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Abstract: Phytoplankton is considered a strong predictor of the environmental quality of lakes,
while Chlorophyll-a is an indicator of primary productivity. In this study, 25 LANDSAT images
covering the 2014–2021 period were used to predict Chlorophyll-a in the Villarrica lacustrine system.
A Chlorophyll-a recovery algorithm was calculated using two spectral indices (FAI and SABI). The
indices that presented the best statistical indicators were the floating algal index (R2 = 0.87) and
surface algal bloom index (R2 = 0.59). A multiparametric linear model for Chlorophyll-a estimation
was constructed with the indices. Statistical indicators were used to validate the multiple linear
regression model used to predict Chlorophyll-a by means of spectral indices, with the following
results: a MBE of −0.136 µg/L, RMSE of 0.055 µg/L, and NRMSE of 0.019%. All results revealed
the strength of the model. It is necessary to raise awareness among the population that carries out
activities around the lake in order for them to take policy actions related to water resources in this
Chilean lake. Furthermore, it is important to note that this study is the first to address the detection
of algal blooms in this Chilean lake through remote sensing.
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1. Introduction

Inland freshwater bodies, such as rivers, lakes, wetlands, and streams, are important
aquatic ecosystems [1]. The ecosystem services provided by inland water bodies are ex-
tensive, but people have not been able to safeguard them [2]. Human factors including
nutrient loading, pollution from industry and agriculture, climate change, sewage dis-
charge, invasive species incursion, and urbanization have triggered the rapid degradation
of freshwater systems [3] and water quality [4,5]. Lakes are essential for meeting the ne-
cessities of life, including socio-cultural development, scientific advances, environmental
balance, industrialization, agricultural activities, economic growth, protection of biological
diversity, and finally, the well-being and health of organisms [4,6].

Traditional methods of monitoring water quality parameters, such as chemical, physi-
cal, and biological characteristics, consist of measurement by collecting samples in the field
and then analyzing them using conventional techniques [7,8]. Even though in situ monitor-
ing is very efficient, it is a time-consuming, costly, and technically deficient process that
lacks the necessary human resources and provides trophic status on the day of sampling
rather than in real-time [9,10]. In addition, traditional field sampling approaches do not

Remote Sens. 2023, 15, 1929. https://doi.org/10.3390/rs15071929 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15071929
https://doi.org/10.3390/rs15071929
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0550-0253
https://orcid.org/0000-0003-3627-0363
https://doi.org/10.3390/rs15071929
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15071929?type=check_update&version=1


Remote Sens. 2023, 15, 1929 2 of 17

easily detect temporal or spatial fluctuations in water quality, and doing so is essential for a
proper evaluation and thorough management of water bodies [10–13].

Eutrophication is a major concern for the lakes around the world [14,15]. It is the
biological reaction of lakes to nutrient oversaturation, developing algal productivity at
large volumes [16]. The main problem is the increase in nitrogen and phosphorus load,
which causes a high biomass of algae, an abundance of microalgae, and the loss of macroal-
gae [2,17]. Cyanobacteria require temperatures above 20 ◦C for growth rates to be competi-
tive with eukaryotic phytoplankton taxa and above 25 ◦C for growth rates to be competitive
with diatoms. In addition, they require relatively high irradiances to grow at maximal
growth rates [18].

Thus, recently developed remote sensing technologies are increasingly used in the
monitoring of various water quality parameters. One problem with detecting the concen-
tration of Chlorophyll-a (Chl-a) in lakes from multispectral satellite data is the influence
of atmospheric factors such as aerosols and clouds, which can affect the accuracy of the
measurements [19]; another issue is the presence of other substances in the water that
can interfere with the signal from Chlorophyll-a, making it difficult to accurately detect
and quantify its concentration [20]. There are several approaches that researchers use to
address the challenges of detecting Chlorophyll-a concentration from multispectral satellite
data. Overall, the solution for detecting Chlorophyll-a concentration from multispectral
satellite data depends on the specific challenges faced and the available data and resources,
such as with collecting in situ measurements of Chlorophyll-a concentration to validate the
accuracy of the satellite data and improve the calibration of the remote sensing algorithms.
Remote sensing techniques have recently emerged as successful approaches to monitor al-
gal blooms, allowing for the specific monitoring of phenomena affecting water quality [21].
Different spectral indices have been used to monitor blooms in inland water bodies and
are usually based on spectral differences between aquatic vegetation and the bottom in the
spectrum of visible radiation and infrared radiation, including near-infrared radiation [22].
Several spectral indices are available, including the normalized difference vegetation in-
dex [12], normalized difference turbidity index and green normalized difference vegetation
index [23], emergent vegetation spectral index [22], floating algal index [24], and surface
algal bloom index [25,26], which have been developed and successfully used in research
and the mapping of aquatic plants and monitoring of vegetation or algae growth [12,25].
In this study, we will include most of these indices.

Furthermore, most of the remote sensing research on phenomena such as algal blooms
have been conducted in the northern hemisphere, with less work conducted in the southern
hemisphere. Investigations of unspecified Chlorophyll-a estimates of algal groups have
been conducted with MODIS imagery to analyze the time series in the Great Lakes [27],
and Landsat and Sentinel hyperspectral imagery was used in [28,29] to study the spatial
variability of harmful algal blooms (cyanobacteria) in the western basin of Lake Erie, while
other works such as [30,31] through band combinations detected cyanobacterial blooms in
the Baltic Sea.

Lake Villarrica in Chile has attracted considerable attention due to its severe pollution
issues from increased nutrients in the lake and algal blooms that have been recorded
since 2016 [32]. Lake Villarrica is classified as an oligotrophic lake with a transition to a
higher trophic state (mesotrophic). Therefore, the Ministry of Environment of Chile, in
compliance with the obligations imposed by the Law on General Bases of the Environment,
established a secondary environmental standards quality (hereinafter NSCA) for Lake
Villarrica [33] to monitor changes in water quality parameters and the phenomenon of
algal blooms. The predominant group of the mentioned blooms is Cyanophyceae, and the
most repeated species is Dolichospermum. It should be noted that this microalga is toxic
and has formed blooms in other Chilean aquatic systems such as the one reported in Lake
Laja in the summer of 2018 [12]. In Lake Villarrica, these events have been taking place for
more than a decade. The activities that take place in the basin determine the acceleration
of natural processes such as the succession of trophic stages or eutrophication and are
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perhaps a consequence of urban expansion due to tourism [34–36]. The present research
aims to: (i) analyze local conditions and water quality through the physical–chemical and
biological parameters prevailing in Lake Villarrica during the 2014–2021 period, (ii) use
spectral indices to estimate the concentration of Chlorophyll-a and detect algal blooms; and
(iii) evaluate the prediction using statistical indicators and estimation maps.

2. Materials and Methods
2.1. Research Area

Villarrica or Mallolafquén (its name in Mapudungun, the native language of Chile’s
local native communities) is an Andean Lake located approximately at 39◦18′S latitude and
72◦05′W longitude in the lake district of the Araucanía Region, in Cautín Province [37].
The origin of the lake, like most of the southern lakes, can be traced to a glacial context,
with it resulting from damming by a moraine in the last glaciation [38]. The coastal cities
of Villarrica and Pucón are considered the main tourist hubs of the country due to the
temperature of the water in the summer, from 19 ◦C to 22 ◦C, allowing for multiple sports
and tourist activities (sport fishing, sailing, kayaking, water skiing, and swimming) [34,35].
The thermal amplitude increases towards the interior and there is rainfall during all seasons
of the year, with an average annual rainfall of 1465 mm. Winter frosts are frequent and these
cities host tourist attractions associated with snow-related activities due to their proximity
to the volcano, which is a major attraction [34,35].

2.2. Field Data Collection

The study period covers the years 2014–2021. The data were collected from the
database of the General Water Directorate (DGA) of Chile, as a system is in place for Lake
Villarrica in which monitoring has been carried out twice a year in summer and spring from
1986 to the present [39]. Through the redefinition of the minimum network of lakes, Lake
Villarrica has been one of the most studied lakes due to its great economic and touristic
importance for the country and was one of the first to be included in it. The monitoring
includes physical–chemical and biological parameters in 7 spatially distributed stations cov-
ering the surveillance zones defined according to the morphometric characteristics of Lake
Villarrica (see Table 1). The monitored parameters were surface temperature (thermometry
2250 B standard methods 22 Ed, method used as a reference for temperature analysis
according to the NCh 2313 compendium), surface Chlorophyll-a (fluorometric method), de-
termination of total phosphorus (4500 P B Standard Methods 22 Edit. EAM), determination
of total nitrogen (4500-N C Standard Methods 22 Edit-EAM), and transparency (measured
using SDD). At each of the lake stations, water samples were collected at 5 depths using a
5 L Niskin sampling bottle. Samples were stored and transported in thermally insulated
boxes and properly cooled with ice at a temperature of approximately 5 ◦C for subsequent
analysis. Chemical analyses were performed at the chemistry laboratory of the General
Water Directorate of Chile (DGA). This laboratory is accredited by the Instituto Nacional
de Normalización (National Standards Institute) for the Chilean Standard NCh ISO 17.025
of 2005.

2.3. Raw Satellite Images

A total of 25 multispectral Landsat 8 Collection 2 Level 1 Operational Land Imager
images (L8/OLI) were used (see Table 2). Landsat 8 was developed in collaboration
with NASA and the United States Geological Survey (USGS) Earth-Explorer (https://
earthexplorer.usgs.gov/, accessed on 15 November 2022). This site was used to download
the images used in this study, which have a 30-m spatial representation and were accessed
on 8 September 2022. The study area of interest (Roi) was covered by paths 232/233 and
row 87 of the images. The chosen images were selected according to the following criteria:
availability, a low percentage of cloud cover (less than 12%), and closeness to the sampling
date (with an interval of ±9 days between satellite overpasses). To mask clouds, shadows,

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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and cirrus clouds, quality assessment (QA) bands were used and analyzed via visual
inspection. Only the data extracted from the areas without cloudiness were used.

Table 1. Morphometric characteristics of Lake Villarrica.

Parameter Unit Villarrica

Latitude ◦ 39◦11′–39◦18′S
Longitude ◦ 72◦05′–72◦15′W
Altitude m.a.s.l. 250

Max. length km 23
Max. width km 11
Avg. width km 7.6
Perimeter km 71

Surface area km2 176
Max. depth m 165

Average depth m 120
Volume km3 20.9

Drainage area km2 2884.15
Avg. drainage/surface area 16.4

Renewal time years 4

Table 2. Landsat image characteristics and dates of in situ measurements.

L8 Image ID Path/
Row Year In Situ Date Image

Date
Days Dif-
ferences

N
Samples

LC08_L1TP_233087_20140210_20200912_02_T1

233/87

2014
3, 4 Feb. 10 Feb. 6, 7 14

LC08_L1TP_233087_20141008_20200910_02_T1 6, 7 Oct. 8 Oct. 1, 2 14
LC08_L1TP_233087_20150128_20200909_02_T1

2015
26, 27 Jan. 28 Jan. 0, 1 14

LC08_L1TP_233087_20151011_20200908_02_T1 19, 20 Oct. 11 Oct. 8, 9 14
LC08_L1TP_233087_20160303_20200907_02_T1

2016
1, 2 Mar. 3 Mar. 1, 2 14

LC08_L1TP_233087_20161013_20200905_02_T1 18, 19 Oct. 13 Oct. 5, 6 14
LC08_L1TP_233087_20170306_20200905_02_T1

2017
1 Mar. 6 Mar. 5 7

LC08_L1TP_232087_20171025_20200902_02_T1 232/87 17, 19 Oct. 25 Oct. 7, 8 14
LC08_L1TP_233087_20180221_20200902_02_T1 233/87

2018
27, 28 Feb. 21 Feb. 6, 7 14

LC08_L1TP_232087_20180302_20200902_02_T1 232/87 27, 28 Feb. 2 Mar. 2, 3 14
LC08_L1TP_233087_20181019_20200830_02_T1

233/87

23, 24 Oct. 19 Oct. 4, 5 14
LC08_L1TP_233087_20190123_20200830_02_T1

2019

28, 29 Jan. 23 Jan. 5, 6 14
LC08_L1TP_233087_20190224_20200829_02_T1 26, 27 Feb. 24 Feb. 2, 3 14
LC08_L1TP_233087_20191123_20200825_02_T1 19, 20 Nov. 23 Nov. 3, 4 14
LC08_L1TP_233087_20191209_20200824_02_T1 3, 4 Dec. 9 Dec. 5, 6 14
LC08_L1TP_233087_20200126_20200823_02_T1

2020

28, 29 Jan. 26 Jan. 2, 3 14
LC08_L1TP_233087_20200227_20200822_02_T1 24–26, 27 Feb. 27 Feb. 0, 1, 3 28
LC08_L1TP_233087_20200314_20200822_02_T1 14 Mar. 14 Mar. 0 7
LC08_L1TP_233087_20201109_20210317_02_T1 10–12 Nov. 9 Nov. 1, 2, 3 21
LC08_L1TP_232087_20201118_20210315_02_T1

232/87
24 Nov. 18 Nov. 6 7

LC08_L1TP_232087_20201204_20210313_02_T1 26 Nov. 4 Dec. 8 7
LC08_L1TP_233087_20210301_20210311_02_T1

233/87
2021

2, 3 Mar. 1 Mar. 1, 2 14
LC08_L1TP_233087_20211027_20211104_02_T1 18–20 Oct. 27 Oct. 7, 8, 9 21
LC08_L1TP_232087_20211105_20211116_02_T1 232/87 8, 9 Nov. 5 Nov. 3, 4 14
LC08_L1TP_233087_20211128_20211208_02_T1 233/87 29, 30 Nov. 28 Nov. 1, 2 14

Subsequently, atmospheric corrections were performed with ACOLITE program (ver-
sion 20211124.0) (https://github.com/acolite, accessed on 20 September 2022). ACOLITE
brings together the atmospheric correction protocols and processing software developed at
RBINS for aquatic remote sensing applications [40]. The default atmospheric correction
using the “Dark Spectrum Fitting” DSF algorithm approach [41–43] and the older “Expo-
nential extrapolation” or EXP algorithm [44–46] were utilized in the ACOLITE [36]. The
resulting values represent the surface level reflectance (ρs) for L8 and with the values of the
extracted bands at 3 × 3-pixel matrix, the spectral indices were calculated, in accordance

https://github.com/acolite
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with [10,47]. The lake contour was established using geospatial information obtained from
the General Water Directorate of Chile (DGA, for its acronym in Spanish), and only the
body of water was considered for the analysis [48].

2.4. Spectral Indices

Spectral indices are commonly used in remote sensing to quantify specific properties
of vegetation, water, and other land cover types. In the context of the Chlorophyll-a
algorithm, in some cases spectral indices are used as an intermediate stage to estimate the
concentration of Chlorophyll-a in water bodies [49,50]. Some works have developed indices
for the detection of algal blooms and due to the excellent results, they are being widely used
by the scientific community [10,24,25,51]. The main motives for using spectral indices in the
Chlorophyll-a algorithm can be calibrated and validated using field measurements, which
can improve the accuracy of Chlorophyll-a concentration estimates. So, a total of nine
spectral indices that have previously been used to detect the presence of aquatic vegetation
through remote sensing were included in this study. Table 3 shows the algorithms of each
index and the corresponding references.

Table 3. The list of indices compared in this study.

Indices Formulae Reference

Floating algal index (FAI) FAI = NIR − ’NIR
’NIR = R + (SWIR − R) × (λNIR − λR)/(λSWIR − λR) [24,52]

Green normalized difference vegetation index (GNDVI) (NIR − G)/(NIR + G) [23,53]
Normalized difference turbidity index (NDTI) (R − G)/(R + G) [23]

Normalized difference vegetation index (NDVI) (NIR − R)/(NIR + R) [12]
Enhanced vegetation index (EVI) G × ((NIR − R)/(NIR + C1 × R − C2 × B + L)) [51,54]
Surface algal bloom index (SABI) (NIR − R)/(B + G) [25,26]

Emergent vegetation spectral index (EVSI) EVSI = (R − SWR)/(R + SWR) [22]
Modified normalized different water index (MNDWI) MNDWI = (G − SWIR)/(G + SWIR) [55]

Green Chlorophyll index (GCI) GCI = (NIR/G) − 1 [56,57]

The FAI was designed to map floating algae in different aquatic environments and, ac-
cording to the consulted bibliography, it is a very efficient index for the detection of surface
vegetation, and it is more suitable than other indices since it is more sensitive to changes in
environmental conditions [24,52]. It is defined as a linear spread of reflectivity in the near
infrared (NIR, 0.85–0.88 µm), red (R, 0.64–0.67 µm), and shortwave infrared regions (SWR,
1.57–1.65 µm) [24,52]. The GNDVI is an index resistant to atmospheric effects and is very
sensitive to Chlorophyll-a concentrations, so its use can be very beneficial in the detection
of Chlorophyll-a in oligotrophic systems, hence the justification for its use in different
investigations worldwide [12,23,53]. It is calculated according to the equation shown in
Table 3, where G is the reflectivity in the green band (G, 0.53–0.59 µm) [12,23,53]. The NDTI
is an index developed to estimate turbidity via remote sensing and is an indicator of water
quality and can be related to Chlorophyll-a in inland waters, so it could infer the identifica-
tion of algae [23]. Based on this, some investigations have included it in monitoring studies
of algae blooms [58] and aquatic mucilage [59]. On the other hand, the NDVI is widely
used for the detection of both terrestrial and aquatic vegetation. The values vary between
−1 and 1, where values below 0 reflect the absence or sparse vegetation [12,60]. The EVI is
an index like the NDVI, but more sensitive in areas with dense vegetation; however, it has
been used in different investigations to detect Chlorophyll-a in lakes [12]. The EVI has an L
value (L = 1) to adjust the canopy background, C values (C1 = 6, C2 = 7.5) as atmospheric
resistance coefficients, a gain factor G (G = 2.5), and spectral reflectance values of the R,
INR, and blue (B, 0.45–0.51 µm) bands [51]. Both the SABI and the EVSI were proposed
to delineate the spatial distributions of floating algae or emergent vegetation extraction in
aquatic systems. These have been able to detect cyanobacteria and other algae [26]. The
GCI is used to estimate the Chlorophyll-a content of the leaves since using the NIR and
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G wavelengths provides a better measurement of the Chlorophyll-a content [56,57]. Due
to these characteristics, it is possible that it reflects the Chlorophyll-a content in the lakes,
which is why it was selected in this investigation and also in [12]. Finally, the MNDVI is an
index that is calculated with the ranges of wavelengths of G and SWIR, and these lengths
have been used in algorithms to detect or monitor Chlorophyll-a and algae [22–24,53],
so it could detect changes in the quantity of water and present good correlations with
Chlorophyll-a values in the lakes.

2.5. Statistical Analysis
Algorithms for Chlorophyll-a Estimation and Mapping

The statistical indicators used for the analysis of the results are described in this
section. Nine spectral indices incorporating the most relevant bandwidths of the variable
under study were selected (Table 3). Pearson correlations (r) were then performed as
measures of linear dependence between the calculated indices and the dependent variable
Chlorophyll-a. To estimate the Chl-a variable, empirical expressions were developed and
data from the different selected images covering summer and spring in the 2014–2021
period were used. Then, a multiparametric regression analysis of the best-correlated
indices was developed to obtain a predictive quantitative relationship of Chl-a. Based on
the methodology developed by [61], data were selected for internal validation/training and
external validation/prediction. The resulting data matrix was composed of the response
variable Chl-a and the prediction indices defined based on each of the 25 Landsat images.
The methodology consisted of randomly selecting 70% of the data as the training series
for the calibration process and the remaining 30% as the data set for prediction. The
statistical analysis was performed using Origin Pro 2022b, version 9.7.0.788 (Academic).
The statistical indicators used in the analysis are shown in Table 4. Smaller MBE, RMSE,
and NRSME values suggest better model performance. A positive MBE value denotes the
average quantity of underestimation in the estimated value and vice versa. The RMSE is
usually employed to compare the prediction errors of different models. The NRMSE can be
understood as a fraction of the mean error with respect to the mean. In addition, the RMSE
measures the dispersion between the simulated and measured data. Finally, the mapping
of Chl-a concentrations was performed in ArcGIS 10.8.1.

Table 4. Statistical indicators.

Statistical Indicators Formulae Reference

Determination coefficient (R2) R2 =

[
∑n

i=1(Oi− O)(Pi− P)√
∑n

i=1 (Oi−O)
2

∑n
i=1 (Pi−P)

2

]2
[62]

Mean bias error (MBE) MBE = 1
n

n
∑

i=1
(Pi −Oi) [62]

Root-mean square error (RMSE) RMSE =

[
∑n

i=1(Pi−Oi)
2

n

] 1
2 [63]

Normalized root means square error (NMRSE) NMRSE = RMSE[
∑n

i=1 Oi
n

] [63]

Where Pi is the estimated value, Oi is the measured value, n is the number of observations.

3. Results
3.1. Water Quality Parameters

Figure 1 shows the limnological parameters analyzed in this study as those that could
provide optimal conditions for the generation of an algal bloom in the lake.

The characteristics of the limnological parameters shown in Figure 1 are evidence
of the trophic state of Lake Villarrica. It is classified as an oligotrophic lake in transition
to a higher trophic state (mesotrophic). The average transparency behavior fluctuates
between 6.46 m in spring and 9.69 m in summer, while the nutrients’ total nitrogen and
total phosphorus are inversely proportional to Chl-a values, as can be observed in Figure 1.
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As for temperature, it is known that this physical parameter regulates many processes
in aquatic systems and algal productivity [64,65]. Temperature values range from 22 ◦C
in summer to 11 ◦C in spring. The blooms in the lake manifest themselves when the
temperature exceeds 18 ◦C.
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Figure 1. Behavior of limnological parameters in Lake Villarrica during summer and spring seasons.
For the summer months (December, January, and February) and for the spring months (September,
October, and November) were considered.

3.2. Estimation Model/Statistics

Pearson’s correlation coefficient (r) was used to analyze the correlation between the
Chlorophyll-a variable and the nine selected spectral indices. The different values obtained
for the selected indices are shown in Table 5, and it can be observed that, of the nine indices
calculated, three resulted in a high r (FAI, SABI, and GCI). This shows that the selected
algorithms have a high degree of correlation. Meanwhile, indices such as EVSI and NDTI
presented low values of Pearson’s correlation coefficient; therefore, these spectral indices
do not have a sufficient degree of correlation to estimate Chl-a in the lake. Several multiple
linear regressions were performed combining the indices that presented the best correlation.
The Chlorophyll-a recovery model between the FAI and SABI indices obtained statistical
values of a MBE of −0.136 µg/L, RMSE of 0.055 µg/L, and NRMSE of 0.019%. On the other
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hand, the statistical results obtained from the combinations between the GCI with SABI and
GCI with FAI indexes obtained MBE values of −0.56 µg/L and −0.50 µg/L, RMSE values
of 0.057 µg/L and 0.055 µg/L, and NRMSE values of 0.030% and 0.023%, respectively.
Therefore, the statistical results obtained demonstrate that the combination between FAI
and SABI indices generates a multiparametric linear regression model that estimates Chl-
a concentration in this lake more accurately. The resulting multiparametric regression
model was obtained using the linear equation Chl-a = −6.26 × SABI − 10.34 × FAI + 4.72
(adjusted R2 = 0.97). As can be seen, the adjusted coefficient of determination of the Chl-a
estimation model was high. The model was validated by comparing samples of N = 52 with
measured and estimated Chl-a concentrations (µg/L). For validation of the proposed Chl-a
estimation model, 30% of the total data was used. Figure 2 shows the graphical comparison
between the estimated and measured values, which present a high fit, represented by the
red line. The results of the model show its robustness, but the amount of data used during
the model validation stage remains a limitation due to the lack of real data.

Table 5. Pearson correlation coefficient between the spectral indices and in situ measured Chlorophyll-
a concentration.

N◦ Indices r Pearson Adjusted R2

1 NDVI 0.76 0.56
2 NDTI 0.19 0.04
3 FAI −0.78 0.59
4 SABI −0.94 0.87
5 GNDVI 0.82 0.65
6 EVSI −0.33 0.08
7 EVI 0.46 0.18
8 MNDWI −0.69 0.46
9 GCI 0.81 0.65
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3.3. Bloom Estimation Maps

This section presents the spatial distribution maps based on the spectral indices and
estimation model with the best results for Lake Villarrica. Figures 3 and 4 represent the
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indices, and Figure 5 shows the map resulting from the combination of the FAI and SABI
indices reflecting the estimated Chlorophyll-a for Lake Villarrica.
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Figure 5. Spatial pattern of Chlorophyll-a arising from multivariate regression resulting from spectral
indices through as seen Landsat imagery.

Figure 3 shows that the FAI has an excellent representation in the Landsat images,
where the areas with the greatest predominance of vegetation can be observed spatially.
Therefore, the FAI index can be applied to select surveillance sites with higher production
values. The maps derived from the calculation of the FAI show a marked difference in
the groups of primary producers in Lake Villarrica, which was confirmed by the results of
the statistical correlation analysis. The satellite image of 11 February 2020 showed high
values for the FAI index on the shores, suggesting the existence of some types of aquatic
vegetation (positives values) or possible algae blooms. In addition, some positive values
on the shore near population centers can suggest the existence of algal blooms. However,
some negative values close to 0 (−0.0025) may indicate the presence or early initiation of
an algal bloom.

Figure 4 shows spatial differences like those observed with the FAI, with high values
near the shores being coincident with the image from 11 February 2020. However, in images
such as that of 19 October 2018, the FAI more clearly reflects the vegetation at the surface
level in Lake Villarrica than the SABI. This is why in the literature it is suggested that several
indices be used to generate Chlorophyll-a estimation models for the lake [10,12,24,26,66].

The spatial behavior of Chlorophyll-a predicted using the optimal model for Lake
Villarrica in the study seasons is shown in Figure 5. The Chl-a values range between 4.4 and
5.3 µg/L throughout the lake, with very low spatial variation observed, coinciding with
the in situ values. This reaffirms that the lake has mesotrophic characteristics. However,
as blooms are being reported in different parts of the lake, more frequent monitoring and
studies should be carried out. Generally, the highest values are recorded in areas close to
the shores, and most frequently for the shore of the city of Villarrica and Pucón.
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3.4. Evolution of Algal Blooms in Lake Villarrica

Table 6 shows the blooms reported in Lake Villarrica in the last 28 years, as well as the
species reported and the sector of the lake where the bloom developed.

Table 6. Algal blooms during the last 28 years in Lake Villarrica.

Year Reported Blooms Algae Species Group Lake Sector

1993 Summer February Microcystis aeruginosa Cyanophyceae South, South-west
2005 Spring September 25 - Cholophyceae South Ribera
2008 Summer 12 January, Spring 6 November Fragilaria sp. Bacillariophyceae North Ribera
2010 Summer 25 January, Autumn 26 April Dolichospermum sp. Cyanophyceae Villarrica-Pucón shore
2011 Summer 10 January Dolichospermum sp. Cyanophyceae La Poza and Pucón
2012 Summer 24 February Dolichospermum sp. Cyanophyceae Pucón, La Poza
2014 Summer 25 January Anabaena spiroides Cyanophyceae Pucón, La Poza
2015 Summer 19 January Dolichospermum sp. Cyanophyceae Center
2016 Summer 2 January Dolichospermum sp. Cyanophyceae South shore
2017 Summer 10 February Spirogyra sp. Charophyceae South shore
2018 Summer 25 January, Autumn 25 May Dolichospermum sp. Cyanophyceae South
2019 None reported - - -
2020 Summer 19 January Dolichospermum sp. Cyanophyceae Villarrica pelagial
2021 None reported - - -

Based on information from reports generated by Vigilantes del Lago.

It can be seen from the information provided above that algal blooms in Lake Villarrica
are occurring every summer in different parts of the lake (see Supplementary Materials).
Finally, in situ measurements and algal reports were used to identify generic algal blooms
occurring in summer and spring each year. This allowed us to investigate the spectral
features of these blooms with respect to those of cyanobacteria and to verify the robustness
of the conclusions reached in this work.

4. Discussion

Twenty-five Landsat multispectral images were selected to cover an 8-year time span
(2014–2021) for which nine spectral indices were calculated. The FAI and SABI indices
showed the best statistical results. In addition, in situ Chl-a sample data were available,
covering the lake spatially across seven monitoring stations. Data for summer and spring
were taken from the databases of the DGA. Chl-a ranged between minimum values of
0.21 µg/L and 0.24 µg/L in summer and spring and maximum values of 5.05 and 4.85 µg/L,
respectively. Therefore, both seasons present high values of the study variable. Based
on this data, we correlated the spectral indexes and Chl-a in the various sample areas.
Using the resulting data, a linear Chl-a prediction model based on remote sensing data was
constructed to estimate the Chl-a concentration in the lake by means of the spectral indices.

Based on remote sensing processing, the average maximum FAI value was found to be
0.067, and the average maximum SABI value was 0.048. According to Pearson’s r, the FAI
(−0.78) and SABI (−0.94) indices correlate well with Chlorophyll-a, presenting an inverse
correlation (negative sign). Although in Boucher et.al [21] the relationship between the
SABI algorithm and Chlorophyll-a was low, in this investigation it turned out to be quite
high. The model constructed with the two indices estimated Chlorophyll-a concentration
with high precision. The statistical indicators used to verify the linear multiparametric
model of Chlorophyll-a estimation through the spectral indices were a MBE of−0.136 µg/L,
RMSE of 0.055 µg/L, and NRMSE of 0.019%. Maps of vegetation indices (FAI, SABI) for
Lake Villarrica were built, with the spatial distribution obtained from the processing of
Landsat images using a range of established colors being shown, with negative values
indicating the presence of water and values between 0 and 0.4 the presence of vegetation at
the surface level. The FAI and SABI are spectral indices derived from satellite imagery and
are used to quantify the amount and quality of light that is absorbed and reflected by water
bodies. When you use these two indices in a regression equation to estimate Chl-a, the
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resulting equation provides a way to predict Chl-a concentrations based on the values of
the FAI and SABI. This can be useful for monitoring and managing water quality in large
bodies of water, where direct sampling may not be feasible or cost-effective. Chlorophyll-a
is a pigment found in photosynthetic organisms such as plants, algae, and some bacteria. It
is responsible for absorbing light energy during the process of photosynthesis. The FAI and
SABI are two vegetation indices used to estimate the amount of photosynthetically active
radiation absorbed by algae and algal leaf area, respectively. An inverse relationship, or
negative correlation, between Chlorophyll-a and the FAI and SABI spectral indices means
that as the amount of Chlorophyll-a decreases, the values of the FAI and SABI indices
increase, and vice versa. Article [50] shows detailed examples of the application of the FAI
index. From them, low values of the index correspond to clear water, and high values of
the index correspond to the presence of macroalgae. The SABI index has been proposed to
delineate the spatial distributions of floating microalgal species, such as cyanobacteria, or
exposed intertidal vegetation, such as seagrasses [25]. Band ratio algorithms in the red and
near-infrared spectral regions have great potential for remote Chlorophyll-a estimation.
However, more research is needed to fully understand the complex relationships between
Chlorophyll-a concentration and the FAI and SABI indices and identify the underlying
mechanisms driving these relationships. It would be desirable in future research to include
inherent optical properties of the lake system studied in order to further elucidate the
optical signals used. The highest values of estimated Chlorophyll-a were observed in shore
areas close to cities (Villarrica and Pucón), and this coincides with the highest values of
the diffuse attenuation coefficient of solar radiation found in [36]. In addition, in some
research [58] higher values near the shore have indicated the presence of algal blooms,
and NDVI, NDWI, NDTI, and SABI indices were highly correlated with Chlorophyll-a. In
the case of Villarrica, the NDTI had a low correlation with Chlorophyll-a, probably due
to the variable turbidity of this lake, attributed, as with most of the Araucanian lakes, to
mixing in the water column due to wind and frequent precipitation as well as sediment
resuspension [47].

The greatest FAI values, as observed in Figure 3, occur in October 2018 and February
2020 (FAI > −0.0025), showing the presence of aquatic vegetation or algae bloom. In [67],
the lake areas with positive FAI values (FAI > 0.003) were classified as algae blooms or
aquatic vegetation, which is quite close to the results found and shown in this investigation.
In the first season (summer) of 2018 and 2020, blooms were reported in Lake Villarrica at
different points, and the cyanobacterial species was Dolichorpermum sp. The monitoring
campaigns were carried out close to the dates of the satellite images (25 January 2018, and
19 January 2020). Both blooms can be captured through the indices, although another
algal species (Microcystis) that has also been found in Lake Villarrica has been reported
to form blooms, in other lake systems such as Lake Erie and Lake Taihu or Curonian
Lagoon [29–31].

Algal blooms of cyanobacteria are becoming more frequent in freshwater systems,
increasing due to the additional effects of climate change such as the gradual increase in
surface water temperature, which makes it possible for algae to bloom for longer periods
depending on how favorable the water temperature. In this study, it was not an objective
to evaluate the behavior of temperature; however, temperature determines an increase in
the productivity of phytoplankton communities; blooms in Lake Villarrica have manifested
themselves when the temperature is higher than 18 ◦C.

Despite presenting good water quality in general, which is reaffirmed by the Chlorophyll-
a estimation carried out in this work, the highest Chlorophyll-a values were recorded
in the shore area of the lake, coinciding with the shore of Villarrica and Pucón city (see
Figures 5 and 6). This indicates that in the shore waters of cities, algae blooms may
occur more frequently, and an alert should be generated since they are very touristy
areas. Therefore, it can be inferred that the main determining factor of the high values of
Chlorophyll-a and algae blooms, considering only the land use (Figure 6), is the urban
area. A deeper study should be carried out in other investigations to analyze the possible
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influence of agriculture. Of all the algal groups, cyanobacteria present advantages due
to their environmental resistance to changing parameters related to either the climate or
subaquatic column conditions. In addition, some of the described species present toxins
that can cause intoxication problems for animals or skin irritation in humans. If these toxins
are ingested at high concentrations, they can cause more serious health problems, including
death, as stated by [68].
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Phytoplankton is considered a good indicator of the environmental quality of lakes
due to its tolerance and sensitivity to the increase in nutrients generated by anthropogenic
pollution (associated with nitrates, nitrites, and phosphates, etc.); therefore, the measure-
ment and analysis of the phytoplankton of a lake help determine its trophic state. It is
important to mention that some phytoplankton are cyanobacteria which are associated with
the algal blooms present in Lake Villarrica. Cyanobacteria can fix atmospheric nitrogen [69];
therefore, phosphorus functions as a limiting nutrient for blooms in most continental
aquatic systems. In addition, blooms could be due to certain physicochemical conditions
such as high concentrations of nutrients (mainly nitrogen and phosphorus), high temper-
atures, good light availability, low turbulence, absence of winds, and stratification of the
water body, along with eutrophication processes that could also be influencing the blooms.
In [70] the blooms are attributed to increases in the nutrients from small urban areas and
agriculture. These same factors were the triggers for the appearance of cyanobacteria and
other algae blooms in the investigations carried out by [31,68]. This phenomenon can be
triggered in a few hours or several days and can disappear quickly or remain for long
periods. In addition, wind is an important factor that can influence algal blooms in several
ways. If there is mixing in the water column, wind-generated turbulence can mix surface
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water with deeper water, allowing nutrients such as nitrogen and phosphorus to rise to the
surface [71–73]. These nutrients are essential for algal growth and reproduction. Wind can
also transport algae to new locations, where they can thrive in favorable conditions, such
as warmer temperatures, higher light levels, and greater nutrient availability. Sometimes
wind can cause stratification of the water column, creating different layers of water with dif-
ferent temperatures and nutrient concentrations. This stratification can favor the growth of
certain types of algae that prefer specific water conditions. On the other hand, wind-driven
currents can also cause algae to accumulate in certain areas, such as near shorelines or in
bays, where they can form dense mats or blooms. Therefore, remote sensing can provide an
alternative to the spatial–temporal factors that are faced through research and surveillance
programs of the lake ecosystems which are based mainly on costly on-site measurements.
Furthermore, it is important to note that this study is the first to address the detection of
primary producers in this Chilean lake using remote sensing techniques.

5. Conclusions

Using multispectral imagery is a reliable and efficient method for monitoring water
quality in freshwater ecosystems. In Chile, this technique has gained popularity due to
the limited research resources available. Although the General Water Directorate of Chile
monitors many lakes, their efforts fall short in keeping up with changes in the system.
The increasing occurrence of algal blooms poses a threat to the organisms and the scenery
of the lake, and decreases income generated from tourism in the southern part of the
country. Phytoplankton blooms are an indication of high nutrient concentrations that may
result from contamination by organic and inorganic substances from urban and industrial
effluents and crop fertilization.

This study employed two spectral indices algorithms to retrieve Chl-a data from Lake
Villarrica. The statistical indicators of the model generated revealed that the SABI and FAI
indices were the most precise in estimating Chl-a levels in Lake Villarrica. By detecting
algae using satellite images, an early warning system can be implemented to anticipate the
development of algal bloom events, inform the public, and execute policies that safeguard
this valuable water resource.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15071929/s1. Figure S1. Ninth bloom reported in Villarrica
by Vigilantes del Lago (19 January 2015, Dolichospermum sp.) Sector Centro. Figura S2. Tenth bloom
reported in Villarrica (2 January 2016, Dolichospermum sp.) Ribera Sur. Figure S3. Eleventh bloom
reported in Villarrica (10 February 2017, Spirogyra sp.) South Bank. Figure S4. Twelfth bloom reported
in Villarrica (25 January 2018, Dolichospermum sp.) South Sector. Figure S5. Last Bloom reported in
Villarrica (19 January 2020, Dolichospermum sp.) Pelagial Villarrica.
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