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Abstract: Tropospheric correction is a crucial step for interferometric synthetic aperture radar (InSAR)
monitoring of small deformation magnitude. However, most of the corrections are implemented
without a rigorous evaluation of their influences on InSAR measurements. In this paper, we present
three statistical metrics to evaluate the correction performance. Firstly, we propose a time series
decomposition method to estimate the tropospheric noise and mitigate the bias caused by ground
displacement. On this basis, we calculate the root-mean-square values of tropospheric noise to assess
the general performance of tropospheric corrections. Then, we propose the use of semi-variograms
with model-fitted range and sill to investigate the reduction of distance-dependent signals, and
Spearman’s rank correlation between phase and elevation to evaluate the mitigation of topography-
correlated signals in hilly areas. The applicability and limitations were assessed on the weather
model-derived corrections, a representative spatiotemporal filtering method, and the integration of
the two mainstream methods. Furthermore, we notice that the persistent scatter InSAR processing
resulted in two components, the primary and secondary images’ contribution to the tropospheric and
orbit errors. To the best of our knowledge, this paper for the first time analyzes the respective roles of
the two components in the InSAR tropospheric corrections.

Keywords: InSAR tropospheric corrections; statistical metrics; time series decomposition; weather
model products; spatiotemporal filtering

1. Introduction

A number of time series interferometric synthetic aperture radar (InSAR) techniques
have been developed to measure slow ground motion, such as persistent scatter (PS)
InSAR [1,2], small baseline subset (SBAS) InSAR [3], and SqueeSAR [4]. However, in
many situations, the ability of InSAR to retrieve small deformation magnitude is severely
limited by the tropospheric phase delays. The tropospheric phase is a major noise source in
repeat pass InSAR measurements, which results from the spatial and temporal variations
of pressure, temperature, and relative humidity in the troposphere. It can be in the order of
several centimeters and contaminate small deformation signals, such as land subsidence [5],
inter-seismic deformation [6], volcanic deformation [7], etc. Thus, tropospheric correction
is a vital step to ensure accurate InSAR monitoring of slow ground motion.

The tropospheric phase consists of turbulent and stratified delays [8]. Various methods
have been implemented to correct tropospheric phase delays in InSAR measurements and
can be categorized into three groups. The first group is statistical approaches assuming the
random distribution of the tropospheric phase in the time dimension, such as the pair-wise
logic approach [9], the stacking approach [10,11], and the commonly used spatiotemporal
filtering methods [1,2]. The second group is the empirical methods aimed to estimate
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the stratified tropospheric phase, based on the relationships between the stratified phase
and topography, such as the linear model [12,13], the power-law model [14], and the
quadtree-aided joint model [15]. The third group utilizes external data to estimate both
the turbulent and stratified components. These auxiliary data include global positioning
system (GPS) measurements of zenith total delay (ZTD), precipitable water vapor (PWV)
measured by spectrometers such as the Medium Resolution Imaging Spectrometer (MERIS)
and the Moderate Resolution Imaging Spectroradiometer (MODIS), as well as weather
model products such as the ERA-Interim, the ERA5 reanalysis [16,17], and the Generic
Atmospheric Correction Online Service (GACOS) [18–20].

Despite the numerous studies on tropospheric correction methods, the evaluation
of their performance remains a hot research topic. Although a small number of studies
verified the accuracy of tropospheric correction using in situ data, such as the GPS measured
ZTD [21] or leveling data [22], the data availability is often limited due to factors such as the
lack of GPS stations or sparse coverage of ground-based measurements. A vast majority of
validations employed the spatial standard deviation (StdDev) or root-mean-square (RMS)
values of individual interferograms [8,23–25], assuming that there is no surface deformation
in the study area. However, in many cases, ground deformation occurs within the region
of interest and may even encompass a considerable area. Basic statistics such as StdDev
or RMS, obtained under the none-deformation assumption, could potentially exhibit bias.
Nonetheless, some effects of the physical characteristics of the troposphere on InSAR
measurements, such as the distance-dependence and topography-dependence [26], may
not be revealed by the StdDev or RMS. Some recent studies have qualitatively examined
the topography-dependence using phase-elevation scatterplots [22] or have expanded the
analysis using the linear correlation of phase and elevation [25]; however, they were not be
able to capture the full complexity of the topography-dependence. Murray et al., (2019)
calculated the semi-variance of semi-variograms to analyze the distance-dependence [24].
These studies have contributed valuable insights into the performance of tropospheric
correction. However, their evaluation is limited to individual mainstream approaches.

The performance of combined approaches, i.e., integration of the abovementioned
different mainstream methods, has not been systematically evaluated, despite their increas-
ing use in practice. In particular, weather model products suffer from coarse spatial and
temporal resolution, resulting in limited performance in InSAR tropospheric corrections.
Statistical approaches assume the temporally uncorrelated characteristics of tropospheric
signals, which does not hold for the stratified tropospheric delays. In recent years, the
spatial and temporal resolutions of weather model data have been significantly improved.
To what extent can these features improve the accuracy of InSAR tropospheric corrections,
especially in coastal regions with large spatiotemporal variations of water vapor? What are
the pros and cons of the weather model-derived corrections, the statistical methods, and
the incorporation of the two mainstream techniques? These are the questions this study
also intends to answer.

Furthermore, little attention has been paid to the different roles of the respective contri-
bution from the primary (reference) image and secondary images in the InSAR tropospheric
corrections. While the tropospheric phase is typically assumed to be uncorrelated in time
in StaMPS (Stanford Method for Persistent Scatterers) spatiotemporal filtering, one of the
most commonly used and representative statistical methods, the use of a common reference
image (i.e., primary image), introduces a temporally correlated component referred to
as the primary image’s contribution to the tropospheric and orbit error (TOE) [2]. The
contribution from secondary images (hereinafter referred to as secondary TOE) remains
uncorrelated in time. The primary and secondary TOE exist in the interferograms corrected
by spatiotemporal filtering or its integration with weather model products. The contribu-
tion of the primary and secondary TOEs in InSAR tropospheric corrections is still unclear
and requires further investigation.

In this study, firstly, we propose a time series decomposition method to estimate the
overall noise after InSAR tropospheric corrections, and mitigate the bias resulting from
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ground deformation. On this basis, the time series RMS of the estimated tropospheric noise
is calculated as a metric to evaluate the overall performance of the InSAR tropospheric
correction. This method can be easily applied to regions prone to ground displacement
without relying on the none-deformation assumption. Based on the impacts of the physical
properties of the troposphere on the large-area InSAR monitoring, we adapt two other met-
rics from recent works, i.e., the semi-variogram of interferograms and the phase-topography
correlation [24,25]. The semi-variogram is employed to assess the reduction of spatially
dependent signals after tropospheric corrections. The phase-topography correlation is
used to assess the reduction of elevation-dependent signals, where we propose the use of
Spearman’s rank correlation coefficient as a more general expression of the phase-elevation
relationship strength.

This study employs advanced weather model products that are widely used in the
InSAR community, including ERA5, ERA-Interim, and GACOS. The pros and cons of the
sole use of weather model-derived corrections, the StaMPS spatiotemporal filtering (a repre-
sentative statistical method), or the combined approaches are assessed using the proposed
statistical metrics. In addition, we investigate the respective roles of primary and secondary
TOE in InSAR tropospheric corrections, in terms of the decrease of overall noise, reduction
of distance-dependent signals, and suppression of topography-dependent signals.

2. Materials
2.1. Study Area

The experiments were conducted on the east bank of the Pearl River Estuary (Figure 1),
China, covering most areas of the city of Dongguan, Shenzhen, and the entire Hong Kong
Special Administrative Region.
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This area is featured by a typical subtropical ocean monsoon climate, with long
flood seasons from April to September. The elevation ranges from −79 m to 1260 m.
The intricately distributed hills, mountains, and plains have brought complex natural
geographical conditions. The study area still has a few mountainous locations, the majority
of which are over 500 m and even reach 1260 m above sea level.

In the process of rapid urbanization, there have been reported subsidence cases due
to land reclamation and subway construction [27,28]. In recent decades, extreme weather
events have occurred frequently in the study area. These characteristics pose a great
challenge to InSAR tropospheric correction.

2.2. Data
2.2.1. Sentinel-1 SAR Imagery

The Sentinel-1 (S1) Interferometric Wide (IW) Terrain Observation by Progressive
Scans (TOPS) Single Look Complex (SLC) data are employed in this research (Table 1),
consisting of 68 images acquired from June 2015 to March 2018, mostly with a 12-day
interval. We selected the image acquired on 12 March 2017 as the primary (reference) image,
and the rest as the secondary images. The temporal baseline varies from 12 to 372 days,
and the normal baseline ranges from 3.7 to 82.3 m.

Table 1. Parameters of Sentinel-1 (Interferometric Wide) IW Single Look Complex (SLC) data.

Sentinel-1 IW SLC Data

Timespan 15 June 2015~7 March 2018
Revisit cycle (days) 12

Polarization VV
Incidence angle (◦) 41.69~46.11
Wavelength (cm) 5.5

Slant range spacing (m) 2.33
Azimuth spacing (m) 13.92

2.2.2. Digital Elevation Model (DEM)

The Advance Land Observing Satellite (ALOS) World 3D-30 m DEM, abbreviated as
AW3D30, is used to remove the topographic phase from interferograms. The AW3D30 DEM
was generated using the archived data of the Panchromatic Remote-sensing Instrument for
Stereo Mapping (PRISM) onboard ALOS during its operation from 2006 to 2011.

2.2.3. Weather Model Products

In this study, three weather model products are used for tropospheric corrections,
including the ERA-Interim, ERA5 reanalysis data, and GACOS.

ERA-Interim (ERA-I) is a global atmospheric reanalysis product released by ECMWF.
It covers the period from 1 January 1979 to 31 August 2019, and contains 60 pressure levels
to 0.1 hPa (about 64 km altitude), with a temporal resolution of 6 h and a spatial resolution
of 0.7◦ × 0.7◦ (~78 km).

ERA5 is the fifth generation of atmospheric reanalysis produced by ECMWF. It is
available from 1950 to the present. As the successor to ERA-I, ERA5 provides hourly
estimates of the global atmosphere, land surface, and ocean waves at a spatial resolution
of 0.25◦ × 0.25◦ (~28 km). It resolves tropospheric parameters for 137 vertical levels up to
0.01 hPa.

GACOS employs the ECMWF HRES data as input. It utilizes the Iterative Tropospheric
Decomposition (ITD) model [19] to decouple stratified and turbulent delays, and generates
ZTD maps for InSAR tropospheric correction. The ECMWF HRES is an operational climate
analysis model, estimating atmospheric variables with a temporal resolution of 6 h, and a
horizontal resolution of 0.125◦ × 0.125◦ (~14 km), for 137 pressure levels up to 0.01 hPa.
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3. Methods

We propose the use of three statistical metrics to assess the performance of InSAR
tropospheric corrections. All three metrics are applied on time series interferograms
processed by the PS InSAR approach, after the steps of co-registration, removal of the
topographic phase, PS candidate selection, correction of spatially uncorrelated phase, and
phase unwrapping.

3.1. Evaluation Metrics for InSAR Tropospheric Correction
3.1.1. Tropospheric Noise Estimated by Time Series Decomposition

In previous studies, the root-mean-square (RMS) value or standard deviation (StdDev)
on individual interferograms is a widely used metric to assess the residual noise after InSAR
tropospheric corrections, assuming no surface deformation occurs [8,24]. In this research,
instead of the spatial statistics of interferograms, we propose to analyze the time series noise
of interferograms, which reveals the variance of the residual signals relative to the rest of
the interferograms. It better captures the tropospheric variability before and after correction
than a simple average of the spatial variance of individual interferograms. However, there
have been reported subsidence cases in the study area. Instead of a simple calculation of
the time series RMS of interferograms, we propose a time series decomposition method to
estimate the tropospheric noise, and mitigate the bias caused by ground displacement.

For each PS point, we decompose its corresponding values extracted from time series
interferograms into three terms:

f (t) =
(

at2 + bt + c
)
+ A sin(ωt + ϕ) + ε (1)

where the first term
(
at2 + bt + c

)
is a quadratic polynomial component modeling possible

ground deformation, t represents different acquisition time, and a, b, and c are the quadratic
coefficients to be solved for. For PS points on the stable ground, the first term would be
negligible and yield very small coefficients. For PS points in the deforming areas, according
to prior knowledge and previous studies, the ground displacements are often related to
land reclamation from the ocean, groundwater exploitation, tunneling works, etc., which
may exhibit nonlinear deformation tendencies in addition to the usual linear displacement.
Therefore, we use a quadratic polynomial term to model the possible ground deformation.
For linear deformation, the estimated coefficient a would become negligible, and the
quadratic polynomial term is approximately equal to a linear term.

Global weather models indicate the existence of seasonality in the stratified delay,
which is characterized by periodicities in the form of inter-annual or annual sinusoidal
variations [8,29,30]. Hence, the second term Asin(ωt + ϕ), denoting a sine function, is used
to simulate the residual periodic oscillation due to stratified tropospheric phase, A and
2π/ω represent the magnitude and period of the oscillation, and ϕ is the initial phase of
the sine function. The fitted sinusoidal term is then taken into account in the estimation of
tropospheric noise. In the region of interest, there are some hilly areas with an elevation
ranging from 500 m up to 1260 m, where the stratified phase delays can result in significant
periodic effects. In low-altitude flat terrain, the tropospheric phase is mainly dominated by
the turbulent component and the stratified phase delays can be ignored. In this case, the
fitted sinusoidal function term becomes negligible, which does not affect the analysis of the
tropospheric noise. Based on the above considerations, we retain the second term in the
time series decomposition.

The third term, ε, denotes the unmodeled noise.
All unknown coefficients (a, b, c, A, ω, ϕ) in Equation (1) are solved by a nonlinear

curve-fitting method in a least-squares sense, as follows:

min
coef
‖F(coef, tdata)− disp‖2

2 = min
coef

∑i( f (coef, t)− dispi)
2 (2)
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where coef = [a, b, c, A, ω, ϕ] is a vector of coefficients to be solved, tdata denotes the
vector of acquisition time, disp represents the vector containing PS time series values
extracted from interferograms, i is the index of an acquisition time t in the time vector tdata,
and F is a vector-valued function of the same size as tdata. We analyzed the time series
of the zenith total delay (ZTD) obtained from the GACOS product at PS points with an
elevation difference of more than 600 m from the reference altitude, and found that the
sinusoidal variation with the longest period is less than 2 years. Therefore, we imposed
constraints on the upper and lower bounds of the variableω in the nonlinear least-squares
solver. Specifically, we restrict the 2π phase change to correspond to a time period of
12 to 20 months. While this constraint reduces the impact of periodic errors within this
range, longer-term periodic fluctuations cannot be captured by the model fitting of the sine
function and are attributed to unmodeled noise.

After the time series decomposition, the sinusoidal component (the second term in
Equation (1)) and the unmodeled noise ε (the third term in Equation (1)) are summed up as
an estimate of the residual noise after InSAR tropospheric corrections. For each PS point,
an RMS value is then computed along the timeline over N acquisition dates:

RMS =

√
1
N ∑N

i=1 ∆d2
tropo,i (3)

where ∆dtropo,i represents the estimated tropospheric noise of a PS point on the ith interfer-
ogram, as derived by the time series decomposition method.

It should be noted that the quadratic term simulates the main trend of ground deforma-
tion, but certain forms of land subsidence resulting from periodic changes of precipitation
or groundwater levels may not be fully accounted for. However, the residual deformation
signals resulting from such variations can potentially be detected by the sinusoidal term
and mistakenly attributed to tropospheric noise. Due to the unavailability of long-term
measurements of groundwater table and precipitation, it is difficult to distinguish between
the impacts of periodic variations in precipitation, groundwater table, and tropospheric
phase delays on urban subsidence. Hence, the time series decomposition method does not
entirely mitigate the bias originating from ground deformation due to the possible presence
of periodic deformation signals.

It is important to mention that the time series decomposition technique is exclusively
used for the interferograms corrected by spatiotemporal filtering or the combined ap-
proaches. In the original interferograms and those corrected by weather model products,
high levels of time-independent noise often present, which are resulted from turbulence.
As a result, the deformation signal is inevitably masked, and its effect on the time series
noise statistics is negligible. Hence, for these interferograms, the conventional time series
RMS method is employed to analyze the data.

3.1.2. Semi-Variograms with Model Fitted Range and Sill

As the tropospheric phase is spatially correlated, we utilize semi-variograms and
compute their model fitted ‘range’ and ‘sill’ values to quantitatively analyze the reduction
of spatially dependent signals after tropospheric corrections.

A semi-variogram is defined as [26]:

S
(
⇀
r
)
= E

[(
f (x)− f

(
x +

⇀
r
))2

]
(4)

where
⇀
r is a vector, x is the location of a PS point, f (x) denotes the signal after tropospheric

correction, and E indicates the expected value. Under the isotropic assumption,
⇀
r in

Equation (4) can be replaced with a scalar r to only represent the distance from x. We
adopt an empirical semi-variogram approach, which bins the randomly sampled points by
distance to apply Equation (4).
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A semi-variogram describes the spatial correlation of paired sample points. It usually
reaches a peak and flattens at a certain distance, referred to as the ‘range’. Samples separated
by distances closer than the range are spatially correlated, otherwise decorrelated. The semi-
variance at the range is called the ‘sill’, the square root of which is a measure comparable
to the spatial RMS of the interferogram, an indicator of the spatial noise. Here we obtain
the range and sill by Gaussian model-fitting on semi-variograms [31]. It should be noted
that the PS points in deforming areas were not discarded prior to the calculation, thus the
sill statistics can be regarded as a biased and rough estimate of spatial noise in individual
interferograms.

3.1.3. Spearman’s Rank Correlation between Phase and Elevation

The phase-elevation dependence is used as the metric to assess the reduction of
topography-dependent signals after InSAR tropospheric corrections. The vertical refractiv-
ity differences between different altitudes can result in a stratified tropospheric delay. A
500 m difference in elevation can cause a phase difference of up to 10 mm [32]. There are
still some hilly areas in the study area, most of which lie at an altitude of over 500 m, while
some can even reach 1260 m above sea level. Thus, it is necessary to inspect the reduction
of stratified delays, particularly in regions with significant variations in elevation, such as
hilly areas. Because a considerable portion of the study area is situated in low-altitude flat
terrain, the analysis was only performed on PS points in hilly areas (drawn in red boxes in
Figure 1).

The relationship between the stratified phase and elevation is often modeled by a
linear or power-law function [14,33], but a previous study also suggests it is too complicated
to be fully simulated [34]. A linear correlation coefficient was used to assess the phase-
elevation dependence [25]. In this study, we propose the use of Spearman’s rank correlation
coefficient (SRCC) as a more general measure.

SRCC is a nonparametric measure of statistical dependence between the rankings of
two variables, which aims to assess the monotonic relationship between two variables,
even if the relationship is nonlinear. In addition, SRCC is more robust to outliers than the
conventionally used Pearson’s linear correlation coefficient [35]. For a sample of size N, the
N raw scores Xi, Yi are converted to ranks R(Xi), R(Yi). A rank is assigned to each value
based on its position in the ordered set of values of a variable. Their Spearman correlation
coefficient rs is:

rs =
cov(R(X), R(Y))

σR(X)σR(Y)
(5)

where cov(R(X), R(Y)) denotes the covariance of the ranks, and σR(X) and σR(Y) are the
standard deviation of variable ranks.

The correlation coefficient rs is a value between −1 and +1, indicating a perfect
negative and positive correlation, respectively. A rs value of 0 represents no correlation.
Following the guide by Ref. [36], the correlation strength can be categorized using the
absolute value of rs, as detailed in Table 2.

Table 2. The correlation strength described by the absolute value of rs.

|rs| Correlation Strength

0.00~0.19 Very weak
0.20~0.39 Weak
0.40~0.69 Moderate
0.70~0.89 Strong
0.90~1.00 Very strong

The statistical significance of SRCC can be revealed by the critical probability (p) values.
In this study, a p-value of 0.05 (5%) or less is considered statistically significant to reject
the null hypothesis (H0). In addition, it has been suggested to have at least ten samples



Remote Sens. 2023, 15, 1905 8 of 23

for Spearman’s correlation analysis [36,37]. Using samples fewer than this will more
likely obtain a result of chance. To ensure the reliability of the phase-elevation correlation
analysis, a window is determined valid by satisfying both of the following conditions:
(1) containing no less than 10 points; (2) obtaining a p-value below 0.05. Then, on the
original interferograms, the valid windows yielding SRCC over 0.4 (moderate correlation
as defined in [36]) are preserved for analysis.

3.2. Analysis of Primary and Secondary Images’ Contribution in Tropospheric Corrections

In this study, the following process (Figure 2) is used to analyze the respective roles of
primary and secondary TOEs in InSAR tropospheric corrections.
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Figure 2. Analysis of the different roles taken by primary and secondary tropospheric and orbit error
(TOE) on InSAR tropospheric corrections.

It has been pointed out by previous studies that interferograms that share a common
date share the same propagation delay [2,38]. Therefore, in PS-InSAR processing, using the
same reference image (i.e., the primary image) results in a time-correlated component in
the interferometric phase, which is referred to as the primary image’s contribution in the
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StaMPS approach [2]. As stated in [2], for a PS point, after removal of a spatially uncorre-
lated look angle error and phase unwrapping, the differential phase can be expressed as:

ϕ̂ = φde f + ∆φtropo + ∆φorb + ∆φc
θ + ∆φnoi + 2kπ (6)

where φde f is the phase change in the satellite line-of-sight due to ground deformation.
∆φtropo is the tropospheric phase; ∆φorb is the phase due to satellite orbit inaccuracies, which
is negligible after applying the precise orbits by SNAP (Sentinel Applications Platform);
∆φc

θ is the spatially correlated look angle error; and ∆φnoi represents noise related to other
unmodeled sources, such as the ionospheric effects, the variability in scattering, thermal
noise, co-registration errors, etc. The 2kπ denotes the remaining integer ambiguity.

The three spatially correlated nuisance terms ∆φtropo +∆φorb +∆φc
θ in Equation (6) can

bias the results of InSAR deformation monitoring. These terms can be estimated utilizing
the characteristics of their spatiotemporal correlation. The StaMPS approach divides the
three terms into the part correlated in time and the part that is not. The former is referred
to as the primary TOE, as it presents in each interferogram due to the use of the same
reference image. The latter consists of the spatially correlated look angle error ∆φc

θ and the
secondary TOE. The ∆φc

θ is proportional to the perpendicular baseline and can be removed
separately. The primary TOE and secondary TOE are derived by spatiotemporal filtering,
as displayed in the first block diagram in Figure 2. The combination of spatial and temporal
low-pass filters obtained the estimates of the primary TOE, whilst the integration of spatial
low-pass filter and temporal high-pass filter resulted in the secondary TOE.

To investigate the different impacts of the primary and secondary TOEs on the InSAR
measurements, we implement the three metrics to compare the different roles of the two
components in the reduction of the tropospheric noise, attenuation of medium to long
wavelength signals, and mitigation of topography-dependent signals.

4. Experiments and Results
4.1. Experimental Settings

The Sentinel-1 TOPS SLC data were first processed by the SNAP-ESA Sentinel Ap-
plication Platform (http://step.esa.int, accessed on 12 March 2022) using the PS-InSAR
strategy. The co-registration was performed using the Enhanced Spectral Diversity (ESD)
method [39]. The topographical phase in each interferogram was removed using the
AW3D30 DEM. The differential interferograms were then processed by the PS-InSAR
workflow. The spatial reference for resolving the phase time series was set to a stable
zone within the SAR coverage, with longitude between 113.940320◦ and 113.952058◦, and
latitude between 22.565002◦ and 22.571356◦. The reference phase was determined by the
mean phase of PS points within the stable zone. The selected reference area is shown in
Figure 3. All interferograms were unwrapped by a 3D phase unwrapping approach [40],
followed by the tropospheric correction.

For InSAR tropospheric corrections, we applied three categories of methods in the
experiments, including the weather model-derived corrections utilizing ERA5, ERA-I, and
GACOS products, a commonly used and representative statistical method, i.e., StaMPS
spatiotemporal filtering, and the integration of the two mainstream techniques. For simplic-
ity, the term “spatiotemporal filtering” in this paper refers to the StaMPS spatiotemporal
filtering method.

The ERA-I and ERA5 reanalysis were processed by the Toolbox for Reducing Atmo-
spheric InSAR Noise (TRAIN) [41] to estimate both the turbulent and stratified delays. In
TRAIN, lateral and vertical spline interpolations are applied to the atmospheric parameters
provided by ERA-I and ERA5. Linear interpolation is performed in the time domain to
match the SAR acquisition time [41]. Then, the tropospheric delays can be computed.

http://step.esa.int
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Figure 3. The stable region (marked by the blue polygon) that serves as the spatial reference for
resolving the phase time series.

As for the GACOS product, ECMWF HRES was employed as the input atmospheric
data, and the ITD model [19] was utilized to separate stratified and turbulent components
to generate zenith total delay maps for tropospheric correction.

In the experiments, for a fair assessment of different tropospheric correction methods,
the estimated ∆φc

θ was subtracted from interferograms before comparison. We did not
remove a best-fit ramp before or after tropospheric correction. Instead, the possible orbit er-
ror, if there is any, was estimated along with the tropospheric signals by the spatiotemporal
filtering.

By applying the three statistical metrics to the time series interferograms before and
after tropospheric corrections, we obtained the results in Sections 4.2–4.4. To investi-
gate the roles of primary and secondary TOE in InSAR tropospheric corrections, we also
compare the statistical metrics obtained with and without removing the primary TOE in
tropospheric corrections using spatiotemporal filtering or combined approaches (shown in
Sections 4.2–4.4), followed by an analysis in Section 4.5. In Section 4.6, we present case stud-
ies of local subsidence that incorporate tropospheric corrections achieved by integrating
spatiotemporal filtering and weather model products.

4.2. Elimination of Overall Tropospheric Noise

For each PS point, we extracted its corresponding phase values from time series
interferograms and converted them to length in the unit of millimeters, so the phase is
directly related to the distance that the wave has traveled. Each PS time series was then
decomposed using Equation (1). The coefficients (a, b, c, A,ω, ϕ) in Equation (1) are solved
by a nonlinear curve-fitting method in a least-squares sense, as described in Section 3.1.1.

To illustrate the results of time series decomposition, we selected four representative
PS points, herein referred to as “P1”, “P2”, “P3”, and “P4”, to serve as examples. The four
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points are marked in Figure 4, with latitude, longitude, altitude, and topography detailed
in Table 3. The example results are displayed in Figure 5.
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Figure 4. Location of selected points marked by the green star in all sub-figures. (a) “P1” in the
Qianhai sub-area on a typical ocean reclaimed land; (b) “P2” in Hong Kong International Airport
(HKIA), an airport built on an ocean reclaimed area; (c) “P3” in Wutong Mountain at an altitude over
600 m; (d) “P4” in the Liantang sub-area affected by tunneling works of metro construction.

Table 3. Details of the four representative persistent scatter (PS) points.

Latitude Longitude Altitude Topography

P1 N 22.523119◦ E 113.889458◦ −3.6 m Low altitude, flat terrain, ocean-reclaimed area
P2 N 22.313656◦ E 113.917023◦ −1.1 m Low altitude, flat terrain, ocean-reclaimed area
P3 N 22.571257◦ E 114.188890◦ 639 m High altitude, hilly area
P4 N 22.568163◦ E 114.171921◦ 39.4 m Low altitude, flat terrain, metro tunneling area
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Figure 5. PS time series decomposition results of representative PS points after tropospheric correction
using ERA5 and spatiotemporal filtering. (a) “P1” in the Qianhai sub-area; (b) “P2” in the HKIA
sub-area; (c) “P3” in the Wutong Mountain sub-area; (d) “P4” in the Liantang sub-area. The blue
line shows the original PS time series measurements. The red line plots the sum of the fitted first
term and second term in Equation (1) by time series decomposition. The green line displays only the
periodic component. The black dots represent the unmodeled noise as defined in Equation (1).

As shown in Figure 4, point “P1” (a) is located in ocean reclaimed land, i.e., the Qianhai
sub-area, Shenzhen. Point “P2” is located in Hong Kong International Airport (HKIA),
also built on ocean reclaimed land. Point “P3” is on Wutong Mountain, Shenzhen, at an
altitude of over 600 m. Point “P4” is in a residential area nearby the Liantang metro station
in Shenzhen, which was affected by tunneling works of metro construction from 2015 to
2020. There has been reported subsidence occurring in sub-areas (a), (b), and (d), while the
sub-area (c) in Wutong Mountain is stable.

In Figure 5, the examples of time series decomposition were derived from interfero-
grams after tropospheric correction using ERA5 and spatiotemporal filtering. In (a), (b)
and (d), we can see that “P1”, “P2” and “P4” all exhibit significant subsidence trends with
weak periodic effects, as the three points are located in low-altitude flat terrain. The “P3”,
at an altitude over 600 m, shows periodic oscillation, albeit with a relatively low amplitude.
Upon analyzing the time series of phase differences between the new “P3” and its adjacent
point, it was found that there were no occurrences where the phase differences exceeded the
value of ±π, indicating the relatively reliable nature of the calculation results for this point.
Thus, we are inclined to attribute them to the influence of residual stratified phase delays.
Since we imposed constraints on the upper and lower bounds of the variableω in Equa-
tion (1) in the nonlinear least-squares solver, longer-term fluctuations such as the residual
periodic error observed at P4 was not captured by the model fitting of the sinusoidal term
and was attributed to unmodeled noise. The observed residual periodic signal in the fitting
outcomes of P4 cannot be accounted for by the stratification, given its low altitude position.
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The longer-term sinusoidal variations may be caused by other factors such as variations
of precipitation or groundwater table. In addition to the aforementioned phenomenon, it
is observable that all four time series curves display a satisfactory fit, and the unmodeled
noise generally fluctuates around zero (Figure 6) after time series decomposition. From
the above results, it is evident that the time series decomposition method is able to reduce
the bias caused by ground displacement to obtain a more accurate estimate of residual
tropospheric noise.
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Figure 6. The histograms of the unmodeled noise derived for “P1”, “P2”, “P3”, and “P4” using the
time series decomposition method. (a) PI in Qianhai sub-area, (b) P2 in HKIA sub-area, (c) P3 in
Wutong Mountain sub-area, (d) P3 in Liantang sub-area.

Then, we estimate the tropospheric noise by the sum of the sinusoidal component and
the unmodeled noise term. A time series RMS value is computed for each PS point on the
tropospheric noise derived by the time series decomposition method.

Taking the Qianhai sub-area as an example, we compare the time series RMS cal-
culated based on the time series decomposition method with those derived using the
none-deformation assumption, as displayed in Figure 7. The color bar in Figure 7a was de-
termined using the “natural breaks classification”. The color bar in Figure 7b was manually
defined according to the break values used in (a) and adjusted using its own value range, so
as to make the two color bars comparable. In Figure 7, it is evident that the proposed time
series decomposition method yields a smaller value range of RMS, especially on PS points
prone to land subsidence (highlighted by the white rectangle) identified in the previous
work [27].

To evaluate the residual tropospheric noise, we calculate the percentiles of PS time
series RMS derived by the time series decomposition method over the whole study area, as
shown in Figure 8. Due to the big differences between value ranges of different tropospheric
correction methods in the vertical axis, the percentile plots were split into two subplots.
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Figure 8. Percentile plots of the time series RMS of the tropospheric noise derived over the whole
study area. (a) No correction, GACOS, ERA-I, or ERA5 derived corrections. (b) Corrections using
StaMPS spatiotemporal or its integration with GACOS, ERA-I, or ERA5. The entries “*” in the legend
represent the corrections with the primary TOE retained in interferograms.

In Figure 8a, the results suggest that the weather model-derived corrections help to
remove part of the noise in the original interferograms. ERA5-derived correction achieved
the most reduction of RMS among the three weather model products. The spatiotemporal
filtering suppressed the noise better than the weather model data, perhaps because it was
implemented with a much higher spatial resolution (tens of meters). The integration of
weather model products with spatiotemporal filtering outperforms either of the two. In
addition, it is noticed that the removal of primary TOE further reduces the time series RMS
values, but not significantly. This indicates it is necessary to subtract the primary TOE, but
it is not a dominant source of tropospheric noise over the whole study area.

4.3. Mitigation of Distance-Dependent Signals

Firstly, we calculated the empirical semi-variograms using 200 bins (with a bin toler-
ance of about 386 m) on interferograms before and after tropospheric corrections. Figure 9
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displays the example semi-variograms plotted for the 20170312–20170815 interferogram.
Due to the large disparity between the value ranges of different groups, we display them in
two subplots. In Figure 9, it is intuitive that the semi-variogram values are dramatically
reduced by the correction using spatiotemporal filtering or the combined approaches. It
is worth noting that after removing the primary TOE, the mean semi-variogram values
decrease by more than one order of magnitude.
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Figure 9. Semi-variograms of the 20170312–20170815 interferogram before and after tropospheric
corrections. (a) No correction, GACOS, ERA-I, ERA5 correction, or combined approaches with the
primary TOE retained. (b) Corrections using spatiotemporal filtering or the combined approaches,
after removing the primary TOE. The symbol “*” denote the corrections with primary TOE retained
in the interferograms.

To quantitatively assess the reduction of distance-dependent signals, all semi-variograms
were fitted using a Gaussian model using the least squares estimation method [42]. The
output of each includes a decorrelation range, a sill, and an R square value describing the
goodness of fit [43]. Only the fits with an R square value over 0.6 were kept for analysis.
Then, grouped by different tropospheric correction methods, a weighted mean is calculated
using all available fits in each group using the corresponding R square values as the weights.
The results are shown in Table 4.

Table 4. The model-fitted mean decorrelation range and sill of semi-variograms before and after
tropospheric corrections. Entries denoted by ‘*’ preserve the primary TOE in the interferograms.

Weighted Mean Range (km) Weighted Mean Sill (mm)

Original No correction 53.20 761.39

Group 1
GACOS 48.19 561.66
ERA-I 50.57 489.88
ERA5 51.50 563.68

Group 2

Spatiotemporal filtering * 63.57 223.61
GACOS and filtering * 76.61 71.92
ERA-I and filtering * 61.41 63.82
ERA5 and filtering * 63.57 134.54

Group 3

Spatiotemporal filtering 15.97 2.79
GACOS and filtering 16.75 3.34
ERA-I and filtering 13.72 2.86
ERA5 and filtering 13.78 3.50

According to the results in Table 4, considering the sparse spatial resolution of the
weather model data and the uncertainties in the model fitting of semi-variograms, we
divided the different correction methods into three groups to compare the performance in
the mitigation of spatially correlated signals, i.e., the weather model-derived corrections,
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the combined approaches with the primary TOE retained, and the combined approaches
after removing the primary TOE. In Table 4, the original semi-variograms (derived from
interferograms without tropospheric correction) yield the largest sill value, the square root
of which is a rough measure comparable to the spatial noise of individual interferograms.
The semi-variograms corrected by the three weather model products exhibit a slightly
reduced mean decorrelation range and a considerable decrease in sill values. It is found
that the primary TOE significantly affects the decorrelation range and sill. With the primary
TOE retained, the spatiotemporal filtering and the combined approaches, although further
reducing the mean sill compared with the weather model derived corrections, all yield
even larger decorrelation ranges. After subtracting the primary TOE, the corresponding
range and sill values decreased dramatically.

4.4. Reduction of Phase-Elevation Dependence

As described in Section 3.1.3, Spearman’s rank correlation coefficient was used to
assess the phase-elevation dependence. Since a considerable part of the study area is
located in low-altitude flat terrain, the analysis was conducted only on PS points in hilly
areas with varying altitudes (highlighted by the red boxes in Figure 1), so as to capture the
phase changes with height.

Figure 10 compares Spearman’s rank correlation and Pearson’s linear correlation
coefficients derived from the same interferograms. In Figure 10, the subplots (a) and (b)
each display a scatterplot of phase and elevation with two least-squares reference lines.
Although Spearman’s rank correlation has no corresponding lines, to explicitly show its
difference from Pearson’s linear correlation, we plot the two reference lines. The slope of
each line is equal to the displayed Spearman’s or Pearson’s correlation coefficient. Outliers
have been marked with black circles or ellipses. In Figure 10a, outliers can be found in both
the top right and bottom left corners of the subplot. We can see that the slope of the blue
line, which corresponds to Pearson’s correlation coefficient, is greater than that of the red
line, which corresponds to Spearman’s correlation coefficient. Figure 10b shows that the
slope of the blue line is much smaller than the slope of the red line, as the outliers are all
located at the bottom of the image. The results suggest that Spearman’s rank correlation
is less sensitive to outliers, while Pearson’s linear correlation is prone to larger deviations
when outliers appear.
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Figure 10. Example scatter plots of phase vs. elevation with least-squares reference lines. Outliers
have been marked with black circles or ellipses. The phase values have been converted to millimeters.
(a) Interferogram 20170312-20150615 with a 30 km window size, after tropospheric correction using
ERA5 and spatiotemporal filtering; (b) interferogram 20170312-20160516 with a 30 km window size,
after tropospheric correction using the GACOS product.

To generally analyze the reduction of topography-dependent signals, for all of the
PS points situated in hilly areas (delineated by red boxes in Figure 1), we calculated the
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phase-elevation rank correlation using different spatial scales (window sizes) varying from
10 to 80 km. For each spatial scale, a mean correlation coefficient is computed over all
interferograms, as shown in Figure 11.
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using the interferograms referenced to the acquisition date of 12 March 2017. (a) Results with the
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To investigate the potential influence of disparate primary images on experimental
outcomes, we employed an alternative primary image acquired on 4 February 2017 for
cross-validation. The results area is displayed in Figure 12.
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Figure 12. Phase-elevation rank correlation coefficient before and after tropospheric corrections,
using the interferograms referenced to the acquisition date of 4 February 2017. (a) Results with the
primary TOE retained. (b) Results after subtracting the primary TOE in the spatiotemporal filtering
and the combined approaches.

It should be noted that weather model-derived corrections do not involve spatiotem-
poral filtering, with both primary and secondary TOE preserved. From Figures 10b and
11b, we can see that the use of a different primary image did not alter the comparison
relationship of phase-elevation correlation between the original interferograms and the
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interferograms corrected by weather model products. After the weather model-derived
corrections, the phase-elevation correlation coefficients all decreased. Among the three
weather model products, GACOS achieved the most reduction in the phase elevation
correlation.

Upon comparing Figures 11a and 12a, we observed that the use of different primary
images resulted in significant changes to the phase-elevation correlation coefficient in
interferograms corrected through spatiotemporal filtering or its integration with weather
model products. This outcome is expected as the interferometric phase contains primary
TOE that is unique to the primary images acquired on different dates.

From Figures 11 and 12, it is evident that the removal of primary TOE led to a
substantial reduction in the phase-elevation dependence, regardless of the primary image
used. In both Figures 11b and 12b, after removing the primary TOE, the combined approach
using any of the three weather model products reduced the phase-topography correlation
to a similar extent, and GACOS and spatiotemporal filtering exhibits a slightly superior
performance in comparison to the other combined approaches. In Figure 11b, it can be
observed that the spatiotemporal filtering method still displays a slightly higher phase-
elevation correlation than its combination with weather model products at the spatial scales
of 10 km and 20 km. In contrast, this trend is evident across all spatial scales above 30 km
in Figure 12b.

4.5. The Roles of Primary and Secondary TOE in Tropospheric Corrections

As revealed by the decorrelation range of semi-variograms (Table 4), the primary
TOE significantly affects the decorrelation range of semi-variograms in the corrections
using spatiotemporal filtering or combined approaches. As pointed out by previous
studies, tropospheric delays are composed of a short-scale (few kilometers) turbulent
component due to strong variation of water vapors, a long-scale turbulent component (tens
of kilometers) attributed to the lateral variations of temperature, pressure, and humidity,
and a long-scale stratified component resulted from vertical variations of temperature,
pressure, and humidity [26,41]. We can reasonably surmise that the primary TOE is an
estimate of long-scale signals, while the secondary TOE is more related to short-scale
turbulence. Hence, removing the secondary TOE led to a considerable decrease in mean sill
values due to the reduction of short-scale signals. When the primary TOE was preserved,
the long-scale signals remained, so the decorrelation range did not decrease.

According to the phase-elevation correlation analysis (Figures 11 and 12), the primary
TOE plays a leading role in reducing the phase elevation correlation. In the combined
approaches, the dependence decreased dramatically after removing the primary TOE. The
reason can be inferred as follows: the primary TOE is obtained by temporal low-pass
filtering from the spatially correlated nuisance terms. At low altitudes and flat terrain,
the primary TOE corresponds to the temporally correlated part of the tropospheric delay
introduced by the use of a common reference (primary) image in the PS InSAR approach.
In middle-to-high altitude hilly areas, given that the stratified component is temporally
correlated, the primary TOE actually estimates part of the stratified delays.

Regarding the statistics of PS time series RMS (Figure 8), the removal of primary TOE
reduces the tropospheric noise, but not significantly, suggesting that the primary TOE is
not the main source of tropospheric noise over the whole study area. However, it still
substantially affects distance-dependent signals and topography-dependent signals. In the
conventional view, the statistical correction methods do not take into account the stratified
delay, which is distance-dependent and topography correlated. Through our investigation,
we found that, in fact, the primary TOE in StaMPS spatiotemporal filtering estimates longer
wavelength signals, and undertakes part of the estimates of the stratified delays in the
middle to high-altitude areas.
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4.6. Local Subsidence Maps Derived after Tropospheric Correction

In this section, we present examples of the local subsidence maps (Figure 13) that were
obtained after the tropospheric correction using ERA5 and spatiotemporal filtering.
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Figure 13. Line-of-Sight (LOS) deformation rates derived after tropospheric correction using ERA5
and spatiotemporal filtering, and superimposed on Google Earth high resolution images. Sub-areas
exhibiting significant subsidence are highlighted by black circles. (a) Annual deformation rate derived
in the ocean-reclaimed land in the Qianhai area, Shenzhen; (b) annual deformation rate derived in
the ocean-reclaimed land in HKIA; an original rocky island Chek Lap Kok is outlined with white
lines and labeled as “A”, and the other original rocky island Lam Chau is drawn with white lines
and labeled as “B”; (c) annual deformation rate derived in a residential area nearby metro tunneling
works at Liantang station, Shenzhen.

Figure 13a shows the reclaimed Qianhai area, which encircles Qianhai Bay, and is
also known as the Qianhai Free Trade Zone. The Qianhai area underwent substantial land
reclamation predominantly from 1979 to 2010, with minimal alteration to the shoreline
observed after 2010. The annual displacement rate in Qianhai area reaches −13 mm/yr,
with the most significant subsidence outlined in the black circle. Figure 13b illustrates
the land subsidence observed in HKIA. The HKIA, as one of the largest artificial islands
in the world, was reclaimed on the foundation of two original rocky islands (Chek Lap
Kok drawn with white lines and marked as “A”, and Lam Chau outlined with white lines
and marked as “B”) that formerly located off the northern coast of Lantau Island. Local
settlements mainly present in the reclaimed area, with mean deformation rate ranges from
0 to −13 mm/yr. Figure 13c presents the subsidence monitored in a residential area during
the construction of Metro Line 2 in Shenzhen. The construction of the metro tunnel spanned
from 2015 to 2020, with the excavation of the shaft beginning in the latter half of 2016. The
location of the shaft excavation is demarcated by the black pentagram, and the segment
of the metro tunneling construction is indicated by the gray line. We have observed a
significant subsidence bowl at the site of shaft excavation. In addition, more subsidence
spots have been identified near the construction segment of the metro tunnel.

5. Discussion
5.1. The Applicability and Limitations of Different InSAR Tropospheric Correction Methods

Reflected by the time series RMS metric (Figure 8), the tropospheric noise was reduced
by the weather model-derived corrections, but still higher than that corrected by the
spatiotemporal filtering. This is likely due to the coarse spatial resolution of weather
model products, which currently limits the ability of weather model-derived corrections
to mitigate the short-scale turbulence with a wavelength smaller than the horizontal grid
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spacing of weather model data [44], leading to higher residual tropospheric noise. The
combined approaches achieved the greatest reduction of tropospheric noise.

The statistics of the semi-variograms (Table 4) suggest that weather model-derived
corrections mitigated part of the long-scale signals, but not completely. This may be
due to the inaccuracies of the weather model corrections, as the spatial resolution of the
weather model data is too coarse compared to the decorrelation range of the original semi-
variograms (~53 km). In contrast, the primary TOE derived by the spatiotemporal filtering
provides a more accurate estimate of long-scale signals, which should be attributed to the
small window size (typically set to 800 m~1 km) used in the StaMPS spatial low-pass filter.

The analysis of phase elevation correlation (Figure 11) indicates that, in spatiotemporal
filtering, the primary TOE has an important impact on phase elevation dependence. In
the past, it was generally accepted that statistical methods (e.g., stacking, spatiotemporal
filtering) assumed a random distribution of tropospheric phase delays along the timeline.
However, in the employed StaMPS PS-InSAR approach, only the secondary TOE has this
characteristic. It is not surprising that the removal of secondary TOE did not reduce much
of the topography-dependent signals. The primary TOE, which is assumed correlated
both in time and space, actually attributes to the estimate of topography-related signals in
the middle-to-high altitudes. Despite the significant reduction of topography-dependent
signals achieved by using weather model-derived corrections, our findings indicate that
their integration with spatiotemporal filtering can lead to a further reduction of the phase-
elevation dependence.

One direction for our future work is to use mesoscale and/or regional atmospheric
reanalysis where applicable. This is expected to further improve the performance of weather
model-derived corrections and the combined approaches.

5.2. Comparison of ERA-I, ERA5, and GACOS for the Tropospheric Correction in Coastal Areas

As revealed by the time series RMS metric (Figure 8), the GACOS correction exhibits
the highest residual tropospheric noise among the weather model-derived corrections
(Figure 8). The GACOS correction only reduces the noise of original interferograms when
it is above about 40% percentile. We consider that lower percentile points, i.e., smaller time
series RMS, correspond to calm tropospheric conditions. For higher percentile points, i.e.,
interferograms with stronger signals, GACOS correction exhibits positive results. Therefore,
it can be inferred that the performance of GACOS correction is sensitive to the magnitude
of the tropospheric signal. Another factor could be that the current version of GACOS uses
HRES ECMWF analysis as input to generate zenith total delay maps. ERA-I and ERA5, as
reanalysis, both benefit from more observations and more rigorous quality control than
analysis data. In addition, we notice that the tropospheric noise after ERA-I correction is
slightly lower than that corrected by ERA5 below the 50% percentile, while it is higher
above the 50% percentile. These observations indicate that under strong tropospheric
signals, the ERA5-derived correction is more effective in mitigating the tropospheric noise.

In the inspection of residual topography-correlated signals (Figures 11 and 12), GACOS
minimized the phase-elevation dependence among the three weather model products. This
finding suggests that GACOS, leveraging the Iterative Tropospheric Decomposition (ITD)
model, has superior performance in the decoupling of turbulent and stratified tropospheric
delays, resulting in more accurate removal of the topography-dependent signals. In the
future, by incorporating the ITD model with new global atmospheric reanalysis, the GACOS
product is expected to achieve better performance of InSAR tropospheric correction.

6. Conclusions

In this paper, we come up with a guideline for a statistical assessment of InSAR
tropospheric corrections. Firstly, a time series decomposition method was proposed to
reduce the bias due to ground displacement, so as to facilitate a more accurate estimate of
tropospheric noise from time series analysis of interferograms, without relying on the none-
deformation assumption. On this basis, three statistical metrics were adapted to evaluate
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the performance of tropospheric corrections: (i) the PS time-series RMS value to assess
the elimination of overall tropospheric noise, after the time series decomposition; (ii) the
semi-variograms with model-fitted decorrelation range and sill to reflect the reduction of
distance-dependent signals; (iii) Spearman’s rank correlation between phase and elevation
to evaluate the mitigation of stratified tropospheric delays in hilly areas.

The applicability and limitations of the weather model-derived corrections, the widely
used StaMPS spatiotemporal filtering method, and combined approaches were systemati-
cally assessed. Experiments were conducted on the east bank of the Pearl River Estuary,
employing the advanced and globally available weather model products, including ERA5,
ERA-Interim, and GACOS. It was found that the employed global weather model products
cannot remove the short-scale turbulence due to their coarse grid spacing, but are effective
in the mitigation of long-scale signals and stratified delays. The StaMPS spatiotemporal
filtering works well in the mitigation of short-scale water vapor. The combined approaches
outperform either of the two mainstream methods in the elimination of overall tropospheric
noise. Comparing the three weather model products, ERA5 and ERA-I achieved better
performance in the suppression of overall tropospheric noise, while GACOS outperformed
the other two in the mitigation of topography-dependent signals.

Furthermore, we highlight that the primary and secondary TOEs, resulting from the
StaMPS spatiotemporal filtering embed in PS InSAR processing, take on different roles in
the InSAR tropospheric corrections. The primary TOE estimates long-scale tropospheric
signals, while the secondary TOE is related to the estimation of short-scale turbulence. In
hilly areas, the primary TOE, as derived by its time-dependent features, undertakes part of
the estimates of long-scale stratified delays.

With the success of the European Space Agency’s Sentinel-1 and the subsequent sup-
port from upcoming missions, the volume of satellite data will be continuously increasing.
Numerous automated/intelligent InSAR processing systems have been under development.
The presented statistical metrics will enable the comprehensive and quantitative evaluation
of InSAR tropospheric correction, and facilitate the intelligent system to concentrate on
the interpretation of ground surface displacement. This, coupled with the availability and
improvements of regional/global atmospheric reanalysis, provides great opportunities
for intelligent InSAR monitoring of the earth surface from local, regional to large-area
applications.
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