
Citation: Sudra, P.; Demarchi, L.;

Wierzbicki, G.; Chormański, J. A
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Abstract: Imaging and measuring the Earth’s relief with sensors mounted upon unmanned aerial
vehicles is an increasingly frequently used and promising method of remote sensing. In the context of
fluvial geomorphology and its applications, e.g., landform mapping or flood modelling, the reliable
representation of the land surface on digital elevation models is crucial. The main objective of the
study was to assess and compare the accuracy of state-of-the-art remote sensing technologies in
generating DEMs for riverscape characterization and fluvial monitoring applications. In particular,
we were interested in DAP and LiDAR techniques comparison, and UAV applicability. We carried
out field surveys, i.e., GNSS-RTK measurements, UAV and aircraft flights, on islands and sandbars
within a nature reserve on a braided section of the Vistula River downstream from the city of Warsaw,
Poland. We then processed the data into DSMs and DTMs based on four sources: ULS (laser scanning
from UAV), UAV-DAP (digital aerial photogrammetry), ALS (airborne laser scanning), and satellite
Pléiades imagery processed with DAP. The magnitudes of errors are represented by the cross-reference
of values generated on DEMs with GNSS-RTK measurements. Results are presented for exposed
sediment bars, riverine islands covered by low vegetation and shrubs, or covered by riparian forest.
While the average absolute height error of the laser scanning DTMs oscillates around 8–11 cm for
most surfaces, photogrammetric DTMs from UAV and satellite data gave errors averaging more than
30 cm. Airborne and UAV LiDAR measurements brought almost the perfect match. We showed
that the UAV-based LiDAR sensors prove to be useful for geomorphological mapping, especially for
geomorphic analysis of the river channel at a large scale, because they reach similar accuracies to
ALS and better than DAP-based image processing.

Keywords: digital surface model; digital terrain model; UAV; airborne measurements; laser scanning;
digital aerial photogrammetry; monitoring river dynamics; hydromorphology; riverscape; Holocene

1. Introduction

The high complexity of Earth’s topographic relief and the adopted scales of obser-
vations in remote sensing and mapping make it impossible to present any area with full
details of elevation and land cover. Hence the necessity to map the terrain surface on
models that involve a certain degree of approximation. The development and use of a good
elevation and land cover model are of key importance in geomorphological, hydrological,
and botanical studies as well as in applied research and engineering applications related to
forest management, flood modelling, or identification of potential landslides and other geo-
hazards in a given area. In particular, for geomorphological analysis of fluvial landscapes
(where within river valleys there are wooded and bushy areas as well as uncovered places
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such as dunes, sandbars, riverine islands, outwash areas, rocky outcrops, and erosional
landforms developed in bedrock) it is important to have digital elevation models (DEM)
describing the topography of the terrain with a high degree of accuracy, in the order of
centimetres [1–3]. While elevation data have been acquired for decades through geodetic
ground-based surveys, this approach is currently considered time-consuming, and it does
not deliver the vast spatial coverage available thanks to remote sensing techniques. The
issue of the suitability of different remote sensing platforms and techniques for the acquisi-
tion of very high-resolution data for the development of digital elevation models in the
context of fluvial landscape monitoring is the focus of the article.

A digital elevation model (DEM) is a 3D computer graphics representation of elevation
data, which defines the Z values of terrain surfaces [4]. In other words, DEM may be
considered a digital description of the terrain surface using a set of heights over 2D points
residing on a reference surface [5]. Maune et al. [6] state that “DEM” is a generic term
covering digital topographic (and bathymetric) data in all their various forms as well
as the method(s) for implicitly interpreting the elevations between observations. While
a digital terrain model (DTM) represents the elevation of bare ground of the terrain, a
digital surface model (DSM) depicts elevations of the top of reflective surfaces, such as tree
canopy, buildings, or powerlines. A DTM may be obtained through several algorithms
removing objects from the DSM [7,8]. The digital terrain model is particularly important for
geomorphologists and geologists, useful in land-use planning, soil mapping, archaeology,
and practically required for flood or drainage modelling. The digital surface model is
useful for landscape modelling, urban planning, and management of the above-ground
infrastructure (in telecommunications, aviation, etc.). Another important product and an
example of “DEM of Difference” (DoD) [9] that may be derived from the DSM is a canopy
height model (CHM), which is a reconstruction of the upper limits of the forest canopy,
obtained as a difference between the DSM and DTM.

The DEM can be obtained in various ways. Digital aerial photogrammetry (DAP) is a
well-established RS technique that allows the acquisition of dense 3D geometric information
of real-world objects from stereoscopic image overlapping. It can be applied to any remotely
sensed imagery, provided that enough overlapping is guaranteed among two imageries.
Hence, many satellites in recent years have been equipped with a stereo acquisition mode
(e.g., SPOT, IKONOS, QuickBird, Pléiades), which allows almost simultaneous acquisition
of multiple images from different view angles over the same area [10]. The DAP technique
has proven its capabilities in many applications requiring the production of large-scale
high-resolution DSM, such as urban studies [11–13], hydrological modelling [14], and
natural hazards [15,16]. Of particular interest, the Pléiades-1 mission has attracted attention
due to its unique tri-stereo image acquisition providing almost simultaneous images from
three different acquisition angles, resulting in increased accuracy in DSM generation [10].

Another well-known technique is called light detection and ranging (LiDAR), based
on targeting an object or a surface with an active laser that measures the time for the
reflected light to return to the receiver. One of the advantages of LiDAR sensors, due to
their penetration capabilities, is the ability to generate highly accurate 3D models of the
vegetation structure as well as topographic details underneath, hence producing more
accurate DTMs in areas covered by vegetation [17]. Some differences can be identified
depending on the vegetation structure—in the presence of leaf-on vegetation, DTM accuracy
is reduced, with low-stature undergrowth vegetation causing the greatest errors, while
errors are lower under leaf-off conditions [18]. Another significant advantage of the
LiDAR sensors is that they make it possible to cover extensive study areas with precise
measurements in a short time.

One of the objectives of this study is to compare these two well-known techniques—
DAP vs. LiDAR—in fluvial monitoring applications. Riparian zones and their vegetation
contribute to biodiversity and ecosystem functions of fundamental importance. These
include bank stabilization, provisioning of habitat for both aquatic and terrestrial biota, the
capture of sediments, flow regulation, and nutrient transport, just to mention a few [19].
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Sediment bars are among the main riverscape units that need to be monitored and charac-
terized [20,21]. A precise centimetre-level DTM quantification of their dynamics is of key
importance for decision-making processes related to river management activities [22].

In recent decades, the acquisition of laser scanning data from the aerial platform has
rapidly increased, also in fluvial applications [23,24], however, their acquisition costs are
still very high, due to the high costs of both aeroplane operations and LiDAR sensors.
Recently very lightweight sensors have become available on the market, adapted to the
unmanned aerial vehicle (UAV) platform, known simply as drones. UAVs have emerged
as a low-cost alternative image-capturing platform, still ensuring high spatiotemporal
resolutions for photogrammetric applications and dense point cloud generation [25]. The
potential of using these techniques in environmental monitoring applications, including
the assessment of topographic terrain features, is as yet insufficiently explored. Among the
advantages of UAV technology is the possibility of replacing very expensive aerial data,
thus the different cost-benefit relationship between the two technologies, and at the same
time the higher flexibility in the organization of flight acquisition campaigns.

Several studies have focused on comparing the generation of DEMs by laser scanning
and photogrammetric techniques, mostly related to forest environments, where the laser beam
permeability can be verified in relation to the dense and high-plant coverage [17,18,26–29].
Gil et al. [17] compared the DEMs for the Canary Islands forests, derived using digital
aerial photogrammetry (DAP) and airborne laser scanning (ALS) techniques, with ground
measurements as a reference. An ALS-derived DEM was more accurate in densely forested
areas, where the DAP-derived DEM was not able to reproduce the ground surface properly.
Wallace et al. [26] compared a DEM created photogrammetrically with the imagery from a
camera mounted on a UAV with the one generated with ALS, for a dry eucalypt forest in
Tasmania. They found problems related to terrain computation with the photogrammetric
technique, especially beneath dense canopy cover. Goodbody et al. [27] also found out
that the UAV-DAP terrain model is inaccurate in forest areas, therefore they used the
ALS-derived DEM to normalize height values from UAV-DAP measurements. Salach
et al. [28] examined the accuracy of two DTMs constructed based on LiDAR measurements
from UAV (ULS) and UAV-DAP. The accuracy of ULS DTM was slightly higher (RMSE
0.11 m) compared to DTM generated with the photogrammetric method (RMSE 0.14 m) for
bare ground, while the difference increased to significant for DTMs of vegetated terrain.
Crespo-Peremarch et al. [29] performed an assessment of the accuracy in the extraction of
the DEM according to several techniques, and processing algorithms. It has proved that
the ALS technique produces DEMs with an accuracy similar to those generated with TLS
(terrestrial laser scanning), while quite lower accuracies were obtained from UAV-DAP.

There are also quite a few studies evaluating the usefulness of DTMs made by different
methods and techniques in hydrological applications related to fluvial landscape [30–32].
Villanueva et al. [30] demonstrated the feasibility of semi-automatically obtained UAV-
LiDAR DEMs for flood studies at the local level. Tamminga et al. [31] assessed the capabili-
ties of UAVs to characterize the channel morphology and hydraulic habitat of a 1 km river
reach in Canada. They found several advantages of UAV-based imagery for river research
and management, including low cost, high efficiency, operational flexibility, high vertical
accuracy, and centimetre-scale resolution, as well as some challenges, including vegetation
obstructions of the ground surface, the impacts of the haze in the atmosphere, or lack of
proper legal regulations for UAV operation, which slow down the adoption of this technol-
ogy for operational purposes. Woodget et al. [32] indicate that the use of high-resolution
remote sensing from a UAV is a promising technique for quantifying the topography of
fluvial environments at the mesohabitat scale, bringing the following advantages: high
spatial resolution outputs (orthophoto and DEM), accuracy comparable to or better than
that the one achieved by using existing field-based and other remote sensing approaches
and, in general, rapidness, flexibility, repeatability, and relative cheapness.

The main objective of this paper is to assess and compare the accuracy of state-of-the-
art remote sensing (RS) technologies in generating DEMs at centimetre precision for fluvial
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landscape characterization and monitoring at a large scale. An airborne ALS campaign
was flown to cover an area of about 3.0 square kilometres (km2). In the same period, an
extensive multi-mission UAV campaign was performed over the same area, with UAV-
LiDAR and RGB sensors, and an acquisition with Pléiades-1 in stereo mode was tasked.
The field campaign was completed by a ground control points measurement campaign
with the GNSS RTK system (GPS + GLONASS measurements), resulting in 516 points to be
used for error assessment and comparison. These points were collected on the three main
land-cover classes that shape the riparian corridor and that are of particular importance
for river landscape monitoring: forest, shrubs, and sediment bars. The large amount
of data collected allowed for an exhaustive comparison of LiDAR technology against
DAP techniques acquired from either UAV or satellite (Pléiades in this case). Besides,
UAV-LiDAR was assessed against airborne LiDAR. The findings of this assessment are
extensively presented and discussed in the next sections of the presented paper.

2. Materials and Methods
2.1. Study Area

The study area is a lowland valley of a braided river (the Vistula River), located in
the vicinity of a large urban agglomeration (the City of Warsaw, Poland), however, the
selected river section is characterized by a natural riverscape shaped by almost freely
acting processes of fluvial erosion and deposition. It is located a few kilometres north of
Warsaw, i.e., downstream from the city, where the Vistula valley widens at the exit of the
so-called Warsaw corset—a narrow reach similar to a gorge [33] (Figure 1). The widening
of the valley floor is filled with the river terraces deposited during the last glaciation of the
Pleistocene (Vistulian or Weichselian glaciation) and deposited relatively close (70 km) to
the LGM (Last Glacial Maximum), but beyond its extent [34,35]. However, huge amounts
of sand originating from the fluvioglacial environment of the LGM were transported just
10 km northerly from the study area through the LGM ice-marginal valley [35,36] and
formed the body of the terraces together with fluvial sand coming from sections of the
Vistula catchment in a periglacial environment. The dunes developed on these terraces in
older and younger dryas (at the end of the Pleistocene), and afterward the Holocene floods
eroded many traces, which are still visible on their surfaces, as in the case of the Vistula
River with adjacent sections located upstream [33] and 50 km downstream [37].

The study area is part of a nature reserve called “Ławice Kiełpińskie” (“ławice” means
shoals in Polish) (Figure 1). The reserve encompasses a set of riverine islands, sandbars,
and broad channel bottoms covered by flowing waters, with a total area of 8.04 km2. The
islands undergo strong natural erosion, and are undercut, especially in the vicinity of the
main current of the river. The channel banks are also undercut by erosion, but with a
somewhat lower intensity. Sandbars are transforming slowly into new islands, as a result
of the accumulation of fluvial deposits, particularly fine sand.

Our study focuses on two islands located in the northern part of the reserve, in the
municipality of Jabłonna, and two southern islands, located in the municipality of Łomianki.
For the sake of simplicity, the two northern islands, which become connected at very low
water levels, will henceforth be referred to as the “Northern Island”, and similarly, the two
southern islands will be referred to as the “Southern Island” (Figure 2). The northern island
has an area of approximately 0.5 km2 while the southern has an area of about 0.9 km2. The
average elevation of the islands is 75 m above sea level, and while we were analysing the
elevation of the terrain in geodetic heights (relative to the WGS 84 ellipsoid), the measured
elevations of the islands are approx. 102–112 m, while the tree crowns on elevated parts of
the islands reach geodetic heights of almost 150 m.
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The dominating type of vegetation on the islands is typical of riparian plant communi-
ties. The edges of the islands and the depressions within the islands are covered by low
vegetation (grasses, sedges) and young willow bushes (several years old). In some places,
the vegetation develops in closed depressions (mudflats—slack-water deposits). Some of
the shrubs on the islands, including in the higher parts, consist of dense and intensively
developing goldenrod. In the oldest and most elevated parts of the islands, which have
not been flooded for many years, there are riparian stands composed mainly of willows
(including trees several decades old), in addition, with the participation of black and white
poplar, and ash-leaf maple (considered as an invasive species). Recently, Da Silva et al. [39]
explored the islands, identifying the major succession processes of plant communities
occurring in sandy habitats and in wetter parts of the islands characterized by a dynamic
balance of habitats.

2.2. Multi-Source Data Acquisition Campaign

The study described in this article focuses on assessing the accuracy of DTM/DSM
models obtained from different sensors, mounted upon various flying platforms, hence
having different technical parameters and different processing techniques. The main
sensors and data collected in this study are:

1. Airborne LiDAR sensor and point cloud derived from laser scanning: herein referred
to as ALS;

2. UAV LIDAR sensor and point cloud derived from laser scanning: herein referred to
as UAV-LS or ULS;

3. RGB images taken from the UAV platform: herein referred to as UAV-DAP;
4. High-resolution satellite images acquired by Pléiades-1 satellite: herein referred to as

PLEIADES.

Measurements taken from the UAV were supplemented by ground-based GNSS
receiver measurements with an RTK station, for proper geo-referencing at centimetre
accuracy.

2.2.1. UAV Flights

The main challenge of the envisaged acquisition campaign, consisted in covering
the entire area of 3.0 km2 at the centimetre resolution with a UAV, in a relatively limited
timeframe, i.e., during low water levels’ summer months, so as to ensure minimal changes
in the fluvial sediments deposited on sandbars and islands.

The UAV data acquisition campaign for the computation of DEMs took place in
September 2019. It was preceded by the two days of UAV flights in the middle of July and
three days at the end of July and the beginning of August. Those first acquisitions were
not covering the entire islands and they were done to test the instrument response and
our mapping capability. The flights were repeated in September to cover the entire islands
and to ensure simultaneity with the airborne acquisition (see Section 2.2.2). The data was
collected during two days of field operations on the Northern Island (11–12 September) and
during four days of fieldwork on the Southern Island (4–6 and 13 September) (Figure 3).

The characteristics of the flight carried out with the UAV (model DJI M600) were as
follows: flight height up to 75 m above ground level, flight speed 5.5 m/s, distance between
paths 45 m, flight time up to 17 min, and 2-4 flights per day.

The data acquired were:

1. Visible (RGB) images from a digital camera (APS-C) model Sony ILCE-6000, with
6000 × 4000 pixels (manufacturer: Sony, Tokyo, Japan)

2. LiDAR (laser detection and ranging) data from the laser sensor Velodyne VLP-16,
−15◦ to +15◦ vertical FOV, 360◦ horizontal FOV, with a density of ∼50 points m−2

(manufacturer: Velodyne Lidar, San Jose, CA, USA).

Overall, an area of about 300 ha was covered with LIDAR point clouds with an
accuracy of >100 pts/m, as well as with RGB images at 5 cm resolution. These images



Remote Sens. 2023, 15, 1949 7 of 26

were used in the post-processing stage to colour the point clouds and also to compose
an orthophotomap and a digital elevation model, based on the digital photogrammetric
technique (as described in Section 2.3).

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 27 
 

 

2.2.1. UAV Flights 
The main challenge of the envisaged acquisition campaign, consisted in covering the 

entire area of 3.0 km2 at the centimetre resolution with a UAV, in a relatively limited 
timeframe, i.e., during low water levels’ summer months, so as to ensure minimal changes 
in the fluvial sediments deposited on sandbars and islands.  

The UAV data acquisition campaign for the computation of DEMs took place in Sep-
tember 2019. It was preceded by the two days of UAV flights in the middle of July and 
three days at the end of July and the beginning of August. Those first acquisitions were 
not covering the entire islands and they were done to test the instrument response and 
our mapping capability. The flights were repeated in September to cover the entire islands 
and to ensure simultaneity with the airborne acquisition (see Section 2.2.2). The data was 
collected during two days of field operations on the Northern Island (11–12 September) 
and during four days of fieldwork on the Southern Island (4–6 and 13 September) (Figure 
3). 

  
Figure 3. Study area. Islands within the “Ławice Kiełpińskie” (“Kielpinskie Shoals”) natural reserve. 
Overlayed are acquisition sections of the airborne and UAV missions, and the distribution of ground 
control points from GNSS-RTK measurements. Background orthophotomap: Google Satellite. 

The characteristics of the flight carried out with the UAV (model DJI M600) were as 
follows: flight height up to 75 m above ground level, flight speed 5.5 m/s, distance between 
paths 45 m, flight time up to 17 min, and 2-4 flights per day. 

The data acquired were: 
1. Visible (RGB) images from a digital camera (APS-C) model Sony ILCE-6000, with 

6000 × 4000 pixels (manufacturer: Sony, Tokyo, Japan) 

Figure 3. Study area. Islands within the “Ławice Kiełpińskie” (“Kielpinskie Shoals”) natural reserve.
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2.2.2. Airborne Flights

Airborne flight with ALS and RGB + CIR camera imaging was carried out by the
company OPEGIEKA Ltd (Figure 3). The flight was carried out on 5 September 2019 after
good weather conditions were confirmed. In the case of LiDAR measurements, data were
acquired using a RIEGL VQ-1560i-DW laser scanner (manufacturer: RIEGL, Horn, Austria)
operating at an infrared wavelength of 1.064 nm, and at a green wavelength of 532 nm,
integrated with RGB and colour infrared (CIR) aerial imagery, hence both point clouds were
made available for this study. On board the twin-engine Vulcanair P68 SP-OPG aircraft, all
sensors including the GNSS/IMU positioning system were mounted on the same stabilised
bed. The subsequent data georeferencing process included the alignment of image series
with Riegl software (RiPROCESS, RiWORLD) for both images and LiDAR point clouds.

2.2.3. Satellite Data

Satellite data used in this study to create digital elevation models in stereo mode
were acquired from Pléiades satellites operated by the French Space Agency (CNES) and
Airbus Defence and Space Intelligence. Pléiades 1A and Pléiades 1B images are acquired in
panchromatic (0.47–0.83 µm), blue (0.43–0.55 µm), green (0.50–0.62 µm), red (0.59–0.71 µm),
and near-infrared (NIR) (0.74–0.94 µm) spectral bands.

The resolution of final products (primary, projected, and orthophoto) is 0.5 m for
the panchromatic images and 2 m for multispectral images. The Pléiades system offers
high-resolution stereoscopic coverage capability, which allows for DEM extraction and
DSM to DTM conversion. Therefore, for the purpose of this paper, a digital surface model
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(DSM) was derived from high-resolution Pléiades 0.5 m panchromatic tri-stereo pairs of
images.

2.2.4. Field GCPs for Comparative Assessment

A network of ground control points (GCPs) was collected in the field and used as
ground truth reference to verify the heights of digital terrain models obtained from mul-
tiple data sources (UAV, ALS, and satellite data). A GNSS receiver with an RTK station
(GPS + GLONASS measurements) was used, for which the assumed accuracy of the height
measurement error is ±2–3 cm [40]. The alignment of a special marker on the GNSS pole
was always verified to control and mitigate the problem of the sharp tip of the pole pen-
etrating too much into the ground. Moreover, the pole was not placed in locations with
terrain considered too soft for the measurement.

The collected ground control points (GCPs) represent different riverscape areas:
(1) “sediment”: uncovered sandy deposits—sandbars from a geomorphological point
of view, (2) “shrub”: low shrubby vegetation—a higher level of sandbars, which is trans-
forming into riverine islands, and (3) “forest”: islands significantly elevated upon the
water level in the channel with mature riparian forest on their surface. Of the 516 spatially
distributed GCPs (Figure 3), 297 points were collected on “sediment” sandbars, while
153 were collected on “shrub” vegetation (up to about 1–1.5 m high) and finally 66 on
“forest” areas. The GCPs were not collected on channel banks and islands’ banks (alluvial
escarpments with quite steep slopes), and not measured at the bottom of the active river
channel with flowing water or on the floodplain outside the reach of the islands.

The graph below (Figure 4) presents changes in the water level within the period of our
data acquisitions at the Warsaw “Bulwary” water gauge (the closest automatic water gauge
to our study area, located upstream of the river). The water gauge is located at 513.3 km
of the Vistula River, with the water gauge ordinate set at 76.08 m above sea level. As can
be seen, airborne and UAV acquisitions were made during similar very low water levels
(42–52 cm above the “0” water level gauge). It should be noted that the lowest water level at
the “Bulwary” water gauge associated with the hydrological drought was 26 cm (recorded
in 2015 and then in August 2018), so during our measurements we were experiencing very
similar conditions. Besides, the warning level at this water level gauge is shown at 600 cm
and the alarm level at 650 cm. Thus, changes in water levels had a negligible effect on the
geomorphology of the islands and sandbars during this short, 10-day period in September
2019. Besides, the fact of collecting GNSS-RTK measurements only on homogenous flat
areas of at least 2 m × 2 m, situated away from the riverbed, ensured a negligible effect on
our measurements, hence on the proposed DTM comparative assessment.
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2.3. Data Processing

Dedicated software from GreenValley International was used to process the LiDAR
data acquired from the UAV platform—LiAcquire for georeferencing the point cloud
and pre-processing, and LiDAR 360 for data processing to obtain DTM/DSM products.
AGISOFT Metashape software was instead used to produce orthophotos and DTMs/DSMs
from the RGB camera images. The processing workflow is described step-by-step herein
and illustrated in Figure 5. The use of LiAcquire allowed georeferencing of point clouds
with base station coordinates. The original trajectories of the individual flights were used
for geographic referencing using the base station log file and the measured GNSS position.
Camera positions for the acquired RGB imagery were saved using LiAcquire. The results
are precisely georeferenced point clouds.
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scanning point cloud processing and photogrammetric procedures, used to generate DEMs.

Point cloud analysis was then carried out in LiDAR 360 (manufacturer: Green Valley
International, Beijing, China). Strip alignment was performed for each flight, in order to
correct for boresight error caused by the offset of the laser scanner and IMU coordinate
system. The procedure of removing outliers from point clouds was also performed. The
merging of the results of single flights into one file for each island was then carried out. The
next step was ground point classification, i.e., deciding whether the obtained points bearing
geographic coordinates represent laser reflectance values from exposed terrain, vegetation
cover, or possibly anthropogenic objects. Air points classification was also performed,
i.e., a procedure of removing air outliers, which can be caused, for example, by aerosol
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and suspended particles or objects flying in the air (e.g., birds). The pre-processing was
completed by generating a point density analysis report.

Visualisation of the point clouds (obtained from the UAV-LiDAR data) by assigning a
hypsometric colour scale to the elevation points of the land cover and displaying profile
graphs for the selected cross-sections of the islands enabled a preliminary height analysis
(Figure 6). Further processing of the point clouds was then performed to obtain DSMs,
followed by extraction of DTMs.
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Figure 6. Example of the UAV-LiDAR point cloud for the Southern Island, representing the heteroge-
nous landscape characterized by different land covers of the studied islands. Visualization made in
LiDAR 360 viewer.

RGB images from the camera mounted on the UAV were processed in AGISOFT
Metashape to produce orthophotomaps. The images were oriented using the camera
positions and based on the ground control points measured with GNSS-RTK. The bundle
adjustment with a self-calibration process was performed using GCPs and the images’
position provided by drone navigation sensors. Merging data from several acquisitions
(flights) was needed to compose the orthomosaics. Using photogrammetric methods, the
orthophotomaps were processed into DSMs with selected resolutions.

For the airborne data, the pre-processing of the data to obtain both the georeferenced
point cloud from the laser scanning and the photogrammetric products (used in the final
step to colourise the point cloud with RGB attributes from digital photos) was performed
by OPEGIEKA Ltd. The software used to classify the LiDAR point cloud was: TerraScan
and TerraModeler (TerraSolid), RiHYDRO (Riegl). The classification process of the laser
point cloud can be divided into 3 stages: automatic classification (using an appropriate
sequence of filtering algorithms), manual classification (to control the effectiveness of the
automatic classification and supplement it), and additionally classification of bathymetric
data. Specifically, the automatic classification process included the classification of air
points by removing outliers, and the classification of ground points, using the progressive
TIN densification algorithm [41].

In the case of the Pléiades satellite imagery, standard photogrammetric techniques
applied to several optical images were used to derive the DEMs. ERDAS Imagine Auto
DTM software was used for this purpose. Image parallaxes between the conjugate points
on the overlapping images of the remote sensing stereo datasets were measured to calculate
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the elevations of pixels. The image matching algorithms allowed to provision for initial
parallax with high accuracy.

Interpolation techniques such as Kriging and TIN (triangulated irregular network)
with variable parameters were tested and used to obtain an appropriate level of detail of
all DEMs, given the available computing power. Kriging, under suitable assumptions of
the prior covariances, gives the best linear unbiased prediction at unsampled locations.
The main strengths of Kriging are in the statistical quality of its predictions (e.g., unbiased-
ness) and in the ability to predict the spatial distribution of uncertainty [42]. It provides
particularly well-looking results with fairly evenly distributed measurement points. While
it might be not optimal in terrain with significant differences in local variations (abrupt
changes and break lines), this is not the case of our area. Therefore, Kriging interpolation
was used in the end to generate the DSMs.

Using a larger number of points for interpolation results in a correspondingly higher
resolution of the resulting DSM, as well as DTM derived from it., e.g., 5 cm, 10 cm, 25 cm,
and 40 cm. After several tests, the accuracy of 10 cm was chosen for all products, as a good
compromise between the spatial resolution of different data sources and processing time.
Only for the Pléiades model, was this not possible due to the resolution of panchromatic im-
ages limited to 0.5 m. Figure 7 presents an excerpt from DMSs obtained from four different
platforms/sensors All DSMs encompass land cover heights in the range of approx. 100 to
150 m (in WGS-84 geodetic heights). Well visible are the differences in the resolution of the
models, where both LiDAR models (ULS and ALS) visually perform the best, compared to
the photogrammetric models. In particular, the structure of vegetation on the island is very
well visible on DSMs generated from LiDAR point clouds.
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Figure 7. Digital surface models’ (DSMs) coverage and heights comparison (A = UAV-LS, B = UAV-
DAP, C = ALS, D = PLEIADES) on the example of Northern Island of the “Kiełpińskie Shoals”.
Resolution of the models is always 10 cm, except for the Pléiades model (50 cm).
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2.4. Data Comparison and Methodology for Interpretation of Results

The performed comparison of DEMs was developed along two main aspects: (1) differ-
ent platforms flying at different altitudes (UAV, aircraft, satellite), and (2) different methods
of remote data acquisition, namely, laser scanning and digital aerial photogrammetry (DAP)
using RGB imagery. The errors in elevation on generated DEMs (error comparisons) refer
to the values of the field GCPs (described in Section 2.2.4).

The problem of comparing multiple data sources having different spatial resolutions
was mitigated by using a buffer and averaging the height values assigned to all pixels
falling within the buffer. Absolute errors were computed using different buffer values. A
circle with a radius of a given value (0.5 m, 1 m, or 1.5 m) was drawn around a field GCP
and an average value was calculated from the pixels included in this buffer. Comparing
the value from the GNSS (as a reference) with the resulting value gave the magnitude of
the DEM’s error at the specific point. The most meaningful results were obtained with the
buffer of 1 m, hence it was retained as the final buffer value to be presented in this paper.

Absolute error values have been presented on boxplots and scatterplots. The graphs
were produced using ggplot2—an open-source data visualization package for the statis-
tical programming language R. “Box and whiskers plots” were plotted using Tukey’s
method [43]. Each boxplot compactly displays the distribution of a continuous variable.
It visualises the following summary statistics: the median—represented by a line in the
middle of each box, two hinges—representing two quartiles of the error values in total, and
two whiskers—representing two standard deviations of the error values in each direction
(assuming a normal distribution of the data), as well as all “outlying” points individually.
The arithmetic mean value of the absolute error has also been explicitly shown on the
boxplots, as the value next to the small red arrow on each graph.

Moreover, we made a comparison of profile graphs drawn from the DTMs derived
from different data sources. The profile graphs cross both islands. We drew them following
three rules: lines of cross-sections are perpendicular to the current in the river channel, the
lines cross through some of the highest and the lowest parts of islands in order to present
their morphology, and the lines avoid any gaps in the field coverage by the DEMs used in
the study.

3. Results

Figure 8 presents a first comparative assessment of mean height absolute errors of
all DEMs made with the previously described platforms and sensors, namely: UAV-DAP,
UAV-LS, ALS, and Pléiades. The lowest absolute errors were measured for airborne LiDAR
data (ALS) with a mean error of 9.2 cm. Very similar accuracy was achieved by the UAV
platform, where discrepancies from the field measurement average around 11.5 cm. The
magnitudes of the standard deviation of the discrepancies are the smallest for DEMs
generated from LiDAR data from both platforms, as compared to DAP techniques. In the
case of the UAV-DAP photogrammetric model, the deviations are much larger. The second
quartile of error values accommodates deviations in the order of 15 cm downwards relative
to the median, while the third quartile of error values accommodates deviations of as much
as 20 cm upwards relative to the median. The mean absolute error is 30 cm, however, the
median error is a few centimetres less.

The photogrammetric model based on Pléiades imagery has the worst accuracy, car-
rying a mean absolute error of 37 cm and a median of around 33 cm, with the second
quartile containing deviations of about 15 cm down from the median and the third quartile
with deviations of more than 15 cm up from the median. On the other hand, the model
extracted from the UAV-LS data relatively brings about the most outliers. They reach 80 cm
or even more relative to the median. In second place in terms of the number of outliers is
the ALS-derived DTM. In the latter case, however, the outliers are mostly clustered closer
to the box and whiskers of the boxplot—predominantly with error values of around 30 cm
(20 cm from the median), however in this case outliers that reach 80 cm can also be found.
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Figure 8. Accuracy of DTMs generated from data from different platforms and sensors: unmanned
aerial vehicle (UAV-LiDAR and UAV-DAP), aircraft (ALS), and Pléiades satellite (DAP–RGB images).

Figure 9 presents the results of the mean absolute error assessment, grouped by the
different land cover classes that were sampled by the field GCPs. It confirms that the LiDAR-
based DTMs are significantly more accurate when compared to DTMs obtained from DAP
techniques, despite the platforms used and the land-cover types analysed. The UAV-LS
or ALS-based DTMs perform way better than the UAV-DAP or Pléiades-based DTMs.
Moreover, both LiDAR-based DTMs are very similar in terms of accuracy, underlying the
similar precision of LiDAR sensors measurement.

The mean absolute error of the UAV-DAP model is 26.7 cm for the uncovered sandbars,
34.7 cm for shrub-covered areas, and 40.3 cm for the woods. In the meantime, the median
error is only around 15 cm in sandy areas but reaching more than 30 cm in areas covered
with shrubs or forest. This slight discrepancy between the mean and median indicates that
for uncovered areas the errors are less numerous, but those that do occur, overestimate the
measurement value more strongly (they are more deviate).

The mean absolute error of the UAV-LS model is 10 cm both for the uncovered sandbars
and for the sites on islands with shrub cover, however, it exceeds 25 cm for the measure-
ments in the woods. In the former case, there is almost no discrepancy between the mean
and median errors, but in the latter, the median error is about 10 cm lower than the mean.
Such a relationship indicates that DTMs derived from different input data and processing
methods are characterised by a lower accuracy of ground terrain height measurements in
places where the structure of the vegetation cover may interfere with ground imaging and
height measurement.

On the other hand, the ALS DTM has an accuracy of 9.3 cm in the forest class, indicating
the better capability of the ALS sensor to penetrate the vegetation canopy as compared
to the UAV-LS sensor. This can be explained by the multi-reflectivity of ALS, which
significantly increases the canopy penetration capacity compared to a single-beam scanner
mounted instead on the UAV.

The LiDAR measurements generally bring a small standard deviation of error—DTM
errors of a few centimetres are in the second and third quartiles (altogether making 50%
of error values), only except for forest areas, where in the third quartile there are errors
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reaching about 15 cm above the median. The photogrammetric DTMs bring errors with
larger standard deviations—in the third quartile there are errors reaching up to 30 cm from
the median on uncovered sandbars and in the second quartile there are errors of around
20 cm below the median on shrubby areas. However, outliers of up to 1 meter (in the
woods) or 80 cm (in the shrubs) relative to the median also occur for the UAV-LS model.
This is due to the already-mentioned influence of vegetation cover.
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Figure 9. Accuracy of DTMs generated from data from different platforms and sensors, grouped
by different land cover classes: unmanned aerial vehicle (LiDAR and DAP techniques), aircraft
(ALS–LiDAR), and Pléiades satellite (DAP–RGB images).

The DTM obtained from ALS performs overall better than all the others, with an
accuracy of around 9 cm for all validated land cover classes. In contrast, the DTM produced
Pléiades imagery has a median error of as much as 36 cm for uncovered sandy sediments,
37 cm among the shrubs, and 49 cm among the woods. In all cases, the median error is
almost the same as the mean (1–3 cm lower). The satellite model also yielded considerable
standard deviations of error in the cases of all land cover classes (in the third quartile there
are errors about 20 cm larger than the median, and in the second quartile there are errors
about 15 cm smaller than the median).

The last boxplot graph (Figure 10) compares the accuracy of DTMs obtained from the
two LiDAR sensors, mounted on a UAV and an airplane, respectively. For the airborne-
based LiDAR, the errors are presented for models obtained by using spectral channels
1 and 2, only channel 1, and only channel 2, respectively. This exercise aimed to check if the
dual-channel LiDAR sensor might bring added value to the DTM computation, especially
in penetrating the forest canopy.

The differences in the magnitude of the absolute error are small and very similar in
most cases, ranging, for the ALS-based DTMs, between 8.2 and 10 cm for all land cover
classes, despite the different spectral channel combinations used to obtain the models.
The small error differences are confirmed by the statistical significance test (plotted in the
graphs), which always give values above 0.05, hence demonstrating the non-statistical
difference. The only significant difference occurs for the riparian forest areas, as previously
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reported in Figure 9, where the mean absolute error magnitude reaches 25 cm for the
UAV-LS model, while for the ALS-derived models, it is within the limits of 8–11 cm.
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different land cover classes analysed.

The scatterplots in Figure 11 show the distribution of predicted height values by
different DTMs with respect to the distribution of heights, as measured in the field over the
516 GCPs. Results are plotted by the three different land cover classes.

For the sandbars (see Figure 11a), the curves have values with a very high fit to
the linear function in the case of UAV-LiDAR and Airborne LiDAR, where in both cases
R2 = 0.98, while the fit for the photogrammetric models is at a lower level: R2 = 0.83 for the
UAV-DAP, and at only R 2 = 0.67 for the Pléiades. The highest frequency of high absolute
error (0.5 m or more) is found for the Pléiades data, and secondly for the UAV-DAP data.
It should also be noted that UAV-LS yielded a slightly higher number of such significant
absolute errors than ALS.

Characteristics similar to the above are found in scatterplots for shrub-covered areas
(Figure 11b), where the value of the fit of the regression curve to the linear function is:
R2 = 0.97 both for ALS and UAV-LS, R2 = 0.83 for the UAV-DAP, and R2 = 0.67 for the satellite
model. The only noticeable difference is that for the shrub class, individual observations
bend the regression curves more for lower elevation values (for all models), although there
are more measurements taken at lower elevations (exposed areas) on uncovered sandbars.

The forest patches (Figure 11c) yield quite different scatterplot characteristics. In
this case, the ALS model has an almost perfect match with the ground measured values
(R2 = 0.97), significantly ahead of the UAV-LS (R2 = 76), while significantly less accurate are
the UAV-RGB (R2 = 0.58) and the Pleiades (R2 = 0.46), where we find numerous absolute
error values deviating more than 50 cm or even more than 75 cm from the field GCPs.
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Figure 11. Scatterplots of height values generated on DTM according to different data sources
(from top: UAV-LiDAR, ALS—airborne LiDAR, UAV—RGB photogrammetry, satellite images from
Pléiades), and according to land cover classes ((a)—uncovered sandbars, (b)—shrub vegetation,
(c)—riparian forest). The measurement values are in meters, WGS84 ellipsoidal (geodetic) heights.
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The spatial distribution of errors throughout the area is illustrated in Figure 12, for
example, over the Northern Island (its central-western part) for the DTM derived from
UAV-LiDAR data. There is a slight correlation visible between errors and locations—in
terms of the height of terrain above the river water table, as well as vegetation cover or
lack thereof. Namely, lower-lying sites on the exposed sandbars are characterised by small
errors, for the vast majority of a few or a dozen centimetres, and in the island section
presented here not reaching anywhere above 30 cm (except for one outlier). Meanwhile,
among the GCPs distributed among the shrub vegetation on the islands, most errors are
similarly low as for the uncovered sandbars, with a number of observations where the error
magnitude approaches 0 cm, however, there are also a few outlier errors exceeding 80 cm
or more.
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the profile graph in this cross-section for both UAV-derived DTMs and the airborne DTM. 
Figure 14a presents a cross-section for the Southern Island instead, and Figure 14b shows 
the profile graph in this cross-section only for the two LiDAR DTMs. Finally, Figure 15a 
shows a cross-section of the Northern Island, for which a profile graph for four DSMs has 
been presented in Figure 15b. 

The details of the profiles show that both LiDAR-derived DTMs (ALS and ULS) carry 
almost the same level of accuracy. While in Figure 13 they are compared with the UAV-
DAP DTM, in Figure 14 only the terrain profiles from the laser scanning “point cloud” 
models are intentionally shown. Figure 13 reveals that the UAV-DAP model diverges 
much from the others, and usually overestimates, both in elevated places (island ridges)—

Figure 12. DTM visualization of the Northern Island (central-western section) with height error
values at the GCP locations. Digital elevation model based on laser scanning from UAV (ULS). GCPs
shown correspond to two vegetation and geomorphological classes: (1) shrub vegetation on the
riverine islands and transforming higher level of sandbars, (2) uncovered sandy deposits on sandbars.
Background orthophotomap: Google Satellite (with partial transparency).

Finally, a profile graph comparison was made for the digital elevation models derived
from different data sources in two selected and representative cross-sections of both islands.
Figure 13a presents a cross-section for the Northern Island and Figure 13b shows the profile
graph in this cross-section for both UAV-derived DTMs and the airborne DTM. Figure 14a
presents a cross-section for the Southern Island instead, and Figure 14b shows the profile
graph in this cross-section only for the two LiDAR DTMs. Finally, Figure 15a shows a
cross-section of the Northern Island, for which a profile graph for four DSMs has been
presented in Figure 15b.
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Figure 13. (a) Northern Island cross-section used to make the profile graph, image A—ALS, image
B—UAV-DAP, image C—UAV-LS (ULS), (b) Northern Island—profile lines comparing three digital
terrain models (DTMs). The measurement values are in metres, WGS84 ellipsoidal (geodetic heights).

The details of the profiles show that both LiDAR-derived DTMs (ALS and ULS) carry
almost the same level of accuracy. While in Figure 13 they are compared with the UAV-DAP
DTM, in Figure 14 only the terrain profiles from the laser scanning “point cloud” models
are intentionally shown. Figure 13 reveals that the UAV-DAP model diverges much from
the others, and usually overestimates, both in elevated places (island ridges)—on sediment
bars with lots of shrubs and short vegetation—and in depressions, especially at the land-
water boundary where elevation anomalies might occur as a result of the photogrammetric
process.
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Figure 14. (a) Southern Island cross-section used to make the profile graph, image A—ALS, image
B—UAV-LS, (b) Southern Island—profile lines comparing two LIDAR-based digital terrain models
(DTMs). The measurement values are in metres, WGS84 ellipsoidal (geodetic heights).

Meanwhile, the comparison of the four DSMs presented in Figure 15 reveals similar
problems on the water-land margin, especially for the Pléiades model. It can be seen that,
on average, it exaggerates the height of the terrain (as shown earlier in Figures 8, 9 and 11)
in the low-lying locations. On the other hand, the highest elevations on islands (their
ridges) often have lower elevations on the satellite model than on the other DSMs. From
the DSM-derived profile, a varied vertical structure of vegetation on the islands can also
be seen. What is also particularly important and visible in Figure 15, as in Figure 14, is an
almost perfect match between the ALS and UAV LiDAR measurements.
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(b) Northern Island—comparison of four digital surface models (DSMs) based on different data
sources (UAV-LS, ALS, UAV-DAP, PLEIADES). The measurement values are in metres, WGS84 ellip-
soidal (geodetic heights).

4. Discussion

When it comes to mapping the topography of the terrain, airborne laser scanning
(ALS) currently still represents the “state-of-the-art” in terms of LiDAR sensor quality.
However, in this paper we showed the potentialities of much cheaper UAV-based LiDAR
sensors, being able to reach similar accuracies at a lower cost. Aircraft-based measurements
and imaging may be considered more suited for regional scale surveys, while UAV is
naturally better suited for local scale projects. The major advantage of UAVs is the flexibility
of these platforms to acquire imagery data, especially for small to medium size areas
(from less than 1 km2, up to 7 km2) [44]. When it comes to cost-effectiveness, UAVs
might become competitive if they were operating at approximately 300 m above ground
level, while at approximately 600 m altitude the piloted platforms lead to a lower cost
of operation [45]. The problem is that the current aviation safety regulations often pose
limitations to UAV operations. Although technological regulations in the field of UAVs
increasingly improve the reliability of drones, there is still a human factor, i.e., mistakes
caused by the operators, resulting in potential collisions with airplanes and man-made
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constructions. The appropriate adjustment of the law to the changing realities, including
the elimination of unnecessary exclusions of areas from UAV operation is still a challenge.

The second aspect we considered was a comparison of measurements taken from the
same flying platform but with different sensors: laser scanning and optical imaging in the
RGB spectrum. According to the literature, LiDAR measurements have better accuracy
than photogrammetry, especially in natural environments with dense vegetation, such as
the forest ecosystems. UAV-DAP as a method for constructing of DTMs was evaluated by
different authors as a less reliable technique compared to LiDAR, especially in the case of
woodlands [17,26,27,29]. Our study confirms this, however to be specific—ULS performed
worse than ALS due to the more limited capabilities of the scanner mounted upon the UAV
in mapping dense, multi-level canopy.

In the case of low vegetation, we managed to reach twice the vertical accuracy criterion
of the LiDAR digital terrain model assessed with RTK GPS and total station measurements
as Stal et al. [46] reached with airborne laser scanning over meadows (20 cm). Salach
et al. [28] indicate that DEM constructed based on UAV-DAP can be three times less accurate
than a UAL-based DEM for an area with low vegetation. The difference obtained in our
case study between LiDAR and photogrammetric method on sandy and low vegetation
areas is in line with this value reported in [28]. In the case of grassland vegetation, UAV
performs well as a data collecting platform (canopy height, biomass, and vegetation cover),
however the “structure from motion” (SfM) approach to obtain an image-based point
cloud is often used (matching pixels of overlapping images to reach the 3D structure of
a concerned object) [47,48]. As Polat and Uysal [25] suggest, for relatively small study
areas, UAV photogrammetry with SfM approach can even supply digital elevation models
as accurate as airborne LiDAR. In their study, UAV-DAP DTM yielded the second most
accurate result (RMSE) among the four ALS-based DTMs.

The whole area of the riverine islands is affected by dynamic geomorphological
processes, such as bank erosion and overbank deposition, however, the deposition occurs
there during floods only. Nevertheless, the collected height data came from a very short
period of one summer season only, during very similar low water levels. For these reasons,
we did not expect to see any significant impact of morphometric parameters (such as river
slope, channel shape index, or exposition and angle of the slope forming the banks of the
river channel and islands) on the distribution of errors.

It should also be highlighted that the higher accuracy of DTMs produced in our study
from the LiDAR data is the result of using more points for interpolation compared to the
photogrammetric elevation models. In other words, for digital elevation models with the
same declared resolution, the point clouds from laser scanning are denser than the “image
point clouds” that are an intermediate product in the photogrammetric process. To obtain
higher density point clouds with photogrammetry, a much higher number of RGB images
would be necessary, drastically increasing the number of flights required to cover such a
large area, hence limiting de facto the realistic operability and usability of such technique
for real large applications and operations, such as the one presented in this paper.

Simpson et al. [18] highlight the need for sufficiently dense distribution of ground
control points for DTM extraction from ALS point clouds and their assessment in forest en-
vironments, especially in areas where undergrowth or ground cover vegetation is prevalent.
For studies that require high DTM accuracy, it is recommended that extensive ground con-
trol points are used across a range of vegetation structures to assess the accuracy of DTMs,
in order to account for biases caused by vegetation cover. Precautions for the greatest
DTM errors should be taken in areas characterized by dense ground-cover vegetation since
ground returns are most likely to be obscured here. These areas could easily be identified
using even a simple canopy height model. Future studies should aim to quantify these
DTM biases.

The authors of this paper find similar problem with UAV-LiDAR measurements in the
dense forest canopy, namely, inability to collect reliable GNSS ground control points. The
general observation is that only UAV-LiDAR and ALS-LiDAR are suitable for measuring
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the height of riparian vegetation, since with photogrammetry, using RGB images, only the
tops of the trees can be seen. On the other hand, the vast majority of our field measurements
(collecting ground control points) were taken among low vegetation and on surfaces of
bare, newly deposited, so a full assessment of the quality of individual digital elevation
models among the willow stands (the woods) on the islands is not possible.

The effective processing of the raw LiDAR data—data filtering, interpolation method-
ology, DEM resolution choice, LiDAR data reduction, and the subsequent generation of an
efficient and high-quality DEM, remain a big challenge. One of the most critical and difficult
steps is the classification of LiDAR points into ground and non-ground points [49]. How-
ever, the issues of selecting data processing procedures and algorithms to generate optimal
DTMs—except for the basic choice of interpolation methods and model resolutions—were
not analysed in detail in this article. This issue is a subject of other research and will also be
of interest in future methodological studies planned by the authors.

All the acquisitions of the data presented in this paper were performed during low
water levels in the Vistula River. In such condition, four different geomorphological units
can be distinguished as easily seen in the field: (1) floodplain above channel banks, (2) river-
ine islands, (3) sandbars, and (4) bottom of the active channel. From a geomorphological
point of view, the most challenging goal is mapping the two lowest units, namely: (3) the
sandbars and (4) the bottom of the active channel. Unfortunately, the active channel is
completely covered by flowing water even at very low water stages. Sandbars (actually
more elevated among those landforms) are exposed during low water stages, thus they can
be surveyed by remote sensing. Repetitive measurement of sandbars enables determining
the dynamics of these landforms and drawing further geomorphological implications, e.g.,
sediment budget calculation [50,51].

Geomorphological mapping of the channel heads in the headwater of the Vistula River
in the Eastern Carpathians indicates that detailed morphometric analysis of small fluvial
landforms is more accurate on the TLS (terrestrial laser scanning) DEM than ALS DEM [52].
In the case of our study area, it is a discussable opinion that TLS might be more suitable for
mapping whole islands, however, small microforms, such as cut banks of the channel and
especially cut banks of the islands, can indeed be better revealed with TLS scanning [53].
However, in an area the size of our case study we expect to obtain similar results with the
use of ULS. It has been proved by Crespo-Peremarch et al. [29] that the ALS technique
produces DEMs with an accuracy similar to those generated with TLS.

The origin of the studied islands is not related with floodplain excision, which forms a
large and old island in an anabranching river [54], but rather with sandbar colonization
by vegetation [55]. Assessment of different RS techniques for geomorphological purposes
should therefore include an issue of projection of the vegetation on DEM [56]. According
to the results of our study, in the case of geomorphological analysis of exposed sandbars,
UAV–LiDAR seems to be the recommended option due to the dense point cloud it generates.
Meanwhile, in order to show the structure of vegetation it is important to have good laser
penetration and the possibility of multiple reflections, including the last one from the
ground. The ability for canopy penetration of ALS seems to indicate it as the best technique
in this respect.

5. Conclusions

The main conclusions are as follows. With the use of unmanned aerial vehicles (UAVs)
we can obtain high quality measurements, however there are still several problems and
limitations to overcome: (1) limited area coverage per single flight given the possible
flight times, and the resulting labour intensity—resulting in a need to do many flights,
as opposed to airborne missions which allow covering the same area in a much shorter
time (e.g., 1 day of measurements vs. 1 week of measurements), (2) current national and
international regulations for civil UAV operation, in particular, the allowed flight altitudes,
(3) influence of the weather conditions on the measurement results and the need for their
repetition—however this problem applies both to the drones and to the aircrafts, and
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(4) technical competitiveness of the sensors (laser scanners, cameras) mounted on airplanes
and drones—although those fitted to UAVs are becoming increasingly better and almost
comparable in quality to the sensors on aircrafts, at the same time bringing cost savings.

For the data analysed in this case study, i.e., a landscape dynamically shaped by fluvial
processes, it shall be stated that digital elevation models based on laser scanning data
(point clouds) give very good results, low absolute errors, and are more accurate than
photogrammetric models. While the average absolute height error of the laser scanning
DTMs oscillated around 8–11 cm for most surfaces (being higher only in forested areas),
photogrammetric DTMs from UAV and satellite data gave errors averaging more than
30 cm. What is noticeable, airborne and UAV LiDAR measurements brought almost the
perfect match. For the UAV-DAP model, the error was on average 25–40 cm and increased
with the density and height of vegetation cover. The LiDAR measurements also brought a
smaller standard deviation of errors compared to the photogrammetric DTMs. For example,
for the ULS model, errors of a few centimetres accounted for 50% of error values for both
uncovered sandbars and vegetated areas, while for the UAV-DAP model in the same 50%
extent, there were errors deviating 20–30 cm from the median.

Despite the downsides of using UAV-LS for operational purposes described above, in
this work it has been demonstrated that it is possible to generate DEMs over quite a large
area of 3 km2, characterized by highly dynamic fluvial landscape, with a very high accuracy
by using a much cheaper LiDAR instrument as compared to ALS. The generated DEMs
over this area (especially large as for UAV mission) were assessed by a very solid validation
campaign, consisting of more than 500 manually collected ground control points, resulting
in an overall average error of only about 9 cm. Unfortunately, at the land-water margin,
these results deteriorate, but not as drastically as for DEMs generated from RGB imagery,
which was also expected due to the LiDAR limitations on water surfaces. At the same time,
LiDAR-based models are also much better for penetrating tree-covered terrain, although in
this study we only surveyed small forested areas, due to problems with accessibility and
the loss of satellite signal under dense canopy cover.

To conclude, it can be expected that, given the high measurement reliability of this
technology and the increasing operational capabilities of small civil UAVs and LiDAR
sensors mounted upon them, this will potentially lead to their integration with other
technologies to be deployed for operational monitoring of fluvial processes by river water
authorities in charge of river geomorphological monitoring activities.
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recognition of plant communities at the reach scale of the Vistula River, Poland. Ecol. Indic. 2022, 142, 109160. [CrossRef]

40. Lovell, J.L.; Jupp, D.L.B.; Culvenor, D.S.; Coops, N.C. Using airborne and ground-based ranging lidar to measure canopy structure
in Australian forests. Can. J. Remote Sens. 2003, 29, 607–622. [CrossRef]

41. Axelsson, P. Processing of laser scanner data—Algorithms and applications. ISPRS J. Photogramm. Remote Sens. 1999, 54, 138–147.
[CrossRef]

42. Mitas, L.; Mitasova, H. Spatial Interpolation. In Geographical Information Systems: Principles, Techniques, Management and Applications;
GeoInformation International: Cambridge, UK, 1999; Volume 1.

43. Tukey, J.W. Box-and-Whisker Plots. In Exploratory Data Analysis; Addison-Wesley: Reading, MA, USA, 1977; pp. 39–43.
44. Leitão, J.P.; Moy De Vitry, M.; Scheidegger, A.; Rieckermann, J. Assessing the quality of digital elevation models obtained from

mini unmanned aerial vehicles for overland flow modelling in urban areas. Hydrol. Earth Syst. Sci. 2016, 20, 1637–1653. [CrossRef]
45. Jeunnette, M.N.; Hart, D.P. Remote sensing for developing world agriculture: Opportunities and areas for technical development.

In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII, Edinburgh, Scotland, 26–28 September
2016; Volume 9998.

46. Stal, C.; Nuttens, T.; Bourgeois, J.; Carlier, L.; De Maeyer, P.; De Wulf, A. Accuracy Assessment of a Lidar Digital Terrain Model by
using RTK GPS and Total Station. EARSeL eProc. 2010, 10, 1–8.

47. Zhang, H.; Sun, Y.; Chang, L.; Qin, Y.; Chen, J.; Qin, Y.; Du, J.; Yi, S.; Wang, Y. Estimation of grassland canopy height and
aboveground biomass at the quadrat scale using unmanned aerial vehicle. Remote Sens. 2018, 10, 851. [CrossRef]

48. Théau, J.; Lauzier-Hudon, É.; Aubé, L.; Devillers, N. Estimation of forage biomass and vegetation cover in grasslands using UAV
imagery. PLoS ONE 2021, 16, e0245784. [CrossRef]

49. Liu, X.; Zhang, Z.; Peterson, J.; Chandra, S. LiDAR-derived high quality ground control information and DEM for image
orthorectification. Geoinformatica 2007, 11, 37–53. [CrossRef]

50. Heritage, G.; Entwistle, N. Drone based quantification of channel response to an extreme flood for a piedmont stream. Remote
Sens. 2019, 11, 2031. [CrossRef]

51. Leonard, C.; Legleiter, C.; Overstreet, B. Effects of lateral confinement in natural and leveed reaches of a gravel-bed river: Snake
River, Wyoming, USA. Earth Surf. Process. Landf. 2017, 42, 2119–2138. [CrossRef]

52. Płaczkowska, E.; Cebulski, J.; Bryndza, M.; Mostowik, K.; Murawska, M.; Rzonca, B.; Siwek, J. Morphometric analysis of the
channel heads based on different LiDAR resolutions. Geomorphology 2021, 375, 107546. [CrossRef]

53. Kaczmarek, H.; Tyszkowski, S.; Bartczak, A.; Kramkowski, M.; Wasak, K. The role of freeze-thaw action in dam reservoir cliff
degradation assessed by terrestrial laser scanning: A case study of Jeziorsko Reservoir (central Poland). Sci. Total Environ. 2019,
690, 1140–1150. [CrossRef] [PubMed]

54. Leli, I.T.; Stevaux, J.C.; Assine, M.L. Origin, evolution, and sedimentary records of islands in large anabranching tropical rivers:
The case of the Upper Paraná River, Brazil. Geomorphology 2020, 358, 107118. [CrossRef]

https://doi.org/10.3390/ijgi7090342
https://doi.org/10.3390/s19143205
https://www.ncbi.nlm.nih.gov/pubmed/31330851
https://doi.org/10.1002/rra.2743
https://doi.org/10.1080/17445647.2020.1866698
https://doi.org/10.1016/j.sedgeo.2019.105569
https://doi.org/10.3390/geosciences10090363
https://doi.org/10.1515/geo-2020-0102
https://doi.org/10.7163/GPol.0115
https://doi.org/10.1016/j.ecolind.2022.109160
https://doi.org/10.5589/m03-026
https://doi.org/10.1016/S0924-2716(99)00008-8
https://doi.org/10.5194/hess-20-1637-2016
https://doi.org/10.3390/rs10060851
https://doi.org/10.1371/journal.pone.0245784
https://doi.org/10.1007/s10707-006-0005-9
https://doi.org/10.3390/rs11172031
https://doi.org/10.1002/esp.4157
https://doi.org/10.1016/j.geomorph.2020.107546
https://doi.org/10.1016/j.scitotenv.2019.07.032
https://www.ncbi.nlm.nih.gov/pubmed/31470477
https://doi.org/10.1016/j.geomorph.2020.107118


Remote Sens. 2023, 15, 1949 26 of 26

55. Gurnell, A.M.; Bertoldi, W.; Francis, R.A.; Gurnell, J.; Mardhiah, U. Understanding processes of island development on an island
braided river over timescales from days to decades. Earth Surf. Process. Landf. 2019, 44, 624–640. [CrossRef]

56. Rusnák, M.; Goga, T.; Michaleje, L.; Šulc Michalková, M.; Máčka, Z.; Bertalan, L.; Kidová, A. Remote Sensing of Riparian
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