/6 quality tagging algorithm can meet the requirements
of the “Analysis Ready Data (ARD) Technology Research for Domestic Satellite” project.

Keywords: cloud detection; Swin Transformer; GF-1; Sentinel-2; Fmask; Analysis Ready Data

1. Introduction

With the advancement of sensor hardware, the quality of remote sensing image
standard data products has been improving. Meanwhile, with the improvement in quantifi-
cation accuracy, data products with pixel-by-pixel marking quality and characteristics are
gradually emerging, such as MODIS series satellites, Landsat series satellites, Sentinel-2,
and other international satellites. These data products contain categories for clouds, shad-
ows under clouds, land, water bodies, and snow. This helps users to filter interfering pixels
when studying scenarios such as surface changes and classifications.

The core part of the remote sensing image quality tagging algorithm is cloud and under-
cloud shadow detection, including detecting water bodies, snow, and other categories. Due
to the greater number of wavebands of international satellite multispectral sensors, their
band settings generally cover visible, mid-infrared, and thermal infrared wavebands. The
spectral threshold method has become the mainstream algorithm in foreign countries, and
is represented by the Automatic Cloud Cover Assessment (ACCA) algorithm [1] and the
Fmask (Function of Mask) algorithm [2]. The ACCA algorithm establishes threshold rules
for detection based on the physical properties of clouds and cloud shadows. It uses five
bands and 26 band test rules, which are generally operable without significant systematic
errors. The Fmask algorithm utilizes all Landsat bands, including thermal infrared bands,
with higher accuracy than the ACCA algorithm [3]. Fmask is now one of the standard
product algorithms for quality tagging Landsat series and Sentinel-2 satellite data [4]. The
Fmask algorithm is also used to evaluate and improve the consistency of Landsat series
satellite time series ARD data, with an overall accuracy of 96.4% for cloud detection [5].
Recent research on cloud detection from 2004 to 2018 was analyzed by Mahajan in their
review paper [6]. Using a variety of machine learning and traditional algorithms, the
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researchers have investigated various cloud detection methods such as Cloud/No Cloud,
Snow/Cloud, and Thin Cloud/Thick Cloud.

With the rapid development of deep learning, it has been reported that remote sensing
applications of pixel-wise classification are gradually being incorporated into deep learning-
based segmentation methods. Typical neural image classifiers emerge from the natural
image classification tasks, such as VGG [7], ResNet [8,9], and DenseNet [10], and their
convolutional modules have been applied to object detection and semantic segmentation.
Neural semantic segmentation was initiated by the fully convolutional network (FCN) [11],
which replaced fully connected layers with convolutional layers to accommodate arbitrary
size segmentation. By using shortcut connections to combine multi-level feature maps
with the same dimensions, UNet [12] popularized intermediate feature fusion, which made
it possible to reuse features in an image segmentation task. Learning stronger feature
representation was made possible by HRNet [13] through aggregating features from all
parallel convolutions rather than just the high resolution convolutions. In order to improve
both the efficiency and robustness, the DeepLab series [14–17] made use of novel backbones,
atrous convolution, CRF post-processing, depth-wise separatable convolution, and atrous
spatial pyramid pooling module. Recently, transformer-based segmentation models have
emerged due to their long-range feature extraction [18–21].

Convolutional neural networks have become the mainstream for cloud detection and
multiclass segmentation. As early as 2014, Hughes used neural networks to identify clouds
and cloud shadows for automatic detection [22]. Chai used manually labeled cloud and
cloud shadow mask data to train CNNs, segmenting Landsat images into four categories:
clouds, thin clouds, cloud shadows, and no clouds [23]. Jeppesen proposed a novel deep
learning model called Remote Sensing Network (RS-Net) for cloud detection in optical
satellite imagery, based on the UNet architecture [24]. The Landsat 8 Biome and SPARCS
datasets are used to train and evaluate the RS-Net model, and it gives a state of the art
performance, particularly when used in biomes where the scenery is hard to tell apart, such
as clouds over icy and snowy areas. Grabowski utilized the self-configuring nnU-Net to
detect clouds in satellite images [25]. The nnU-Net is a self-reconfigurable framework able
to perform meta-learning of a segmentation network over various datasets. Experiments on
multispectral images from Landsat-8 and Sentinel-2 showed that nnU-Net perform the best
cloud segmentation ever without any manual design. Jiao proposed a series of end-to-end
Refined UNet cloud and cloud shadow detection models [26–29]. They introduced the
edge-sensitive computation of conditional random fields in the neural network to achieve
accurate edge segmentation of cloud and cloud shadow for Landsat 8 OLI data.

Focusing on achieving the UN 2030 Sustainable Development Goals (SDGs) and
international sharing of Chinese GF-1/6 satellite data, the 2020 National Key R&D Program
International Cooperation Project “Research on Analysis Ready Data (ARD) Technology
for Domestic Satellites” has been launched. The project includes Chinese GF-1/6 satellite
quality tagging technology as one of its four key technologies. Driven by the project,
this research utilizes deep learning methods to study the Chinese GF-1/6 satellite quality
tagging algorithm, aiming to produce standard quality tagging data products that contain
five categories: clouds, cloud shadows, water bodies, land, and snow. The accuracy
of standard data products should be close to that of international Landsat series and
Sentinel-2 satellites.

In this paper, we utilize the Swin Transformer model, from the best paper from ICCV
2021, as the backbone network for our GF-1/6 quality tagging algorithm [30]. Because
the currently available open-source cloud detection dataset is small and does not contain
all categories that the ARD project requires, we designed a process of using Landsat-
8/Sentinel-2 data and combining the Fmask v4.6 algorithm to produce the training sample
dataset. Finally, a training sample set of more than 100,000 image pairs was created. Then,
the well-trained Swin Transformer model was transferred to the quality tagging task of
GF-1/6 satellites. Meanwhile, we also improved the model performance at distinguishing
clouds from snow. Experiments show that the Swin Transformer’s Large model (Swin-L)
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achieves the quality tagging accuracy level of international Landsat series and Sentinel-2
satellites. The engineering value of this paper is to produce a complete flow and data
product specification for a GF-1/6 satellite quality tagging algorithm. It employed grid
offset processing to solve the problem of stitching seams in a large-size remote sensing
image chunking process. Moreover, using DEM and GSWO auxiliary data to correct the
quality tagging mask further improved the stability of the final standard data products.

2. Background

Chinese satellite multispectral images are clearly different from foreign satellites. Most
of them, such as GF-1/6, only contain four bands from visible to near-infrared, lacking
mid-wave and thermal infrared bands. This makes distinguishing clouds from snow,
desert, and other high-brightness surfaces challenging by relying purely on the spectral
threshold method. Chinese researchers have conducted detailed research on quality tagging
algorithms for domestic satellite multispectral images.

The multi-feature combined (MFC) cloud and cloud shadow automatic detection
algorithm uses guided filtering to improve the detection accuracy of cloud and cloud
shadow edge regions from GF-1 WFV data [31]. Wang Mi from Wuhan University adopted
the SLIC super-pixel segmentation algorithm for Chinese satellite in-orbit cloud detection
to improve the accuracy of thick cloud edges [32]. The fractal dimension and mean gradient
are applied to cloud detection in the ZY-3 satellite, and the effect of texture features on
improving the detection accuracy is verified in the scene data with coexisting clouds
and snow [33]. These studies provide good ideas for producing the quality tagging data
products of Chinese satellite multispectral images. However, the challenge of distinguishing
clouds from snow still exists. Although introducing image processing and auxiliary data
can improve the accuracy of cloud detection based on the spectral threshold method, it
fails to change the problem that clouds and snow are indistinguishable in the visible and
near-infrared bands.

However, deep learning methods avoid the problem. Therefore, many researchers
are now focusing on using deep learning algorithms to obtain models that can effectively
distinguish between cloud, snow, and other target categories by training them on large-size
sample datasets. For example, the Cloud-AttU [34] cloud detection method is based on the
UNet network. Compared with international satellite quality tagging data products, the
accuracy of Chinese satellite image cloud detection algorithms could be higher and more
stable. In general, there are two ways to further improve the accuracy of deep learning
models. On the one hand, we can select the segmentation model wisely and optimize it.
On the other hand, enhancing the quantity and quality of training samples is also helpful.

The CNN-based segmentation method is still the mainstream backbone used by cloud
detection algorithms use, which has advantages in multi-scale target semantic segmentation.
However, the multi-scale characteristics of remote sensing images with a fixed resolution
of the specific data source’s cloud and cloud shadow are not apparent. The key to deciding
the quality tag of a pixel at a particular location relies on the relationship between that
pixel and the surrounding pixels, which is more important than the feature description
of that pixel at different resolutions or scales. This is our major consideration: using a
Transformer-based segmentation model with a self-attention mechanism for GF-1/6 quality
tagging tasks.

Specifically, we select the Swin Transformer model, which contains sliding window
operations and has a hierarchical design. One of the sliding-window operations includes a
non-overlapping local window and an overlapping cross-window. It restricts the attention
computation to a single window, which both introduces the local nature of the CNN
by convolution operations and decreases the computation cost. The Swin Transformer
performs well on all significant image tasks, and its mIoU on the natural image semantic
segmentation dataset ADE20K reaches the state of the art performance. Compared with the
CNN model, the Transformer-based model performs better in image tasks after pre-training
on large dataset [35]. Large-size datasets for pre-training can break the limitation of the
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Transformer’s lack of inductive bias. For example, experiments on large datasets such as
ImageNet-21K and Google JFT-200M have verified that the Vision Transformer model is
better than the ResNet model [36].

In order to train the Swin Transformer for our GF-1/6 quality tagging task, we pro-
duced more than 100,000 sample images, coupled with a few manual accuracy checks
and corrections. The training samples were produced according to the similarity of the
RGB Chinese GF-1/6 images and Landsat-8/Sentinel-2 images. Each training sample is a
Byte-type RGB image constructed in three visible bands, with a spatial resolution of 20 m,
and pixel size 512 × 512. Additionally, the corresponding labels contained six categories
of quality marker (cloud, cloud shadow, water, land, snow, and fill value). Therefore, the
well-trained Swin Transformer model can be used directly for quality tagging the Chinese
GF-1/6 images. Based on the model parameters obtained from the training, a quality
tagging algorithm flow for the Chinese GF-1/6 satellite image is developed in this paper
and applied to produce standard data products for the ARD project.

3. Methodology
3.1. Customized Dataset Preparation

The GF-1/6 image quality tagging algorithm model is best trained using the corre-
sponding satellite’s sample data. However, there are no quality tagging data products for
GF-1/6 images. Additionally, the quality tagging accuracy using the existing algorithm is
unstable. It is tough to distinguish between clouds and snow, making the manual correc-
tion work too difficult, and producing tens of thousands of data samples is not easy. The
international Landsat-8 and Sentinel-2 satellite data contain quality tagging products, and
many researchers have tested and proven their accuracy. The idea of constructing training
samples in this paper is to use international data as the primary data source to produce
a large sample dataset serving the quality tagging of Chinese GF-1/6 satellite images.
In order to produce enough sample data for completing the quality tagging of GF-1/6
images, this paper utilized Landsat-8/Sentinel-2 satellite data to produce training samples
based on the Fmask v4.6 algorithm. This section contains three parts: 1) sample image,
which determines the selected band and resolution of the sample image by analyzing the
difference between Landsat-8/Sentinel-2 data and GF-1/6 WFV data; 2) sample labeling,
introducing the production of quality tagging data products for Landsat-8/Sentinel-2 data
using the Fmask v4.6 algorithm, giving the class definition and producing a method of
sample labeling; and 3) producing training samples, which introduces the specific technical
process of producing training samples.

3.1.1. Sample Image

Producing sample images is mainly based on the similarity of Landsat series, Sentinel-
2, and GF-1/6 satellite data regarding band setting and spatial resolution. Landsat-8 and
Sentinel-2 are more abundant than GF-1/6 WFV data in band settings. However, they
are very similar in visible and near-infrared bands as shown in Table 1. The near-infrared
band has an extensive spectral range, and imaging is more affected by the difference in
the spectral response function curve than the visible band. Furthermore, the near-infrared
band is less affected by atmospheric scattering, which is not conducive to identifying thin
clouds. Therefore, the sample image is selected for three visible light bands to form an
RGB format image. The spatial resolution is 10 m for the Sentinel-2 satellite, 30 m for the
Landsat series satellite, and 16 m for the GF-1/6 satellite. All three data sources are unified
to 20 m when producing the sampled images.
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Table 1. Band setting and bandwidth comparison of Landsat-8, Sentinel-2, and GF-1/6 satellites.

Satellite Landsat-8 Sentinel-2A Sentinel-2B GF-1 GF-6

Coastal Blue 0.433–0.453 0.432–0.453 0.432–0.453 — 0.40–0.45
Blue 0.450–0.515 0.459–0.525 0.459–0.525 0.45–0.52 0.45–0.52
Green 0.525–0.600 0.542–0.578 0.541–0.577 0.52–0.59 0.52–0.59
Yellow — — — — 0.59–0.63
Red 0.630–0.680 0.649–0.680 0.650–0.681 0.63–0.69 0.63–0.69
Red Edge 1

—
0.697–0.712 0.696–0.712

— 0.69–0.73
0.73–0.77

Red Edge 2 0.733–0.748 0.732–0.747
Red Edge 3 0.773–0.793 0.770–0.790
NIR
Narrow NIR 0.845–0.885 0.780–0.886

0.854–0.875
0.780–0.886
0.853–0.875 0.77–0.89 0.77–0.89

Water vapor — 0.935–0.955 0.933–0.954 — —
Cirrus 1.360–1.390 1.358–1.389 1.362–1.392 — —
SWIR 1 1.560–1.660 1.568–1.659 1.563–1.657 — —
SWIR 2 2.100–2.300 2.115–2.290 2.093–2.278 — —
TIRS 1 10.60–11.19 — — — —
TIRS 2 11.50–12.51 — — — —

The bandwidth unit is µm.

Sample images were obtained using Landsat-8/Sentinel-2 Top of Atmosphere Re-
flectance (TOA) data with a fixed pixel size of 512 × 512. Since Landsat-8/Sentinel-2
TOA data are stored in the UInt16 format (their pixel values 0–65,535 are converted to
TOA by dividing 10,000), the value needs to be compressed from 16-bit to 8-bit storage.
In this paper, we use a fixed mapping method to compress the data for storage, and the
specific mapping method is shown in Table 2. We intend to reduce the difference between
various satellites by compressing the data. Meanwhile, the morphological difference, or
the adjacency of pixels, is more important in the Transformer model than the numerical
difference. The Byte-type sample is also more general, which is also conducive to the
subsequent publication of the dataset and makes it convenient for more people to use. The
boundary value is set according to experience. For example, 6000 represents the TOA of
0.6, which in reality reaches the lower boundary of bright surfaces such as clouds. The
experiment proves that this step is effective and important.

Table 2. The fixed mapping transformation setting of sample images UInt16 to Byte format.

UInt16 Byte Memo

0 0 Fill value
1–6000 1–250 Step length 24
6001–10,000 251–254 Step length 1000
>10,000 255 Saturation value

Compressed storage using the fixed mapping transformation described above is the
core step of producing training samples. There are two advantages of such processing:
First, it ensures the overall consistency of the sample image. The different image conversion
storage processes are not related to the statistical histogram because they are converted
according to a fixed mapping, and the converted data pixel values are consistent and
reflect the relative magnitude of surface reflectance. Second, the complexity of data val-
ues is compressed, and the complex surface reflectance values are uniformly compressed
from 0–10,000 to 0–255. This can help to reduce the complexity of a clear surface while
emphasizing the contrast between clouds and snow. Dynamic stretching based on his-
togram statistics is commonly used in image transformation. It has become the default
processing method in many algorithm toolkits, but dynamic stretching does not suit the
sample image processing in this paper. A comparison of the fixed mapping and dynamic
stretching transformation is shown in Figure 1. In the figure, two Sentinel-2 images of
the same region are selected, with imaging times of 23 August 2020 and 12 September
2020, containing two extreme cases of large-scale cloud coverage and clear sky. It can be
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seen that the fixed mapping transformation is not affected by the scale of cloud coverage.
Fixed mapping has a consistent overall radiometric brightness, a low brightness for clear
surfaces, a high brightness for cloud areas, and an approximate histogram distribution for
the different surface coverage. While the dynamic stretching transformation is affected by
the histogram difference, the radiation difference is more significant, the image surface with
a low cloud amount has higher brightness, and the difference in the histogram distribution
after stretching is significant.
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The sample images of Landsat 8, Sentinel-2, and GF-1/6 produced using our fixed
mapping transformation have high similarity in spectral features and are difficult to distin-
guish visually. A typical example is shown in Figure 2. The Sentinel-2 and GF-1 images
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were imaged in mid-June 2021. After conversion to Byte-type RGB images, the two im-
ages have a high similarity, and the difference is mainly caused by atmospheric aerosol
optical thickness. Based on this similarity of sample images, a model trained on Land-
sat 8/Sentinel-2 data can be used to produce the GF-1/6 quality tagging standard data
products directly.
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3.1.2. Sample Label

The sample label is a single-band image corresponding to the sample image, marked
pixel by pixel with quality tagging categories. The Fmask (Function of mask) algorithm is
used for automated clouds, cloud shadows, snow, and water masking for Landsat 4–9 and
Sentinel-2 images. Fmask became available after version 1.6, and USGS integrated the C
version of Fmask (CFmask) into quality-marked products for the Landsat series satellites
to obtain higher accuracy than the ACCA algorithm. Fmask version 3.2 further improved
the detection accuracy and started to support Sentinel-2 data [37]. Mountainous Fmask
(MFmask) improves the detection accuracy of mountainous areas’ clouds and cloud shad-
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ows using a Digital Elevation Model (DEM) [38]. Fmask version 4.0 further optimized
the algorithm and improved the detection accuracy using global auxiliary data, including
DEMs and water layers. In 2022, the updated version of the Fmask algorithm in February
was Fmask v4.6 (https://github.com/GERSL/Fmask, accessed on 1 November 2022).

Landsat-8 and Sentinel-2 standard data products already contain the Fmask detection
results. However, there are problems with inconsistent versions of Fmask and significant
differences in thin cloud detection boundaries. In order to ensure the consistency of the
produced samples, this paper adopts the updated version of Fmask v4.6 from February 2022,
coupled with the global elevation (SRTM, 90 m) and water body auxiliary data (GSWO),
to regenerate the detection results. By comparing the original quality tagging results and
adjusting the cloud confidence parameter correction, we obtain quality tagging results with
higher accuracy and better relative consistency. The sample label is a single-band PNG
format image with a pixel size of 512 × 512, the same as the sample image. The definition
of label values for each category is shown in Table 3. Figure 3 shows the example of sample
image and sample label.

Table 3. Quality label category setting table.

Class Land Water Cloud Shadow Snow Cloud Fill Value

Label 1 2 3 4 5 0

RGB
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3.1.3. Producing Training Samples 
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Landsat-8 and Sentinel-2 TOA data using the new version of Fmask, combined with a 

small amount of manual selection and quality corrections (Manual refinement). Then, the 
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size (Sample pair cropping). For the samples cropped from the bottom or right edge, their 
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The whole process is shown in Figure 4. 
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3.1.3. Producing Training Samples 

Producing training samples aims to produce high-precision quality tagging labels by 

Landsat-8 and Sentinel-2 TOA data using the new version of Fmask, combined with a 

small amount of manual selection and quality corrections (Manual refinement). Then, the 

sample image and label pair are produced by cropping the full image into a 512 × 512 pixel 

size (Sample pair cropping). For the samples cropped from the bottom or right edge, their 

size is less than 512 pixels. In this case, we fill them into 512 × 512 size with the fill value. 

The whole process is shown in Figure 4. 
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3.1.3. Producing Training Samples

Producing training samples aims to produce high-precision quality tagging labels by
Landsat-8 and Sentinel-2 TOA data using the new version of Fmask, combined with a small
amount of manual selection and quality corrections (Manual refinement). Then, the sample
image and label pair are produced by cropping the full image into a 512 × 512 pixel size

https://github.com/GERSL/Fmask
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(Sample pair cropping). For the samples cropped from the bottom or right edge, their size
is less than 512 pixels. In this case, we fill them into 512 × 512 size with the fill value. The
whole process is shown in Figure 4.
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The manual refinement step is essential to guarantee sample quality. The Fmask
algorithm mainly relies on the threshold method to detect clouds. However, the cases
of “same spectrum for different objects” and “different objects for the same spectrum” in
remote sensing images mean that false detection always exists. In the quality tagging task,
some high-brightness surfaces and snowy mountains are often mislabeled as clouds. Two
typical examples of false detection are shown in Appendix A Figure A1. During imaging
time 19 June 2021, white beaches and waves on the west coast of the U.S. with coral reef
components were mistakenly detected as clouds. During imaging time 29 December 2021,
some high-reflectivity features in the urban areas of the Loess Plateau in China were mis-
takenly detected as clouds, and dark surfaces were mistakenly matched as cloud shadows.
In order to improve the accuracy of the labeled samples, some manual participation is
used to filter and refine the quality-labeled result. By simple visual comparison with the
original image, we judged whether there were obvious misdetections, and if so, manually
determined whether the wrong parts can be corrected quickly. If the correction can be
performed within a few minutes using the brush-type tools, then we choose to finish the
correction quickly. Otherwise, this sample was directly dropped.

The sample pair cropping step produced the sample image and label pairs. Figure 5
shows the global training sample distribution and quantity. We chose 1120 scenes of
Sentinel-2 images distributed among the nine study areas of the “Analysis Ready Data
(ARD) Technology Research for Domestic Satellites” project, covering all 12 months. Each
scene of the Sentinel-2 image can cut out about 100 sample image pairs (samples with a full
fill value are excluded). Finally, we produced more than 100,000 sample image and label
pairs, and a certain percentage of them was randomly selected for validation.
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3.2. Algorithm Flow Overview

This section introduces the quality tagging algorithm process for Chinese GF-1/6
satellite images, which consists of two parts: (1) backbone network selection and training,
which introduces the segmentation model selection and the iterative update of the model
parameters for improving the quality tagging accuracy of GF-1/6 data; and (2) GF-1/6
quality tagging algorithm flow, which introduces our proposed algorithm flow to meet the
ARD project’s engineering requirements.

3.2.1. Backbone Network Selection and Training

In this paper, we chose the Swin Transformer as our backbone network for the quality
tagging algorithm. Meanwhile, two typical CNN-based segmentation models, HRNet
and DeepLabv3 are also adopted to address the comparison. The architecture of the Swin
Transformer model is shown in Figure 6.
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The entire model of the Swin Transformer adopts a hierarchical design, containing a to-
tal of four stages, each of which reduces the resolution of the input feature map and expands
the field of perception layer by layer. At the beginning of the input, patch embedding is
performed to slice the image into individual blocks and embed them. Each stage consists of
patch merging and multiple blocks. The patch merging module mainly reduces the image
resolution at the beginning of each stage. Each block consists mainly of LayerNorm (LN),
Multilayer Perceptron (MLP), W-MSA, and SW-MSA. W-MSA and SW-MSA are multi-head
self-attention modules with regular and shifted windowing configurations, respectively.
The parameter C refers to the number of channels, which controls the different model sizes
of the Swin Transformer. ViT encodes the embedding position at the input, and the Swin
Transformer encodes the relative position at the time of computing attention. ViT adds a
separate learnable parameter as the token for classification. However, the Swin Transformer
performs the averaging operation directly and outputs the classification, similar to the
global averaging pooling layer at the end of CNN.

Window attention is the key to the Swin Transformer model. Traditional Transform-
ers are based on the global to calculate attention, and the computational complexity is
very high. However, the Swin Transformer restricts the computation of attention to each
window, reducing the amount of computation and lowering the order of self-attention
computation. The main difference is that the relative position coding is added for attention
calculation. Experiments have shown that adding relative position-coding improves the
model performance. Window attention is computed under each window. To better interact
with other windows, the Swin Transformer also introduces the shifted window operation,
called shifted window attention.

The large Swin Transformer model (Swin-L) was trained using the sample data pro-
duced by Landsat-8/Sentinel-2 images, and the model was initialized with the pre-trained
parameters from the ImageNet-21K dataset. Since the Landsat-8/Sentinel-2 sample data
obtained according to the sample-producing process described above have very little differ-
ence from the GF-1/6 data, the model trained with Landsat-8/Sentinel-2 sample data are
directly used for processing the GF-1/6 image to acquire the corresponding quality-labeled
data products. Suppose the manual accuracy check results reach the quality requirements.
In that case, the quality tagging results of GF-1/6 images are added to the training sample
set after the sample-producing process. As the ratio of GF-1/6 images in the training
sample set keeps increasing, the model parameters keep iterating, which is expected to
further improve the accuracy of the GF-1/6 image quality tagging results. The model
training and iteration process is shown in Figure 7.
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3.2.2. GF-1/6 Quality Tagging Algorithm Flow

This paper aims to produce quality tagging data products for Chinese GF-1/6 satel-
lite WFV images, and the developed quality tagging algorithm flow needs to meet the
ARD project’s engineering requirements. Here, we mainly consider two crucial points:
(1) The chunking process. Since the Swin Transformer model can only process images with
512 × 512 size, the inconsistency of results between adjacent image blocks may lead to
the “seam” problem. We adopt an offset chunking process to cover the boundary area for
solving the “seam” problem. (2) Automatic quality tagging correction. In order to further
improve the quality tagging accuracy, the Shuttle Radar Topography Mission (SRTM) and
Global Surface Water Occurrence (GSWO) data are introduced as auxiliary data. Then, we
combine image processing methods to correct the quality tagging results of water bodies,
shadows under clouds, and fill values. The algorithm flow of GF-1/6 image quality tagging
is shown in Figure 8.
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3.3. Details in Engineering Application of Quality Tagging
3.3.1. Seam Correction for Chunking Processed Full Image

The chunking process is a common method for loading large remote sensing im-
ages to deep learning algorithms since the Swin Transformer model can only process
512 × 512 fixed-size images simultaneously. After pre-processing the GF-1/6 WFV TOA
data, three bands of visible light are selected and converted to Byte-type images according
to the same fixed mapping transformation as the sample-producing process. Then, the im-
ages are cropped into 512-pixel steps starting from the upper left corner (0,0) pixel position
of the source image, and the blocks less than 512 pixels in length are made up using a fill
value of 0. The chunked images are pushed into the Swin Transformer model one by one
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for processing. Finally, an entire image is created by stitching together the chunked results.
Because of the chunking process, there may be inconsistencies between neighboring blocks.
Especially in the Swin Transformer model, which includes the self-attention mechanism,
the relationship between the boundary pixels and the surrounding pixels will impact the
results, and the “seam” problem caused by the edges of neighboring blocks is perhaps
more obvious.

In order to eliminate the “seam” problem, we adopt a simple and effective way for
seam correction. In short, the idea is to reprocess and update the pixel values of the seam
area between two adjacent block images. The specific implementation is to use an offset
chunking process. For each vertical seam between two adjacent block images, we crop a
512 × 512 offset block image which takes this seam as the center line. Then, we produce
the corresponding label of that cropped offset block image using the Swin Transformer.
Finally, we merge the block label by updating the shadow area A in Figure 9 with the offset
block image label. As for the horizontal seam, the operation is similar. After the offset
chunking process, we merge the block label by updating the shadow area B in Figure 9
with the offset block image label. The width of shadow area could be set as a variable. In
this paper, we choose 64 pixels as the width, based on experience. Finally, we can acquire
the quality tagging result of a full image with the “seam” problem eliminated through this
seam correction method.
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3.3.2. Automatic Post-Processing Correction

The automatic quality tagging correction step is essential for helping the quality
tagging algorithm process to further improve accuracy and stability. It is difficult to
avoid the existence of false detections by relying solely on the Swin Transformer model’s
results. However, some false detections can be corrected by using auxiliary data. Fmask
v4.6 utilizes the SRTM and GSWO data to correct the false detections. We adopt the same
method here, but more simply and effectively, to correct for possible false detections of
water bodies, shadows under clouds, and fill values.

The correction of water body misdetection uses the SRTM and GSWO data. First, for
all water bodies’ pixel-linked areas, it is determined whether there is a matching water
body pixel marked by the GSWO data within a certain range around. If no matching
pixel is queried, the SRTM data are used to calculate the average altitude and slope of
the pixels in the water-body-linked area. If the average altitude is significantly greater
than the average water level in this area, there is a significant slope. Thus, the water-
body-linked area is considered as a false detection and should be corrected to the ground
surface. The average water level in this region is also calculated using the SRTM and GSWO
data. Experiments show that correction for water body misdetection is indispensable. The
topographic shadows of mountainous areas are easily detected as water bodies, which can
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be corrected easily. Figure 10 shows the example of mountainous topographic shadows
falsely detected as water bodies and the results after correction.
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The correction of under-cloud shadow false detection utilizes the geometric relation-
ship between cloud and cloud shadow. The Fmask algorithm uses a complex pixel-linked
region geometry matching method to filter out shadow-linked regions that are not matched
to clouds. Experimental results demonstrate that shadows under clouds identified by the
Swin Transformer model have a good correlation with clouds, and the false detection rate
is quite low. Therefore, we use a more straightforward method to correct the false detection
of cloud shadows. Whether cloud pixels exist in a certain range around all pixel-linked
regions of shadows under clouds is determined. If no cloud pixel exists, they are corrected
to the surrounding quality tagging category, such as the ground surface or water bodies.
Correction of fill-value misdetection is also necessary. The fill-value areas are four black
corner areas formed by image rotation due to remote sensing image system geometric
correction, marked as 0 values in the original image. The Swin Transformer model chunk-
ing process may lead to large dark areas of water bodies being detected as fill values by
mistake. The correction method directly uses the fill value area in the original GF-1/6 WFV
TOA image as the final result of the fill value in the quality tagging data products.

4. Experiment

The experiment was divided into two parts. In Section 4.1, we introduced validation
experiments on the customized dataset using our proposed method. The effect of different
Swin Transformer model size and training sample data volume was analyzed through
comparison and quantitative accuracy evaluation. The large Swin Transformer model
was then selected for training with a large number of samples on the Sentinel-2 training
set. After this, the quality tagging experiment and quantitative accuracy evaluation were
performed on the test set. We also compared the results between the Swin Transformer and
Fmask algorithm. In Section 4.2, we applied the model trained on Sentinel-2 data transfer
to the Chinese GF-1/6 image for quality tagging experiments and visual analysis.

4.1. Validation Experiment on Customized Dataset
4.1.1. Quantitative Evaluation

In this paper, the Swin Transformer was chosen as the backbone network of the
quality tagging algorithm. The network architecture and major characteristics of the Swin
Transformer have been described previously. The Swin Transformer contains tiny, small,
base, and large models, each with different parameter sizes. We employed the small,
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base, and large models of the Swin Transformer, but the tiny model was not used in our
experiment. The size and computation complexity of the base Swin Transformer model are
similar to the base ViT model, while the large and small Swin Transformer models are 2×
and 0.5× versions of the base model size, respectively. Unlike CNN, the Swin Transformer
does not control the model complexity by using network layers, and the number of Swin
Transformer blocks for its four stages is fixed at 2,2,18,2. The control of different model
parameters in the Swin Transformer is achieved by the hyperparameter C (number of
channels) and the size of C in Swin-S (Small), Swin-B (Base), and Swin-L (Large) is 96, 128,
and 192, respectively.

In order to analyze the effects of different Swin Transformer models and training
samples of different data volume on the accuracy of quality tagging, several experiments
for comparative analysis were designed. Sentinel-2 data were used to produce datasets
containing 2k (small), 5k (base), and 10k (large) training samples to carry out the training
of small, base, and large Swin Transformer models, respectively. We utilized UperNet [39]
in MMSegmentation as our base framework due to its high efficiency. Models were trained
on four GPUs with two images per GPU for 160k iterations. The small Swin Transformer
model was pre-trained on ImageNet-1k, and the base and large Swin Transformer models
were pre-trained on ImageNet-21k. Additionally, the patch and window size settings of the
Swin Transformer in our experiment were 4 and 7.

During the training progress, the model accuracy was evaluated on the validation
set every 16k iterations, and the accuracy evaluation metrics included the mean pixel
accuracy (mAcc) and mean intersection over union (mIoU). Pcm is the confusion matrix,
and pij denotes the number of observations that should actually belong to group i and
are predicted to group j. The k refers to segmentation category number, which is 5 in our
quality tagging task.

mAcc =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij

(1)

mIoU =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij +

k
∑

j=0
pji − pii

(2)

Pcm = [pij]
5×5, i&j ∈ [0, k] (3)

We randomly selecteded two thousand Sentinel-2 sample images (512 × 512) as the
test set. The experiment result showed that the model generalization effect was good. The
mIoU of the small, base, and large Swin Transformer models reached 70.50%, 75.27%, and
76.53%, respectively. Meanwhile, the mIoU of HRNet and DeepLabv3 were 74.78% and
73.49%, respectively. The specific results of different models’ IoU and accuracy are shown in
the following Table 4.

Table 4. Quantitative evaluation of different backbone networks on our Sentinel-2 test set.

Model mIoU
(%)

mAcc
(%)

Land (1) Water (2) Shadow (3) Snow (4) Cloud (5)

IoU
(%)

Acc
(%)

IoU
(%)

Acc
(%)

IoU
(%)

Acc
(%)

IoU
(%)

Acc
(%)

IoU
(%)

Acc
(%)

HRNet 74.78 81.34 90.01 97.19 86.54 90.15 54.77 67.58 53.49 59.79 89.09 91.98
DeepLabv3 73.49 81.13 89.68 96.62 86.88 90.74 51.74 62.51 51.58 63.53 87.60 91.93

Swin-S 70.50 77.63 86.71 96.85 72.13 74.11 51.19 64.79 54.33 60.68 88.12 91.72
Swin-B 75.27 82.46 90.08 97.28 87.37 90.70 52.90 64.62 57.25 67.66 88.76 92.02
Swin-L 76.53 83.72 90.86 97.39 89.22 93.61 54.30 64.82 58.82 70.23 89.47 92.54

In Table 4, the mAcc of the small Swin Transformer (Swin-S) model is 77.63%. The land,
water, and cloud detection accuracy are higher among the five categories. In comparison,
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the snow and shadow are relatively low. Compared with the small model, the mAcc of the
base Swin Transformer (Swin-B) model is improved by 6.09%, and its mAcc reaches 82.46%.
The large Swin Transformer (Swin-L) model achieved the highest mAcc in the experiment,
1.26% higher than the base model. Therefore, we chose the Swin-L model to perform the
subsequent experiment. At the same time, for the selected Swin-L model, we compared
the trend of model accuracy improvement during training on 5k, 10k, and 15k training
sample datasets. The results can be shown in the Appendix A Figure A2. As the number
of iterations increases, the model’s accuracy improves and finally tends to a stable value.
Comparing the results of 5k, 10k, and 15k training samples, it can be found that the model’s
accuracy improves with the increase in training sample data volume. At the same time, it
has yet to be found that the model has reached saturation, and subsequent experiments
could consider further increasing the training data to improve the quality tagging accuracy.

4.1.2. Visual Effect and Comparison with Fmask

Some results from the experiments on Sentinel-2 data using the Swin-L model are
displayed below. Local 512 × 512 sample images containing different types of clouds and
snowy mountains were mainly selected, and the quality tagging masks produced using the
Swin-L model were superimposed on the source image for intuitive visual analysis.

Figure 11a,b,f shows that the Swin-L model is accurate at detecting clouds, and the
cloud edge is also consistent with the manual visual interpretation. Images (c), (d), and
(e) show that Swin-L not only detects clouds accurately but can also accurately identify
shadows under clouds. There is also a good geometric matching relationship between
cloud and cloud shadow. Images (g) and (h) show that the model can effectively distinguish
between clouds and snow. Swin-L does not mistakenly detect snowy mountains as clouds.

Meanwhile, 20 Sentinel-2 images were selected from the global study area for testing.
The quality tagging result of each whole scene image was obtained by the Swin-L model.
Then, the quality tagging algorithm flow of the chunking and stitching process was applied,
and the results were compared with those of the Fmask algorithm. Three typical scenes’
quality tagging results are shown below.

Figures 12–14 show that the quality tagging results produced using Swin-L and
Sentinel-2 data have a high agreement with the Fmask algorithm. The enlarged view of
the local area in Figure 12 shows that the Fmask algorithm has isolated cloud and cloud
shadow false detection noise, while the Swin-L model has almost no such false detection.
For Figure 13, the Swin-L result is also better than Fmask. The enlarged view of the local
area shows that Swin-L has more accurate edge recognition of thin clouds, while the
edge of the cloud area in the Fmask algorithm is more expanded. At the same time, the
Fmask algorithm also wrongly detects some cloud shadows and isolated water body noise.
Figure 14 shows that Swin-L can effectively distinguish clouds from snow and achieve the
same accuracy as the Fmask algorithm.

4.2. Producing GF-1/6 Image Quality Tagging Mask

GF-1/6 data and Sentinel-2 data have high similarity in the visible light band. This
part of the experiment applied the model obtained from the Sentinel-2 data transfer to
the Chinese GF-1/6 images for conducting quality tagging experiments. Since the Fmask
algorithm currently only supports Sentinel-2 and Landsat series data, the accuracy verifica-
tion of GF-1/6 data mainly relies on expert manual interpretation. We randomly selected
100 scenes of data from nine study areas, especially snowy mountain areas with seasonal
snow line changes, such as Washington State in the United States. Some typical examples
are shown in Figure 15 for visual analysis. Local 512 × 512 sample image quality tagging
results showed that the Swin-L model can achieve high accuracy on GF-1/6 data. Our
results have a good visual effect and can effectively distinguish clouds from snow.
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Figure 11. Typical visual examples of Sentinel-2 sample images and quality tagging masks (512 × 512)
produced by Swin-L. (a–f) Cloud and cloud shadow detection. (g,h) Snow detection.

Next, the quality tagging algorithm flow was applied to the chunking and stitching
process for the selected GF-1/6 scene images, aimed at obtaining the quality tagging label
of each whole scene image. As the training sample dataset continues to expand, the results
of quality tagging gradually improve. Figure 16 shows the process of distinguishing clouds
and snow, first with lots of error, then with less error, and finally becoming completely
separable. At the 2k sample data volume, the quality tagging result showed a large number
of cases where snow was mistakenly detected as clouds and water bodies. When the
amount of data reaches 5k, the cloud and snow are basically separated, but there are still a
small number of cases where snow is mistakenly detected as water bodies. When the data
volume reaches 10k, cloud and snow are completely separable, and there is no apparent
false detection. The quality tagging results meets the requirements of the ARD project’s
engineering applications.
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Figure 13. Comparison of Swin-L and Fmask quality tagging result (2). (a) RGB source image. (b) Swin-L
label. (c) Fmask label.
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Figure 14. Comparison of Swin-L and Fmask quality tagging result (3). (a) RGB source image. (b) Swin-L
label. (c) Fmask label.

Figure 17 shows several representative results of the GF-1/6 image quality tagging
masks produced using the final well-trained Swin-L model. The quality tagging label is
generally visually good. The Swin Transformer can detect thick and broken clouds more
accurately. The local area enlargement shows that its recognition results of shadows under
clouds also have an excellent geometric matching relationship with the cloud area. Swin
Transformer can also accurately identify snowy mountains on GF-1/6 images and does not
mistakenly detect snow as clouds. There are more typical quality tagging results of GF-1/6
images in Appendix A Figure A3.
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(c) 5k samples based on Swin-L mask; (d)10k samples based on Swin-L mask.
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5. Discussion

Our method’s GF-1/6 image quality tagging accuracy can be close to the results of
Sentinel-2 images using the Fmask algorithm. It indicates that the Swin Transformer’s
Large model can learn the features of six quality tagging categories (land, water, cloud
shadow, snow, cloud, and fill value) in the visible band through a large-size training sample
set. The experiments show that when the number of training samples reaches 100,000, our
method’s accuracy improves significantly, the mean accuracy is 86.25%, and the overall
accuracy consistency with Fmask v4.6 is 85.52%. Meanwhile, our method for the regional
edge of cloud and cloud shadow is usually better than Fmask.

Moreover, our GF-1/6 image quality tagging algorithm can effectively distinguish
clouds from snow. With over 10,000 training samples, the case of snowy mountains being
falsely detected as clouds was significantly reduced, and the overall accuracy was 83.72%.
The Sentinel-2 data can distinguish clouds from snow, usually by using spectral features.
However, the Swin Transformer model can also distinguish by shape and texture features
in visible RGB images. In remote sensing images with a 20 m spatial resolution, the manual
visual interpretation can intuitively distinguish clouds and snow by experience. On the
premise of sufficient training samples, our experiment indicated that the Swin Transformer
model can obtain the same capability using only the RGB band.

6. Conclusions

In this paper, we proposed a novel pixel-by-pixel quality tagging algorithm flow for
Chinese GF-1/6 satellite WFV images. It aims to achieve the requirements of the “Analysis
Ready Data (ARD) Technology Research for Domestic Satellites” project and resolve the lack
of Chinese satellite quality tagging data products. Considering the similarity of Landsat-
8/Sentinel-2 and GF-1/6 multispectral images in band and resolution, a generalizable
training sample set was constructed. Utilizing the Fmask algorithm with 1120 scenes of
Sentinel-2 images, over 100,000 training samples were produced with a small number of
manual corrections. Then, the training results of the Swin Transformer’s Large model are
directly used for pixel-by-pixel quality tagging of GF-1/6 images. Aiming to analyze the
applicability of the Transformer model’s different characteristics from the CNN model in
the remote sensing image segmentation field, this paper carried out experiments using the
original Swin Transformer model and corresponding pretrained parameters. Compared
with the multi-scale feature of CNN, the self-attention mechanism of the Transformer model
is more suitable for the semantic segmentation problem of remote sensing images with a
fixed spatial resolution.

The preliminary results of this study reflect some advantages of the Transformer model,
such as being more suitable for large-size training sample sets and less prone to saturation
problems. Meanwhile, we also developed important methods including fixed mapping
transformation, seam correction for full chunking processed images, and automatic post-
processing correction. We provide a complete GF-1/6 satellite quality tagging algorithm
flow and data product specification using the proposed method in this paper. However,
there is still some work left to do. In the following work, we will modify and optimize
the original Swin Transformer model to make it more suitable for remote sensing image
semantic segmentation problems.
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