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Abstract: Soil moisture is an important land environment characteristic that connects agriculture,
ecology, and hydrology. Surface soil moisture (SSM) prediction can be used to plan irrigation, monitor
water quality, manage water resources, and estimate agricultural production. Multi-source remote
sensing is a crucial tool for assessing SSM in agricultural areas. The field-measured SSM sample data
are required in model building and accuracy assessment of SSM inversion using remote sensing data.
When the SSM samples are insufficient, the SSM inversion accuracy is severely affected. An SSM
inversion method suitable for a small sample size was proposed. The alpha approximation method
was employed to expand the measured SSM samples to offer more training data for SSM inversion
models. Then, feature parameters were extracted from Sentinel-1 microwave and Sentinel-2 optical
remote sensing data, and optimized using three methods, which were Pearson correlation analysis,
random forest (RF), and principal component analysis. Then, three common machine learning
models suitable for small sample training, which were RF, support vector regression, and genetic
algorithm-back propagation neural network, were built to retrieve SSM. Comparison experiments
were carried out between various feature optimization methods and machine learning models. The
experimental results showed that after sample augmentation, SSM inversion accuracy was enhanced,
and the combination of utilizing RF for feature screening and RF for SSM inversion had a higher
accuracy, with a coefficient of determination of 0.7256, a root mean square error of 0.0539 cm3/cm3,
and a mean absolute error of 0.0422 cm3/cm3, respectively. The proposed method was finally used to
invert the regional SSM of the study area. The inversion results indicated that the proposed method
had good performance in regional applications with a small sample size.

Keywords: surface soil moisture; synthetic aperture radar; data augmentation; feature optimization;
machine learning

1. Introduction

Surface soil moisture (SSM) is a critical land environment variable that connects
agriculture, ecology, and hydrology, as well as a key parameter in hydrology, meteorology,
and agricultural applications. SSM monitoring can be used to plan irrigation, monitor
water quality, manage water resources, and estimate crop yield [1,2]. Understanding the
spatial and temporal distribution and dynamic changes of SSM can help guide agricultural
management.

Traditional SSM monitoring often employs the gravimetric method or the probe
method. Although the precision is reasonably good and the operation is simple, it necessi-
tates a significant amount of personnel and material resources, and is easily influenced by
the surrounding environment and human variables. Furthermore, because the number of
sample locations is restricted, it is hard to obtain a substantial amount of SSM information
in a short period of time [3].
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Remote sensing technology offers a potent approach to detecting SSM on a broad scale
and with great spatial-temporal resolution. Synthetic aperture radar (SAR) is a promising
method for assessing SSM with high spatial-temporal resolution [4,5]. In contrast to optical
remote sensing, SAR does not require sunshine, and microwave signals may penetrate
the surface soil to estimate and monitor SSM in real time [6]. SAR data demonstrate the
vast potential and promising practice of mapping global SSM at medium and high spatial
resolution [7]. SAR is sensitive to the dielectric and geometric properties of the target [8,9].
Fung et al. [10] built an integral equation model to estimate soil moisture. Empirical models
such as the Oh model established by Oh et al. [11] and the Dubois model established by
Dubois et al. [12] can estimate soil moisture within their effective range. Bao et al. [13]
modified the water cloud model (WCM) based on optical indicators, and introduced
the vegetation index to reduce the impact of vegetation cover on SSM. Compared with
empirical, semi-empirical, and theoretical models, machine learning can avoid complex
physical relationships and solve nonlinear problems, and is widely used in SSM inversion.
Gao et al. [14] used Sentinel-1 and Sentinel-2 data to determine SSM using the change
detection method. Guo et al. [15] used Sentinel-1 and Sentinel-2 data to determine SSM
using support vector regression (SVR) and generalized regression neural network (GRNN)
methods. Datta et al. [16] compared the applicability of different machine learning and
linear regression models in SSM inversion using Sentinel-1 and Sentinel-2 data.

Because artificial neural network (ANN) has high nonlinear fitting abilities and can
learn autonomously, it is increasingly being employed to solve the problem of SSM in-
version. Arnicola et al. [17] discovered that by increasing the number of input ANN
characteristics, the SSM inversion accuracy may be gradually increased. Pasolli et al. [18,19]
applied the SVR model to retrieve SSM using microwave remote sensing data. Using
different input parameters can also increase the accuracy of SSM inversion. Said et al. [20]
estimated SSM using an ANN with several input parameters. Multiple regression is inferior
to ANN inversion. In addition to traditional machine learning methods, many deep learn-
ing methods have also been employed in SSM monitoring in recent years. Cai et al. [21]
developed an SSM prediction model using a deep learning regression network (DNNR)
with big data fitting capabilities. To obtain reliable results, the deep learning method
requires a large number of training samples.

In the case of small samples, it is critical to select the suitable machine learning model
and then refine the model parameters. When there are too many input factors, screening
some distinctive parameters can significantly enhance the accuracy of soil moisture in-
version. Lin et al. [22] inverted the SSM of winter wheat fields using RADARSAT-2 data
and polarization decomposition method to enhance the number of input factors, and used
several feature selection and machine learning methods to improve the model performance
and estimate SSM effectively and accurately. Zhang et al. [23] extracted several features
from passive microwave remote sensing data, optical remote sensing data, land surface
model (LSM) and other auxiliary data, assessed the value of different features to SSM
retrieval, and then proposed an SSM retrieval method based on random forest (RF) model.

In practical applications, most machine learning techniques require amounts of sample
data to assure adequate training. When there are few training samples, the model trained
with tiny samples is prone to over-fitting of small samples and under-fitting target tasks.
Therefore, when the number of samples is insufficient, increasing the sample size is a crucial
way to raise inversion accuracy. Based on multi-time camera-borne SAR and ground mea-
surement data and the change detection theory, Balenzano et al. [24] investigated the link
between SSM changes and SAR signal changes of two crops in different wave bands, polar-
izations, and incident angles, and provided the quantitative equation that connects them,
i.e., the alpha approximation method. He et al. [25] expanded the alpha approximation
approach by using a time series of L-band SAR data and simultaneous ground observations
from SMAPEx-3 to retrieve SSM. Xu et al. [26] used the alpha approximation method to
augment the measured data for training the SVR model and further improved the SSM
inversion accuracy. However, the input parameters and machine learning models used in
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these studies were specified in advance, lacking more optimizations of input parameters
and inversion models to improve the SSM inversion accuracy further.

There are various constraints in SSM inversion for a small size of sample data. To
improve the accuracy of SSM inversion for small samples, an SSM inversion method com-
bining sample augmentation, feature optimization, and machine learning models was
investigated in this paper. Firstly, assuming that the surface roughness and vegetation
conditions remain unchanged in the short term, the field-measured SSM data were aug-
mented by using the alpha approximation method to provide more training data for the
machine learning models. Secondly, feature parameters were extracted from Sentinel-1 and
Sentinel-2 remote sensing data, and optimized by using Pearson correlation analysis, RF,
and principal component analysis (PCA) methods. Then, three common machine learning
models suitable for small sample training, which were genetic algorithm-back propagation
neural network (GA-BP), SVR, and RF, were built to retrieve SSM and evaluate the accu-
racy. Finally, after comparing various combinations of feature optimization methods and
machine learning models, the optimal inversion model was chosen to retrieve the regional
SSM of the study area.

2. Materials and Methods
2.1. Study Area and Sampling Procedures

The study area was the eastern part of the Danjiangkou Ecological Service Area, which
spanned Henan and Hubei provinces, China. The Danjiangkou Reservoir is the water
source of the Middle Route Project of South-to-North Water Transfer. The Danjiangkou
Ecological Service Area is a national first-class water source protection zone that was
declared as one of China’s ecological function protection zones in 2015. Its landscape is
sloping from northwest to southeast, with low mountains in the northwest, hills in the
center, and hills and alluvial plains in the southeast. The soil types in the study area are
mainly yellow-brown soil and brown soil [27]. The study area has a monsoon environment
ranging from the north subtropical zone to the warm temperate zone, with a mild climate,
and four distinct seasons. In recent years, the annual precipitation here is about 800 mm
to 1300 mm. It is a transitional zone between north and south, with a wide range of
vegetation types and an abundance of plant resources. The study area is mostly made up
of agricultural land, building land, and a body of water, as shown in Figure 1.
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Figure 1. Location of the study area and the sampling points: (a) the Danjiangkou ecological service 
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compose Sentinel-1 SAR data to extract polarization information. 
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Table 1. Remote sensing data information. 

Data Source Acquisition Date Product Type Polarization Mode 

Sentinel-1 
(SAR Data) 

11 September 2021 
23 September 2021 

5 October 2021 
1W SLC + GRD Dual-Polarization 

Sentinel-2 
(Optical Data) 

12 September 2021 
22 September 2021 

2 October 2021 
L2A  

A field survey was carried out on 23 September 2021. A total of 41 sample points 
were set-up in the study area, as shown in Figure 1. Data gathered in the field included 
SSM value and coordinates of each sampling point. A portable TDR350 SSM meter was 
used to measure field SSM value. At each sampling point, the volumetric soil moisture 
content of the farmland surface layer was measured 5 times at 5 different places in a cross 
shape, and the average value of these 5 SSM values was used as the final measured SSM 
value at this sampling point. An outdoor portable UG905 locator with a positioning accu-
racy of 1 to 3 m was used to determine the latitude and longitude of each sampling point. 
The WGS84 coordinate system was used to record the coordinate of each sampling point. 

Figure 1. Location of the study area and the sampling points: (a) the Danjiangkou ecological service
area; (b) the study area and sampling points.
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Sentinel-1 SAR remote sensing images used in this study were acquired on 3 dates,
which were 11 September, 23 September, and 5 October 2021. The obtained SAR images
were preprocessed using the Sentinel application platform (SNAP) software from European
Space Agency (ESA), including radiometric calibration, multi-viewing, Refined Lee filtering,
and terrain correction. Simultaneously, the PolSARpro software was used to decompose
Sentinel-1 SAR data to extract polarization information.

Sentinel-2 optical remote sensing images used in this study were acquired on 3 dates
quasi-synchronous with Sentinel-1 data, which were 12 September, 22 September, and 2
October 2021. All Sentinel-2 data were L2A products with 12 bands. Details and acquisition
dates for Sentinel-1 and Sentinel-2 image data utilized in this study are shown in Table 1.

Table 1. Remote sensing data information.

Data Source Acquisition Date Product Type Polarization Mode

Sentinel-1
(SAR Data)

11 September 2021
23 September 2021

5 October 2021
1W SLC + GRD Dual-Polarization

Sentinel-2
(Optical Data)

12 September 2021
22 September 2021

2 October 2021
L2A

A field survey was carried out on 23 September 2021. A total of 41 sample points were
set-up in the study area, as shown in Figure 1. Data gathered in the field included SSM
value and coordinates of each sampling point. A portable TDR350 SSM meter was used to
measure field SSM value. At each sampling point, the volumetric soil moisture content of
the farmland surface layer was measured 5 times at 5 different places in a cross shape, and
the average value of these 5 SSM values was used as the final measured SSM value at this
sampling point. An outdoor portable UG905 locator with a positioning accuracy of 1 to
3 m was used to determine the latitude and longitude of each sampling point. The WGS84
coordinate system was used to record the coordinate of each sampling point.

2.2. Methods

The technical roadmap of the proposed method is shown in Figure 2.
The first step was data augmentation. The alpha approximation method was used to

increase the sample size.
The second step was feature extraction. To obtain the necessary characteristic pa-

rameters, Sentinel-1 SAR data were preprocessed and H/A/αpolarization decomposition
was carried out. The band data were extracted from the Sentinel-2 optical data, and the
corresponding vegetation indices were calculated as the characteristic parameters.

The third step was feature optimization. The extracted feature parameters were
optimized using 3 methods separately, including Pearson correlation analysis, RF, and PCA.
The most advantageous feature subset was chosen based on the correlation between the
characteristic parameters and the field-measured SSM values.

The fourth step was model building. To guarantee the training and inversion correct-
ness of the models, GA-BP, SVR, and RF models were built and tweaked individually.

The fifth step was accuracy assessment. The inversion accuracy of 9 combinations
of feature optimization methods and machine learning models was evaluated, and the
optimal combination was chosen to retrieve the regional SSM of the study area.
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2.2.1. Data Augmentation

For the problem of SSM inversion accuracy affected by the small size of the field
measured SSM sample data, the alpha approximation method was adopted in this study to
expand the sample size.

The alpha approximation method was proposed by Balenzano et al. [23]. Assuming
that vegetation conditions and surface roughness remain constant throughout time, the
change in backscattering is only affected by changes in soil moisture [25]. The quantitative
link between backscattering coefficients and SSM is defined as Equations (1)–(3).

σ2
0

σ1
0
≈
∣∣∣∣∣α2

pp(εs, θ)

α1
pp(εs, θ)

∣∣∣∣∣
2

(1)

αHH(εs, θ) =

∣∣∣∣∣∣∣
εs − 1(

cosθ +
√

εs − sin2θ
)2

∣∣∣∣∣∣∣ (2)

αVV(εs, θ) =

∣∣∣∣∣∣∣
(εs − 1)

[
sin2θ − εs

(
1 + sin2θ

)]
(

cosθ +
√

εs − sin2θ
)2

∣∣∣∣∣∣∣ (3)
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where σi
0 is the backscattering coefficient at time i, θ is the incidence angle, εs is the soil

dielectric constant, PP is the polarization (HH or VV), and αPP is a function of the soil
dielectric constant and the incident angle.

Equation (1) can be written as Equation (4).

∣∣∣α1
PP(εs, θ)

∣∣∣−√σ1
0

σ2
0

∣∣∣α2
pp(εs, θ)

∣∣∣ = 0 (4)

When N successive SAR image scenes are employed, the N − 1 equations are summa-
rized as Equation (5).

1 −
√

σ1
0

σ2
0

0

0 1 −
√

σ2
0

σ3
0

· · · 0 0
0 0

...
. . .

...

0 0 0 · · · 1 −
√

σN−1
0
σN

0


(N−1)×N


α1

PP(εs, θ)
α2

PP(εs, θ)
α3

PP(εs, θ)
. . .

αN
PP(εs, θ)


N×1

≈


0
0

. . .
0


(N−1)×1

(5)

Equation (5) can be expressed as Equation (6) when three SAR image scenes are
available. 

∣∣α1
PP(εs, θ)

∣∣−√ σ1
0

σ2
0

∣∣∣α2
pp(εs, θ)

∣∣∣ ≈ 0∣∣α2
PP(εs, θ)

∣∣−√ σ2
0

σ3
0

∣∣∣α3
pp(εs, θ)

∣∣∣ ≈ 0
(6)

where σ1
0 , σ2

0 and σ3
0 can be acquired from the 3 Sentinel-1imgaes that are currently ac-

cessible. This indicates that there are 3 unknown parameters (specifically
∣∣α1

PP(εs, θ)
∣∣,∣∣α2

PP(εs, θ)
∣∣, ∣∣α3

PP(εs, θ)
∣∣) that need to be determined. After obtaining

∣∣α1
PP(εs, θ)

∣∣ as a prior
information through ground estimates,

∣∣α2
PP(εs, θ)

∣∣ and
∣∣α3

PP(εs, θ)
∣∣ can be acquired using

Equation (6).
Because the premise of this study was that vegetation conditions and surface roughness

remain intact in a short period of time, Sentinel-1A data with a repetition period of 12 days
is suitable for the experiment. In this paper, a field survey was carried out on 23 September
2021, the same day when Sentinel-1 satellite transited over the study area. When the other
two Sentinel-1 scenarios are known and taken as previous knowledge, the SSM data on 11
September 2021, and 5 October 2021, can be simply inversed using the empirical expression
of Equation (6).

In the field survey, 41 measured SSM samples were obtained. In the subsequent
experiment, the measured samples were randomly split into two sets, which were the
training set with 26 samples and the testing set with 15 samples. Only the training set was
expanded using the alpha approximation method. The testing set remained unchanged
and was utilized to assess the experimental accuracy. A total of 93 sampling points were
obtained after data augmentation. To get rid of the interference, any outliers that may be
present in the expanded data were removed.

2.2.2. Feature Parameter Extraction

The training accuracy of a machine learning model is highly connected to the number
and quality of the training data. The model will converge too slowly if there is too much
training data. This can impair the model’s ability to train on its own, lead to incorrect
predictions, and lower the model’s accuracy. The prediction accuracy of the machine
learning model can be increased while reducing consumption by analyzing the feature
parameter set and choosing the feature parameters with strong correlation as the input data.

• Polarization Feature Parameters
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SAR works by sending microwave beams to objects and picking up echoes from those
items to identify distinguishing traits. Radar information is directly impacted by both object
characteristics and radar parameters, including the target object’s physical characteristics
and the wavelength, incidence angle, and polarization mode [28].

The incident angle (θ), VV, and VH polarization backscattering coefficients were
extracted from the preprocessed Sentinel-1 SAR data and used as the defining parameters
of the following experiments based on the latitude and longitude of each sampling point.

Both cos(θ) and sin(θ) are connected to soil moisture [29]. The correlation between
the backscattering coefficient and sin(θ) is larger in soils with higher soil moisture levels,
and the correlation between the backscattering coefficient and cos(θ) is higher in soils
with lower soil moisture levels. When the incident angle is constant, the backscattering
coefficient increases with the increase of volumetric soil moisture content, and the combi-
nation of different polarization backscattering coefficients of (σ0

VV + σ0
VH), (σ0

VH − σ0
VV),

(σ0
VV × σ0

VH) and (σ0
VH/σ0

VV) are also increased. More characteristic parameters from SAR
remote sensing data can be extracted using polarization decomposition. H/A/α decom-
position is used for eigenvalue decomposition of coherent matrix or covariance matrix
of target features on Sentinel-1 dual polarization data, from which scattering entropy
(H), inverse entropy (A), average scattering angle (α) and eigenvalues (λ1 and λ2) can be
extracted [30].

• Vegetation Indices

Many vegetation indices can be generated from optical remote sensing data to describe
surface vegetation information [28]. The backscattering coefficient of SAR is not only related
to its own polarization mode, incidence angle, and SSM, but also to the vegetation coverage
and roughness of the surface. It is necessary for SSM inversion to remove or weaken the
impact of vegetation and surface roughness. The vegetation index is the combination of
ground reflectivity in two or more wavelength bands to accentuate a certain feature or
detail of plants. Varied vegetation indices have different band application ranges and fields
due to sensor kinds and band combinations.

According to the multi-band data provided by the multispectral imager (MSI) car-
ried by Sentinel-2 and the actual vegetation coverage in the study area, six vegetation
indices commonly used in SSM inversion research, including normalized difference vege-
tation index (NDVI), normalized difference moisture index (NDWI), specific vegetation
index (RVI), water stress index (MSI), water body index (WBI) and fused vegetation index
(FVI) [31], were finally selected for this study. Their calculation formulas are shown in
Equations (7)–(12).

NDVI =
ρ842 − ρ665

ρ842 + ρ665
(7)

NDWI =
ρ842 − ρ1610

ρ842 + ρ1610
(8)

RVI =
ρ842

ρ665
(9)

MSI =
ρ1610

ρ842
(10)

WBI =
ρ865

ρ945
(11)

FVI =
2ρ842 − ρ665 − ρ1610

2ρ842 + ρ665 + ρ1610
(12)

where ρ490, ρ665, ρ842, ρ865, ρ945 and ρ1610 represent the band values corresponding to 490,
665, 842, 865, 945, 1610 nm in Sentinel-2 data, respectively. The 490 nm and 665 nm bands
represent the blue and red of visible light. The 842 nm and 865 nm bands represent Near
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Infrared (NIR) and Narrow NIR. The 945 nm band represents water vapor. The 1610 nm
band represents Short Wave Infrared (SWIR).

• Surface Roughness

The surface roughness of the soil influences the microwave backscattering coefficient.
The surface roughness information changes depending on the band frequency, incident
angle, and polarization mode. Removing the influence of surface roughness on SSM
inversion can increase accuracy. The surface combined roughness Zs [32] used in this study
was calculated using SAR data and represented by Equations (13)–(15).

Zs = exp

(
σ0

HV − σ0
VV − Bv(θ)

Av(θ)

)
(13)

Av = −2.6408sin3(θ) + 5.293sin2(θ)− 3.838sin(θ) + 2.2042 (14)

Bv = 4.1522sin3(θ)− 13.1sin2(θ) + 16.9472sin(θ)− 16.4228 (15)

where Av and Bv are coefficients only applicable to the combined roughness model using
C-band data, and only change with incident angle.

A total of 21 feature parameters were extracted from Sentinel-1 and Sentinel-2 data, as
shown in Table 2.

Table 2. Summary of parameters extracted from Sentinel-1 and Sentinel-2 data.

No. Parameter No. Parameter No. Parameter

1 θ 8 σ0
VV × σ0

VH 15 NDVI
2 σ0

VV 9 σ0
VH/σ0

VV 16 NDWI
3 σ0

VH 10 H 17 RVI
4 cos(θ) 11 A 18 MSI
5 sin(θ) 12 α 19 WBI
6 σ0

VV + σ0
VH 13 λ1 20 FVI

7 σ0
VH − σ0

VV 14 λ2 21 Zs

2.2.3. Feature Parameter Optimization

In this study, the extracted feature parameters were evaluated using Pearson corre-
lation analysis, RF, and PCA methods separately to select the suitable feature parameter
subset for the subsequent machine learning models.

• Pearson Correlation Analysis Method

The Pearson correlation coefficient, which has a value between −1 and 1, is the simplest
approach to determine whether two variables are linearly connected. The sign indicates the
positive-negative correlation. The closer its absolute value is to 1, the stronger the linear
association between the two variables is. Conversely, the closer it is to 0, the weaker the
linear relationship between the two variables is. It is calculated using Equation (16).

r(X, Y) =
Cov(X, Y)√

Var(X)Var(Y)
(16)

where Cov (X, Y) represents the covariance of two variables X and Y, Var(X) is the variance
of X, and Var(Y) is the variance of Y.

• Random Forest Method

The RF method can calculate the relevance of each variable during the model-building
process [33]. In feature selection process with RF, the importance of each feature is first
calculated and arranged in descending order. The proportion to be deleted is then estab-
lished, and the matching proportion of characteristics is eliminated based on their relevance,
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yielding a new feature set. The preceding procedure with a new feature set is repeated
until only m features remained, among which m is a preset value. Finally, the feature set
with the lowest error rate is chosen based on each feature set acquired in the preceding
process and its related error rate.

• Principal Component Analysis Method

PCA is a method for finding a way to minimize the dimension of data while mini-
mizing information loss [34]. It is an important tool in data analysis and frequently used
in machine learning to minimize the dimension of high-dimensional data, since it can
extract the key characteristic variables from the data. Each vector has a correlation in
high-dimensional data sets, whereas it has a linear independence in low-dimensional
data sets, allowing the overlapping information in high-dimensional data sets to be re-
moved [35]. High-dimensional data are reduced to fulfill the goals of data dimensionality
reduction, compression, and noise reduction. The data dimensionality is reduced, but the
most relevant information is maintained, and certain unimportant aspects are deleted.

2.2.4. Construction of Machine Learning Models

Machine learning excels in nonlinear fitting. It is useful in resolving issues with
excessive factors and convoluted structures in SSM inversion models. Even after sample
augmentation, the number of samples is still limited due to the small number of field-
measured SSM samples. Three field-measured typical machine learning models, GA-BP,
SVR, and RF, that are appropriate for small sample training, were chosen for the study in
order to prevent over-fitting.

• Genetic Algorithm–Back Propagation Neural Network Model

Both neural networks and evolutionary algorithms are ways for imitating biological
treatment modes and obtaining practical answers to complicated issues. The BP neural
network is capable of adaptive learning and powerful nonlinear simulation. However,
it is prone to local minima. In addition, the network’s design is not theoretically guided
and is instead dependent on the designers’ expertise and repeated experimentation in the
sample space, which restricts the network’s ability to find the overall optimal solution. GA
can converge to the global optimal solution and has strong stability, but it lacks adaptive
learning capabilities. As a result, combining a neural network with the genetic algorithm
can enhance not only the neural network’s ability to generalize mapping, but also its rate
of convergence, capacity for global optimization, and learning capacity [36]. The entire
prediction model is extensively upgraded in terms of accuracy and fitting capacity.

• Support Vector Regression Model

SVR is a regression analysis technique that uses the support vector machine (SVM).
The majority of the sample points are situated outside the two decision boundaries thanks
to the separation hyperplane that SVM discovers by maximizing the interval. In contrast to
SVM, SVR also takes into account the maximum interval, but it also takes into account the
points within the decision boundary to ensure that the majority of the sample points are
situated within the interval. The most significant advantage of SVR is that it uses the kernel
function rather than the inner product operation in high-dimensional space, transforming
a high-dimensional nonlinear regression problem into a two-dimensional linear regression
problem [37].

• Random Forest Model

RF can be used not only for parameter optimization, but also for parameter inversion.
It is an integrated algorithm based on decision trees, with each decision tree acting as a
classifier. When decision trees are being trained, randomness is incorporated, and samples
and features are chosen at random. There will be n trees with n classification outcomes for
each input sample. All the RF-categorized voting results are combined and the one with the
most votes is chosen as the final result. In this process, integration and randomness coexist.
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RF model has the advantages of increasing prediction accuracy, decreasing over-fitting, and
being unaffected by missing data and multi-collinearity [38]. One advantage of RF is that it
has good generalization performance due to the use of multiple regression trees, which
helps to reduce model variability. It simply has two parameters, the number of trees and
the number of features, therefore it doesn’t require complicated parameter adjustment [17].

3. Results

In this section, the results of sample augmentation and SSM inversion were analyzed,
and the spatial distributions of regional SSM of the study area were obtained.

3.1. Sample Augmentation Results

The inversion accuracy before and after sample augmentation was compared using
the same input parameters by various inversion methods, to confirm the efficacy of sample
augmentation and the benefits of various machine learning models for SSM inversion. The
incident angle (θ), the VV and VH polarization backscattering coefficients, and NDVI were
chosen as the input parameters in this experiment, while GA-BP, SVR, and RF models were
employed as the SSM inversion models.

In this experiment, three precision evaluation indexes, which were determination
coefficient (R2), root mean square error (RMSE), and mean absolute error (MAE), were
employed to assess SSM inversion accuracy. The average values acquired after repeated
experiments were recorded as the experimental results to lessen the randomness of the
outcomes, as indicated in Table 3.

Table 3. Comparison of SSM inversion accuracy before and after sample augmentation.

Method Model R2 RSME
(cm3/cm3)

MAE
(cm3/cm3)

Using original measured
SSM samples before

augmentation

GA-BP 0.3868 0.0757 0.0719
SVR 0.3258 0.0708 0.0566
RF 0.4802 0.0667 0.0522

Using extended measured SSM
samples after
augmentation

GA-BP 0.5411 0.0606 0.0607
SVR 0.4484 0.0644 0.0546
RF 0.5906 0.0578 0.0488

According to the experimental results, the SSM inversion accuracy was clearly im-
proved once the samples were enhanced for all these three machine learning models, and
the RF model was the best prediction model among them.

3.2. Optimal Model Construction
3.2.1. Feature Selection

Sentinel-1 and Sentinel-2 data were preprocessed, and a total of 21 feature parameters
were extracted. In order to improve the model performance, Pearson correlation analysis,
RF and PCA methods were used to reduce the redundant features and improve the accuracy
of model estimation.

There are differences in the selection criteria of these three methods in feature selection.
Pearson correlation analysis method measures the linear correlation between the data, and
the higher correlation indicates that it is more sensitive to SSM inversion. The ranking
of feature importance is shown in Table 4. RF is measured according to the average
contribution of each feature on each tree. Higher contribution indicates that it is more
sensitive to SSM inversion, and the ranking of feature importance is shown in Table 5. PCA
shows the characteristics of data in a smaller dimension by dimensionality reduction, and
finally the new variable is the linear combination of the original variables. The correlation
results of different features are shown in Figure 3.
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Table 4. Ranking of feature importance using the Pearson correlation analysis method.

No. Parameter Correlation
Coefficient No. Parameter Correlation

Coefficient

1 cos(θ) −0.3942 12 RVI 0.1286
2 θ −0.3837 13 σ0

VH − σ0
VV −0.1039

3 sin(θ) 0.3832 14 H 0.1027
4 σ0

VH/σ0
VV −0.3608 15 σ0

VH × σ0
VV 0.0976

5 FVI 0.3180 16 σ0
VH + σ0

VV −0.0853
6 NDVI 0.2374 17 λ1 −0.0701
7 α 0.2004 18 λ2 −0.0654
8 NDWI 0.1915 19 σ0

VH −0.0471
9 MSI −0.1743 20 A −0.0438

10 Zs 0.1556 21 WBI 0.0388
11 σ0

VV −0.1462

Table 5. Ranking of feature importance using RF method.

No. Parameter Correlation
Coefficient No. Parameter Correlation

Coefficient

1 cos(θ) 0.522 12 σ0
VH 0.01696

2 sin(θ) 0.4129 13 FVI −0.01457
3 α 0.3683 14 λ1 0.1441
4 NDVI 0.3457 15 H 0.1364
5 θ 0.2896 16 σ0

VV × σ0
VH −0.0929

6 σ0
VH − σ0

VV 0.2601 17 λ2 0.0896
7 MSI −0.2418 18 σ0

VV + σ0
VH 0.0644

8 σ0
VV −0.2447 19 σ0

VH/σ0
VV −0.0624

9 Zs 0.2035 20 NDWI 0.0541
10 RVI 0.1965 21 WBI −0.0522
11 A 0.1703

Different feature selection methods were applied to the subsequent three machine
learning models respectively. For the verification of different input parameters, the compar-
ison and analysis showed that the results obtained by selecting the first eight features as
ideal feature subsets were generally accurate, so the following experiments all selected the
first eight parameters to ensure the homogeneity of the experiments.

3.2.2. Machine Learning Model

To verify the efficiency of the suggested method, a comparative experiment was
carried out utilizing measured SSM data after sample augmentation, and the application
performance of various feature selection methods and machine learning models in SSM
inversion was reviewed.

In this experiment, R2, RMSE and MAE were employed to assess SSM inversion
accuracy. The average values acquired after repeat experiments were recorded as the
experimental results to lessen the randomness of the outcomes, as indicated in Table 6.

According to the experimental results, the combination of employing RF for feature
selection and RF for SSM inversion offered the maximum inversion accuracy, with R2,
RMSE and MAE of 0.7256, 0.0539 cm3/cm3 and 0.0422 cm3/cm3, respectively.
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Table 6. Comparison of the accuracy of the inversion results under different model combinations.

Feature Selection Method Machine Learning
Method R2 RSME

(cm3/cm3)
MAE

(cm3/cm3)

Pearson correlation analysis GA-BP 0.6656 0.0627 0.0519
Pearson correlation analysis SVR 0.5223 0.0608 0.0466
Pearson correlation analysis RF 0.5750 0.0567 0.0448

RF GA-BP 0.6420 0.0776 0.0658
RF SVR 0.5910 0.0571 0.0455
RF RF 0.7324 0.0534 0.0413

PCA GA-BP 0.5943 0.0770 0.0586
PCA SVR 0.4969 0.0786 0.0622
PCA RF 0.5824 0.0574 0.0450

3.3. Spatial Distribution of SSM

Based on Sentinel-1 SAR data and Sentinel-2 optical data, RF model was used for
feature selection and SSM inversion, and the spatial and frequency distributions of regional
SSM in the study area were obtained, as shown in Figures 4–6. In the study area, the average
values of measured SSM on three dates after sample augmentation were 0.1892, 0.1861 and
0.1808 cm3/cm3, respectively. The average values of retrieved SSM on corresponding dates
were 0.1876, 0.1833 and 0.1783 cm3/cm3, respectively, which were consistent with the field
measured SSM in general.
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4. Discussion
4.1. Data Augmentation

Field measurements are necessary for soil moisture inversion. In practice, there are two
main methods of field measuring. One is the traditional manual measuring method based
on manual ground sampling and measurement on the date of satellite transits [1,4,6,8,12–
20,22,25,26,31,33,36,38]. The other is the automatic measuring method based on ground-
based observation stations or networks in the study area [2,3,7,21,23,24,29]. Compared
with the automatic measuring method, the field measured SSM data obtained through the
traditional manual measuring method are often more difficult to collect, and usually in a
limited number of times and in small quantities.

For those areas without any ground-based observation sites or automatic observation
networks, like the study area in this paper, due to the limitations of time and space, the
data obtained by manual field measurement are generally limited. The small size of
field measured SSM data have a negative effect on SSM inversion accuracy, since there is
insufficient data to train the inversion model and make a meaningful evaluation on the
inversion results.

The experimental results shown in Tables 3 and 6 demonstrated that, the proposed
inversion method based on data augmentation was effective to supply more sample data for
SSM inversion and further improved the inversion accuracy, providing a feasible reference
for SSM inversion studies based on small sample size of field measured data.

It is worth noting that, the alpha approximation method used in this paper for data
augmentation has a certain precondition, which assumed that the vegetation conditions
and surface roughness remain unchanged in the short spanned period. So, the proposed
method in this paper is not suitable for SSM inversion in those areas with large changes in
the vegetation conditions and surface roughness in the study period. In fact, even in a short
period, this precondition is difficult to strictly meet. In this study, although the dates of 11
September 2021 and 5 October 2021 were close to the middle date of 23 September 2021,
and the vegetation conditions and surface roughness kept constant on the whole according
to the field survey and actual situation, small changes in some parts of the study area
were ineluctable. This fact affected the application of the alpha approximation method and
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further the SSM inversion accuracy of the proposed method. In the future, more reliable
and effective data augmentation methods will be explored to expand the sample size, thus
to further improving the SSM inversion accuracy.

4.2. Accuracy Analysis

After data augmentation, the parameters extracted from remote sensing data and
machine learning models for SSM inversion were optimized to improve the SSM inversion
accuracy further.

Three parameter optimization methods, which were Pearson correlation analysis, RF and
PCA, were proven to be effective for parameter optimization in SSM inversion [22,34,38], and
so chosen in this study to reduce the redundant features and improve the accuracy of model
estimation. The experimental results shown in Tables 4 and 5 and Figure 3 indicated that, it
was hard to get a uniform optimal feature subset through these three different optimization
methods, due to their different optimization principles and evaluation criteria. Inspired
by the research in reference [22], the extracted parameters and the used inversion models
were optimized in the whole in this study by using different combinations of parameter
optimization methods and machine learning models. In order to ensure the homogeneity
of the experiments, the first eight features in each ranking result of the feature optimization
method were uniformly selected as the ideal feature subset for the subsequent experiments.
However, it was not ensured that the subsets with the first eight features for all these three
methods could all reach the final maximum inversion accuracy for all these nine model
combinations. Different sizes of optimal feature subsets for different feature selection methods
may be more reasonable for the proposed method and will be explored in this study to further
improve the SSM inversion accuracy.

Three typical machine learning models commonly used in SSM inversion, which
were GA-BP [36,38], SVR [15,18,19,26,33], and RF [16,23,33,34,38], were selected in this
study because of their good performance in SSM inversion based on the small size of
samples [15,16,19,33,36,38]. Combined with three parameter optimization methods, the
performance of nine different model combinations in SSM inversion was compared in the
experiments. According to the experimental results shown in Table 6, the combination
of employing RF for feature selection and RF for SSM inversion offered the maximum
inversion accuracy, with higher R2 and lower RSME and MAE than other combinations.

The performance of GA-BP and SVR models was a little worse than that of the RF
model in this study, although they are generally considered to have good generalization
ability when the sample size is small. One possible reason is that some parameters of
GA-BP and SVR models may be not set properly and could be further optimized. Another
possible reason is that there was an over-fitting issue in their training process because the
sample size in this study was too small, which also affected the performance of the RF
model in this study.

A total of 41 measured SSM samples were obtained in the field survey, and expanded to
93 samples after data augmentation. Compared with the original sample data and previous
SSM inversion studies based on small samples [1,4,6,15,16,18,19,33,36,38], the sample size
had increased. However, due to the limited initial sample size and the limitations of
the alpha approximation method, the sample size was still limited, which was prone to
over-fitting issues in practice. A considerable sample set is still the guarantee for sufficient
model training and reasonable inversion accuracy. More field measurements are planned
in this study in the future.

Even though, for those SSM inversion studies based on a small sample size of field
measured data, as demonstrated in this study, the data augmentation method was still an
effective way to supply more sample data and further improved the inversion accuracy.

5. Conclusions

An SSM inversion method combining sample augmentation, feature optimization,
and machine learning models was investigated in this paper. First, sample augmentation
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was applied to the field-measured SSM data to address the issue that inversion accuracy
was impacted by the sample size. Sentinel-1 SAR data and Sentinel-2 optical data were
integrated to extract and select several feature parameters. The optimal inversion model
was chosen by combining various feature selection methods with machine learning models
at the same time to achieve optimal inversion accuracy. The experimental results indicated
that the inversion accuracy had improved after sample augmentation, and the combination
of employing RF for feature selection and RF for SSM inversion offered the maximum in-
version accuracy, with R2, RMSE and MAE of 0.7256, 0.0539 cm3/cm3 and 0.0422 cm3/cm3,
respectively. The proposed method was finally used to invert the regional SSM of the study
area. The inversion results indicated that the proposed method had good performance in re-
gional applications with a small sample size, and provided a feasible way for SSM inversion
in those areas where the vegetation conditions and surface roughness remain unchanged
within a certain time span. In the future, more effective methods of data augmentation and
machine learning can be explored to further improve the SSM inversion accuracy.
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