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Abstract: Soil moisture is an important land environment characteristic that connects agriculture, 
ecology, and hydrology. Surface soil moisture (SSM) prediction can be used to plan irrigation, mon-
itor water quality, manage water resources, and estimate agricultural production. Multi-source re-
mote sensing is a crucial tool for assessing SSM in agricultural areas. The field-measured SSM sam-
ple data are required in model building and accuracy assessment of SSM inversion using remote 
sensing data. When the SSM samples are insufficient, the SSM inversion accuracy is severely af-
fected. An SSM inversion method suitable for a small sample size was proposed. The alpha approx-
imation method was employed to expand the measured SSM samples to offer more training data 
for SSM inversion models. Then, feature parameters were extracted from Sentinel-1 microwave and 
Sentinel-2 optical remote sensing data, and optimized using three methods, which were Pearson 
correlation analysis, random forest (RF), and principal component analysis. Then, three common 
machine learning models suitable for small sample training, which were RF, support vector regres-
sion, and genetic algorithm-back propagation neural network, were built to retrieve SSM. Compar-
ison experiments were carried out between various feature optimization methods and machine 
learning models. The experimental results showed that after sample augmentation, SSM inversion 
accuracy was enhanced, and the combination of utilizing RF for feature screening and RF for SSM 
inversion had a higher accuracy, with a coefficient of determination of 0.7256, a root mean square 
error of 0.0539 cm3/cm3, and a mean absolute error of 0.0422 cm3/cm3, respectively. The proposed 
method was finally used to invert the regional SSM of the study area. The inversion results indicated 
that the proposed method had good performance in regional applications with a small sample size. 

Keywords: surface soil moisture; synthetic aperture radar; data augmentation; feature optimization; 
machine learning 
 

1. Introduction 
Surface soil moisture (SSM) is a critical land environment variable that connects ag-

riculture, ecology, and hydrology, as well as a key parameter in hydrology, meteorology, 
and agricultural applications. SSM monitoring can be used to plan irrigation, monitor wa-
ter quality, manage water resources, and estimate crop yield [1,2]. Understanding the spa-
tial and temporal distribution and dynamic changes of SSM can help guide agricultural 
management. 

Traditional SSM monitoring often employs the gravimetric method or the probe 
method. Although the precision is reasonably good and the operation is simple, it neces-
sitates a significant amount of personnel and material resources, and is easily influenced 
by the surrounding environment and human variables. Furthermore, because the number 
of sample locations is restricted, it is hard to obtain a substantial amount of SSM infor-
mation in a short period of time [3]. 
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Remote sensing technology offers a potent approach to detecting SSM on a broad 
scale and with great spatial-temporal resolution. Synthetic aperture radar (SAR) is a 
promising method for assessing SSM with high spatial-temporal resolution [4,5]. In con-
trast to optical remote sensing, SAR does not require sunshine, and microwave signals 
may penetrate the surface soil to estimate and monitor SSM in real time [6]. SAR data 
demonstrate the vast potential and promising practice of mapping global SSM at medium 
and high spatial resolution [7]. SAR is sensitive to the dielectric and geometric properties 
of the target [8,Error! Reference source not found.]. Fung et al. [Error! Reference source 
not found.] built an integral equation model to estimate soil moisture. Empirical models 
such as the Oh model established by Oh et al. [Error! Reference source not found.] and 
the Dubois model established by Dubois et al. [Error! Reference source not found.] can 
estimate soil moisture within their effective range. Bao et al. [Error! Reference source not 
found.] modified the water cloud model (WCM) based on optical indicators, and intro-
duced the vegetation index to reduce the impact of vegetation cover on SSM. Compared 
with empirical, semi-empirical, and theoretical models, machine learning can avoid com-
plex physical relationships and solve nonlinear problems, and is widely used in SSM in-
version. Gao et al. [Error! Reference source not found.] used Sentinel-1 and Sentinel-2 
data to determine SSM using the change detection method. Guo et al. [Error! Reference 
source not found.] used Sentinel-1 and Sentinel-2 data to determine SSM using support 
vector regression (SVR) and generalized regression neural network (GRNN) methods. 
Datta et al. [Error! Reference source not found.] compared the applicability of different 
machine learning and linear regression models in SSM inversion using Sentinel-1 and Sen-
tinel-2 data. 

Because artificial neural network (ANN) has high nonlinear fitting abilities and can 
learn autonomously, it is increasingly being employed to solve the problem of SSM inver-
sion. Arnicola et al. [Error! Reference source not found.] discovered that by increasing 
the number of input ANN characteristics, the SSM inversion accuracy may be gradually 
increased. Pasolli et al. [Error! Reference source not found.,Error! Reference source not 
found.] applied the SVR model to retrieve SSM using microwave remote sensing data. 
Using different input parameters can also increase the accuracy of SSM inversion. Said et 
al. [Error! Reference source not found.] estimated SSM using an ANN with several input 
parameters. Multiple regression is inferior to ANN inversion. In addition to traditional 
machine learning methods, many deep learning methods have also been employed in 
SSM monitoring in recent years. Cai et al. [Error! Reference source not found.] developed 
an SSM prediction model using a deep learning regression network (DNNR) with big data 
fitting capabilities. To obtain reliable results, the deep learning method requires a large 
number of training samples. 

In the case of small samples, it is critical to select the suitable machine learning model 
and then refine the model parameters. When there are too many input factors, screening 
some distinctive parameters can significantly enhance the accuracy of soil moisture inver-
sion. Lin et al. [Error! Reference source not found.] inverted the SSM of winter wheat 
fields using RADARSAT-2 data and polarization decomposition method to enhance the 
number of input factors, and used several feature selection and machine learning methods 
to improve the model performance and estimate SSM effectively and accurately. Zhang et 
al. [Error! Reference source not found.] extracted several features from passive micro-
wave remote sensing data, optical remote sensing data, land surface model (LSM) and 
other auxiliary data, assessed the value of different features to SSM retrieval, and then 
proposed an SSM retrieval method based on random forest (RF) model. 

In practical applications, most machine learning techniques require amounts of sam-
ple data to assure adequate training. When there are few training samples, the model 
trained with tiny samples is prone to over-fitting of small samples and under-fitting target 
tasks. Therefore, when the number of samples is insufficient, increasing the sample size is 
a crucial way to raise inversion accuracy. Based on multi-time camera-borne SAR and 
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ground measurement data and the change detection theory, Balenzano et al. [Error! Ref-
erence source not found.] investigated the link between SSM changes and SAR signal 
changes of two crops in different wave bands, polarizations, and incident angles, and pro-
vided the quantitative equation that connects them, i.e., the alpha approximation method. 
He et al. [Error! Reference source not found.] expanded the alpha approximation ap-
proach by using a time series of L-band SAR data and simultaneous ground observations 
from SMAPEx-3 to retrieve SSM. Xu et al. [Error! Reference source not found.] used the 
alpha approximation method to augment the measured data for training the SVR model 
and further improved the SSM inversion accuracy. However, the input parameters and 
machine learning models used in these studies were specified in advance, lacking more 
optimizations of input parameters and inversion models to improve the SSM inversion 
accuracy further. 

There are various constraints in SSM inversion for a small size of sample data. To 
improve the accuracy of SSM inversion for small samples, an SSM inversion method com-
bining sample augmentation, feature optimization, and machine learning models was in-
vestigated in this paper. Firstly, assuming that the surface roughness and vegetation con-
ditions remain unchanged in the short term, the field-measured SSM data were aug-
mented by using the alpha approximation method to provide more training data for the 
machine learning models. Secondly, feature parameters were extracted from Sentinel-1 
and Sentinel-2 remote sensing data, and optimized by using Pearson correlation analysis, 
RF, and principal component analysis (PCA) methods. Then, three common machine 
learning models suitable for small sample training, which were genetic algorithm-back 
propagation neural network (GA-BP), SVR, and RF, were built to retrieve SSM and eval-
uate the accuracy. Finally, after comparing various combinations of feature optimization 
methods and machine learning models, the optimal inversion model was chosen to re-
trieve the regional SSM of the study area. 

2. Materials and Methods 
2.1. Study Area and Sampling Procedures 

The study area was the eastern part of the Danjiangkou Ecological Service Area, 
which spanned Henan and Hubei provinces, China. The Danjiangkou Reservoir is the 
water source of the Middle Route Project of South-to-North Water Transfer. The Danjiang-
kou Ecological Service Area is a national first-class water source protection zone that was 
declared as one of China’s ecological function protection zones in 2015. Its landscape is 
sloping from northwest to southeast, with low mountains in the northwest, hills in the 
center, and hills and alluvial plains in the southeast. The soil types in the study area are 
mainly yellow-brown soil and brown soil [Error! Reference source not found.]. The study 
area has a monsoon environment ranging from the north subtropical zone to the warm 
temperate zone, with a mild climate, and four distinct seasons. In recent years, the annual 
precipitation here is about 800 mm to 1300 mm. It is a transitional zone between north and 
south, with a wide range of vegetation types and an abundance of plant resources. The 
study area is mostly made up of agricultural land, building land, and a body of water, as 
shown in Figure 1. 
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(a) (b) 

Figure 1. Location of the study area and the sampling points: (a) the Danjiangkou ecological service 
area; (b) the study area and sampling points. 

Sentinel-1 SAR remote sensing images used in this study were acquired on 3 dates, 
which were 11 September, 23 September, and 5 October 2021. The obtained SAR images 
were preprocessed using the Sentinel application platform (SNAP) software from Euro-
pean Space Agency (ESA), including radiometric calibration, multi-viewing, Refined Lee 
filtering, and terrain correction. Simultaneously, the PolSARpro software was used to de-
compose Sentinel-1 SAR data to extract polarization information. 

Sentinel-2 optical remote sensing images used in this study were acquired on 3 dates 
quasi-synchronous with Sentinel-1 data, which were 12 September, 22 September, and 2 
October 2021. All Sentinel-2 data were L2A products with 12 bands. Details and acquisi-
tion dates for Sentinel-1 and Sentinel-2 image data utilized in this study are shown in 
Table 1. 

Table 1. Remote sensing data information. 

Data Source Acquisition Date Product Type Polarization Mode 

Sentinel-1 
(SAR Data) 

11 September 2021 
23 September 2021 

5 October 2021 
1W SLC + GRD Dual-Polarization 

Sentinel-2 
(Optical Data) 

12 September 2021 
22 September 2021 

2 October 2021 
L2A  

A field survey was carried out on 23 September 2021. A total of 41 sample points 
were set-up in the study area, as shown in Figure 1. Data gathered in the field included 
SSM value and coordinates of each sampling point. A portable TDR350 SSM meter was 
used to measure field SSM value. At each sampling point, the volumetric soil moisture 
content of the farmland surface layer was measured 5 times at 5 different places in a cross 
shape, and the average value of these 5 SSM values was used as the final measured SSM 
value at this sampling point. An outdoor portable UG905 locator with a positioning accu-
racy of 1 to 3 m was used to determine the latitude and longitude of each sampling point. 
The WGS84 coordinate system was used to record the coordinate of each sampling point. 
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2.2. Methods 
The technical roadmap of the proposed method is shown in Figure 2. 

 
Figure 2. Technology roadmap of the proposed method. 

The first step was data augmentation. The alpha approximation method was used to 
increase the sample size. 

The second step was feature extraction. To obtain the necessary characteristic param-
eters, Sentinel-1 SAR data were preprocessed and H/A/αpolarization decomposition was 
carried out. The band data were extracted from the Sentinel-2 optical data, and the corre-
sponding vegetation indices were calculated as the characteristic parameters. 

The third step was feature optimization. The extracted feature parameters were op-
timized using 3 methods separately, including Pearson correlation analysis, RF, and PCA. 
The most advantageous feature subset was chosen based on the correlation between the 
characteristic parameters and the field-measured SSM values. 

The fourth step was model building. To guarantee the training and inversion correct-
ness of the models, GA-BP, SVR, and RF models were built and tweaked individually. 

The fifth step was accuracy assessment. The inversion accuracy of 9 combinations of 
feature optimization methods and machine learning models was evaluated, and the opti-
mal combination was chosen to retrieve the regional SSM of the study area. 
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2.2.1. Data Augmentation 
For the problem of SSM inversion accuracy affected by the small size of the field 

measured SSM sample data, the alpha approximation method was adopted in this study 
to expand the sample size. 

The alpha approximation method was proposed by Balenzano et al. [23]. Assuming 
that vegetation conditions and surface roughness remain constant throughout time, the 
change in backscattering is only affected by changes in soil moisture [25]. The quantitative 
link between backscattering coefficients and SSM is defined as Equations (1)–(3). 𝜎𝜎 ≈ 𝛼 𝜀 ,𝜃𝛼 𝜀 ,𝜃  (1)

𝛼 𝜀 ,𝜃 = 𝜀 − 1𝑐𝑜𝑠𝜃 + 𝜀 − 𝑠𝑖𝑛 𝜃   (2)

𝛼 𝜀 ,𝜃 = 𝜀 − 1 𝑠𝑖𝑛 𝜃 − 𝜀 1 + 𝑠𝑖𝑛 𝜃𝑐𝑜𝑠𝜃 + 𝜀 − 𝑠𝑖𝑛 𝜃  (3)

where 𝜎  is the backscattering coefficient at time i, 𝜃 is the incidence angle,  𝜀  is the soil 
dielectric constant, 𝑃𝑃 is the polarization (𝐻𝐻 or 𝑉𝑉), and 𝛼  is a function of the soil 
dielectric constant and the incident angle. 

Equation (1) can be written as Equation (4). 

|𝛼 𝜀 ,𝜃 | − 𝜎𝜎 𝛼 𝜀 ,𝜃 = 0 (4)

When N successive SAR image scenes are employed, the N − 1 equations are summa-
rized as Equation (5). 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡1 − 𝜎01𝜎02 0
0 1 − 𝜎02𝜎03

⋯ 0 00 0
⋮ ⋱ ⋮0 0 0 ⋯ 1 − 𝜎0𝑁−1𝜎0𝑁 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

∗

 

⎣⎢⎢
⎢⎡𝛼 𝜀 ,𝜃𝛼 𝜀 ,𝜃𝛼 𝜀 ,𝜃…𝛼 𝜀 ,𝜃 ⎦⎥⎥

⎥⎤
∗
≈ 00…0 ∗  

(5)

Equation (5) can be expressed as Equation (6) when three SAR image scenes are avail-
able. 
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⎩⎪⎨
⎪⎧|𝛼 𝜀 ,𝜃 | − 𝜎𝜎 𝛼 𝜀 ,𝜃 ≈ 0 

|𝛼 𝜀 ,𝜃 | − 𝜎𝜎 𝛼 𝜀 ,𝜃  ≈ 0 (6)

where  𝜎 ,𝜎  and 𝜎  can be acquired from the 3 Sentinel-1imgaes that are currently ac-
cessible. This indicates that there are 3 unknown parameters (specifically |α ε , θ |, |α ε , θ |, |α ε ,θ | ) that need to be determined. After obtaining |α ε , θ |  as a prior information through ground estimates, |α ε ,θ |  and |α ε , θ |can be acquired using Equation (6). 

Because the premise of this study was that vegetation conditions and surface rough-
ness remain intact in a short period of time, Sentinel-1A data with a repetition period of 
12 days is suitable for the experiment. In this paper, a field survey was carried out on 23 
September 2021, the same day when Sentinel-1 satellite transited over the study area. 
When the other two Sentinel-1 scenarios are known and taken as previous knowledge, the 
SSM data on 11 September 2021, and 5 October 2021, can be simply inversed using the 
empirical expression of Equation (6). 

In the field survey, 41 measured SSM samples were obtained. In the subsequent ex-
periment, the measured samples were randomly split into two sets, which were the train-
ing set with 26 samples and the testing set with 15 samples. Only the training set was 
expanded using the alpha approximation method. The testing set remained unchanged 
and was utilized to assess the experimental accuracy. A total of 93 sampling points were 
obtained after data augmentation. To get rid of the interference, any outliers that may be 
present in the expanded data were removed. 

2.2.2. Feature Parameter Extraction 
The training accuracy of a machine learning model is highly connected to the number 

and quality of the training data. The model will converge too slowly if there is too much 
training data. This can impair the model’s ability to train on its own, lead to incorrect 
predictions, and lower the model’s accuracy. The prediction accuracy of the machine 
learning model can be increased while reducing consumption by analyzing the feature 
parameter set and choosing the feature parameters with strong correlation as the input 
data. 
• Polarization Feature Parameters 

SAR works by sending microwave beams to objects and picking up echoes from those 
items to identify distinguishing traits. Radar information is directly impacted by both ob-
ject characteristics and radar parameters, including the target object’s physical character-
istics and the wavelength, incidence angle, and polarization mode [Error! Reference 
source not found.]. 

The incident angle (θ), VV, and VH polarization backscattering coefficients were ex-
tracted from the preprocessed Sentinel-1 SAR data and used as the defining parameters 
of the following experiments based on the latitude and longitude of each sampling point. 

Both cos(θ) and sin(θ) are connected to soil moisture [Error! Reference source not 
found.]. The correlation between the backscattering coefficient and sin(θ) is larger in soils 
with higher soil moisture levels, and the correlation between the backscattering coefficient 
and cos(θ) is higher in soils with lower soil moisture levels. When the incident angle is 
constant, the backscattering coefficient increases with the increase of volumetric soil mois-
ture content, and the combination of different polarization backscattering coefficients of 
(𝜎  +𝜎 ), (𝜎  −𝜎 ), (𝜎  *𝜎 ) and (𝜎 /𝜎 )are also increased. More characteristic pa-
rameters from SAR remote sensing data can be extracted using polarization decomposi-
tion. H/A/α decomposition is used for eigenvalue decomposition of coherent matrix or 
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covariance matrix of target features on Sentinel-1 dual polarization data, from which scat-
tering entropy (H), inverse entropy (A), average scattering angle (α) and eigenvalues (λ1 
and λ2) can be extracted [Error! Reference source not found.]. 
• Vegetation Indices 

Many vegetation indices can be generated from optical remote sensing data to de-
scribe surface vegetation information [Error! Reference source not found.]. The backscat-
tering coefficient of SAR is not only related to its own polarization mode, incidence angle, 
and SSM, but also to the vegetation coverage and roughness of the surface. It is necessary 
for SSM inversion to remove or weaken the impact of vegetation and surface roughness. 
The vegetation index is the combination of ground reflectivity in two or more wavelength 
bands to accentuate a certain feature or detail of plants. Varied vegetation indices have 
different band application ranges and fields due to sensor kinds and band combinations. 

According to the multi-band data provided by the multispectral imager (MSI) carried 
by Sentinel-2 and the actual vegetation coverage in the study area, six vegetation indices 
commonly used in SSM inversion research, including normalized difference vegetation 
index (NDVI), normalized difference moisture index (NDWI), specific vegetation index 
(RVI), water stress index (MSI), water body index (WBI) and fused vegetation index (FVI) 
[Error! Reference source not found.], were finally selected for this study. Their calculation 
formulas are shown in Equations (7)–(12). 𝑁𝐷𝑉𝐼 = 𝜌 − 𝜌𝜌 + 𝜌  (7)

𝑁𝐷𝑊𝐼 = 𝜌 − 𝜌𝜌 + 𝜌  (8)

𝑅𝑉𝐼 = 𝜌𝜌  (9)

𝑀𝑆𝐼 = 𝜌𝜌  (10)

𝑊𝐵𝐼 = 𝜌𝜌  (11)

𝐹𝑉𝐼 = 2𝜌 − 𝜌 − 𝜌2𝜌 + 𝜌 + 𝜌  (12)

where 𝜌490, 𝜌665, 𝜌842, 𝜌865, 𝜌945 and 𝜌1610 represent the band values correspond-
ing to 490, 665, 842, 865, 945, 1610 nm in Sentinel-2 data, respectively. The 490 nm and 665 
nm bands represent the blue and red of visible light. The 842 nm and 865 nm bands rep-
resent Near Infrared (NIR) and Narrow NIR. The 945 nm band represents water vapor. 
The 1610 nm band represents Short Wave Infrared (SWIR). 
• Surface Roughness 

The surface roughness of the soil influences the microwave backscattering coefficient. 
The surface roughness information changes depending on the band frequency, incident 
angle, and polarization mode. Removing the influence of surface roughness on SSM in-
version can increase accuracy. The surface combined roughness Zs [Error! Reference 
source not found.] used in this study was calculated using SAR data and represented by 
Equations (13)–(15). 𝑍  = exp

𝜎 − 𝜎 − 𝐵 𝜃𝐴 𝜃  (13)

𝐴 = −2.6408𝑠𝑖𝑛 𝜃 + 5.293𝑠𝑖𝑛 𝜃 − 3.838 sin 𝜃 + 2.2042  (14)
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𝐵 = 4.1522𝑠𝑖𝑛 𝜃 − 13.1𝑠𝑖𝑛 𝜃 + 16.9472 sin 𝜃 − 16.4228  (15)

where Av and Bv are coefficients only applicable to the combined roughness model using 
C-band data, and only change with incident angle. 

A total of 21 feature parameters were extracted from Sentinel-1 and Sentinel-2 data, 
as shown in Table 2. 

Table 2. Summary of parameters extracted from Sentinel-1 and Sentinel-2 data. 

No. Parameter No. Parameter No. Parameter 
1 𝜃 8 𝜎  *𝜎  15 NDVI 
2 𝜎  9 𝜎 /𝜎  16 NDWI 
3 𝜎  10 H 17 RVI 
4 cos(θ) 11 A 18 MSI 
5 sin(θ) 12 α 19 WBI 
6 𝜎  +𝜎  13 λ1 20 FVI 
7 𝜎  −𝜎  14 λ2 21 Zs 

2.2.3. Feature Parameter Optimization 
In this study, the extracted feature parameters were evaluated using Pearson corre-

lation analysis, RF, and PCA methods separately to select the suitable feature parameter 
subset for the subsequent machine learning models. 
• Pearson Correlation Analysis Method 

The Pearson correlation coefficient, which has a value between −1 and 1, is the sim-
plest approach to determine whether two variables are linearly connected. The sign indi-
cates the positive-negative correlation. The closer its absolute value is to 1, the stronger 
the linear association between the two variables is. Conversely, the closer it is to 0, the 
weaker the linear relationship between the two variables is. It is calculated using Equation 
(16). 𝑟 𝑋,𝑌 = 𝐶𝑜𝑣 𝑋,𝑌𝑉𝑎𝑟 𝑋 𝑉𝑎𝑟 𝑌  (16)

where Cov (X, Y) represents the covariance of two variables X and Y, Var(X) is the variance 
of X, and Var(Y) is the variance of Y. 
• Random Forest Method 

The RF method can calculate the relevance of each variable during the model-build-
ing process [Error! Reference source not found.]. In feature selection process with RF, the 
importance of each feature is first calculated and arranged in descending order. The pro-
portion to be deleted is then established, and the matching proportion of characteristics is 
eliminated based on their relevance, yielding a new feature set. The preceding procedure 
with a new feature set is repeated until only m features remained, among which m is a 
preset value. Finally, the feature set with the lowest error rate is chosen based on each 
feature set acquired in the preceding process and its related error rate. 
• Principal Component Analysis Method 

PCA is a method for finding a way to minimize the dimension of data while mini-
mizing information loss [Error! Reference source not found.]. It is an important tool in 
data analysis and frequently used in machine learning to minimize the dimension of high-
dimensional data, since it can extract the key characteristic variables from the data. Each 
vector has a correlation in high-dimensional data sets, whereas it has a linear independ-
ence in low-dimensional data sets, allowing the overlapping information in high-dimen-
sional data sets to be removed [Error! Reference source not found.]. High-dimensional 
data are reduced to fulfill the goals of data dimensionality reduction, compression, and 
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noise reduction. The data dimensionality is reduced, but the most relevant information is 
maintained, and certain unimportant aspects are deleted. 
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2.2.4. Construction of Machine Learning Models 
Machine learning excels in nonlinear fitting. It is useful in resolving issues with ex-

cessive factors and convoluted structures in SSM inversion models. Even after sample 
augmentation, the number of samples is still limited due to the small number of field-
measured SSM samples. Three field-measured typical machine learning models, GA-BP, 
SVR, and RF, that are appropriate for small sample training, were chosen for the study in 
order to prevent over-fitting. 
• Genetic Algorithm–Back Propagation Neural Network Model 

Both neural networks and evolutionary algorithms are ways for imitating biological 
treatment modes and obtaining practical answers to complicated issues. The BP neural 
network is capable of adaptive learning and powerful nonlinear simulation. However, it 
is prone to local minima. In addition, the network’s design is not theoretically guided and 
is instead dependent on the designers’ expertise and repeated experimentation in the sam-
ple space, which restricts the network’s ability to find the overall optimal solution. GA 
can converge to the global optimal solution and has strong stability, but it lacks adaptive 
learning capabilities. As a result, combining a neural network with the genetic algorithm 
can enhance not only the neural network’s ability to generalize mapping, but also its rate 
of convergence, capacity for global optimization, and learning capacity [Error! Reference 
source not found.]. The entire prediction model is extensively upgraded in terms of accu-
racy and fitting capacity. 
• Support Vector Regression Model 

SVR is a regression analysis technique that uses the support vector machine (SVM). 
The majority of the sample points are situated outside the two decision boundaries thanks 
to the separation hyperplane that SVM discovers by maximizing the interval. In contrast 
to SVM, SVR also takes into account the maximum interval, but it also takes into account 
the points within the decision boundary to ensure that the majority of the sample points 
are situated within the interval. The most significant advantage of SVR is that it uses the 
kernel function rather than the inner product operation in high-dimensional space, trans-
forming a high-dimensional nonlinear regression problem into a two-dimensional linear 
regression problem [Error! Reference source not found.]. 
• Random Forest Model 

RF can be used not only for parameter optimization, but also for parameter inversion. 
It is an integrated algorithm based on decision trees, with each decision tree acting as a 
classifier. When decision trees are being trained, randomness is incorporated, and samples 
and features are chosen at random. There will be n trees with n classification outcomes for 
each input sample. All the RF-categorized voting results are combined and the one with 
the most votes is chosen as the final result. In this process, integration and randomness 
coexist. RF model has the advantages of increasing prediction accuracy, decreasing over-
fitting, and being unaffected by missing data and multi-collinearity [Error! Reference 
source not found.]. One advantage of RF is that it has good generalization performance 
due to the use of multiple regression trees, which helps to reduce model variability. It 
simply has two parameters, the number of trees and the number of features, therefore it 
doesn’t require complicated parameter adjustment [17]. 

3. Results 
In this section, the results of sample augmentation and SSM inversion were analyzed, 

and the spatial distributions of regional SSM of the study area were obtained. 

3.1. Sample Augmentation Results 
The inversion accuracy before and after sample augmentation was compared using 

the same input parameters by various inversion methods, to confirm the efficacy of sam-
ple augmentation and the benefits of various machine learning models for SSM inversion. 
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The incident angle (θ), the VV and VH polarization backscattering coefficients, and NDVI 
were chosen as the input parameters in this experiment, while GA-BP, SVR, and RF mod-
els were employed as the SSM inversion models. 

In this experiment, three precision evaluation indexes, which were determination co-
efficient (R2), root mean square error (RMSE), and mean absolute error (MAE), were em-
ployed to assess SSM inversion accuracy. The average values acquired after repeated ex-
periments were recorded as the experimental results to lessen the randomness of the out-
comes, as indicated in Table 3. 

Table 3. Comparison of SSM inversion accuracy before and after sample augmentation. 

Method Model R2 
RSME 

(cm3/cm3) 
MAE 

(cm3/cm3) 
Using original measured  

SSM samples before  
augmentation 

GA-BP 0.3868 0.0757 0.0719 
SVR 0.3258 0.0708 0.0566 
RF 0.4802 0.0667 0.0522 

Using extended measured 
SSM samples after  

augmentation 

GA-BP 0.5411 0.0606 0.0607 
SVR 0.4484 0.0644 0.0546 
RF 0.5906 0.0578 0.0488 

According to the experimental results, the SSM inversion accuracy was clearly im-
proved once the samples were enhanced for all these three machine learning models, and 
the RF model was the best prediction model among them. 

3.2. Optimal Model Construction 
3.2.1. Feature Selection 

Sentinel-1 and Sentinel-2 data were preprocessed, and a total of 21 feature parameters 
were extracted. In order to improve the model performance, Pearson correlation analysis, 
RF and PCA methods were used to reduce the redundant features and improve the accu-
racy of model estimation. 

There are differences in the selection criteria of these three methods in feature selec-
tion. Pearson correlation analysis method measures the linear correlation between the 
data, and the higher correlation indicates that it is more sensitive to SSM inversion. The 
ranking of feature importance is shown in Table 4. RF is measured according to the aver-
age contribution of each feature on each tree. Higher contribution indicates that it is more 
sensitive to SSM inversion, and the ranking of feature importance is shown in Table 5. 
PCA shows the characteristics of data in a smaller dimension by dimensionality reduction, 
and finally the new variable is the linear combination of the original variables. The corre-
lation results of different features are shown in Figure 3. 

Table 4. Ranking of feature importance using the Pearson correlation analysis method. 

No. Parameter Correlation  
Coefficient No. Parameter Correlation  

Coefficient 
1 cos(θ) −0.3942 12 RVI 0.1286 
2 θ −0.3837 13 𝜎  −𝜎  −0.1039 
3 sin(θ) 0.3832 14 H 0.1027 
4 𝜎 /𝜎  −0.3608 15 𝜎  *𝜎  0.0976 
5 FVI 0.3180 16 𝜎  +𝜎  −0.0853 
6 NDVI 0.2374 17 λ1 −0.0701 
7 α 0.2004 18 λ2 −0.0654 
8 NDWI 0.1915 19 𝜎  −0.0471 
9 MSI −0.1743 20 A −0.0438 

10 Zs 0.1556 21 WBI 0.0388 
11 𝜎  −0.1462    
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Table 5. Ranking of feature importance using RF method. 

No. Parameter 
Correlation  
Coefficient No. Parameter 

Correlation  
Coefficient 

1 cos(θ) 0.522 12 𝜎  0.01696 
2 sin(θ) 0.4129 13 𝐹𝑉𝐼 −0.01457 
3 α 0.3683 14 λ1 0.1441 
4 NDVI 0.3457 15 𝐻 0.1364 
5 θ 0.2896 16 𝜎  *𝜎  −0.0929 
6 𝜎  −𝜎  0.2601 17 λ2 0.0896 
7 MSI −0.2418 18 𝜎  +𝜎  0.0644 
8 𝜎  −0.2447 19 𝜎 /𝜎  −0.0624 
9 Zs 0.2035 20 NDWI 0.0541 

10 RVI 0.1965 21 WBI −0.0522 
11 A 0.1703    

 
Figure 3. Correlation between features obtained by PCA method. 

Different feature selection methods were applied to the subsequent three machine 
learning models respectively. For the verification of different input parameters, the com-
parison and analysis showed that the results obtained by selecting the first eight features 
as ideal feature subsets were generally accurate, so the following experiments all selected 
the first eight parameters to ensure the homogeneity of the experiments. 
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3.2.2. Machine Learning Model 
To verify the efficiency of the suggested method, a comparative experiment was car-

ried out utilizing measured SSM data after sample augmentation, and the application per-
formance of various feature selection methods and machine learning models in SSM in-
version was reviewed. 

In this experiment, R2, RMSE and MAE were employed to assess SSM inversion ac-
curacy. The average values acquired after repeat experiments were recorded as the exper-
imental results to lessen the randomness of the outcomes, as indicated in Table 6. 

Table 6. Comparison of the accuracy of the inversion results under different model combinations. 

Feature Selection Method Machine Learning Method R2 
RSME 

(cm3/cm3) 
MAE 

(cm3/cm3) 
Pearson correlation analysis GA-BP 0.6656 0.0627 0.0519 
Pearson correlation analysis SVR 0.5223 0.0608 0.0466 
Pearson correlation analysis RF 0.5750 0.0567 0.0448 

RF GA-BP 0.6420 0.0776 0.0658 
RF SVR 0.5910 0.0571 0.0455 
RF RF 0.7324 0.0534 0.0413 

PCA GA-BP 0.5943 0.0770 0.0586 
PCA SVR 0.4969 0.0786 0.0622 
PCA RF 0.5824 0.0574 0.0450 

According to the experimental results, the combination of employing RF for feature 
selection and RF for SSM inversion offered the maximum inversion accuracy, with R2, 
RMSE and MAE of 0.7256, 0.0539 cm3/cm3 and 0.0422 cm3/cm3, respectively. 

3.3. Spatial Distribution of SSM 
Based on Sentinel-1 SAR data and Sentinel-2 optical data, RF model was used for 

feature selection and SSM inversion, and the spatial and frequency distributions of re-
gional SSM in the study area were obtained, as shown in Figures 4–6. In the study area, 
the average values of measured SSM on three dates after sample augmentation were 
0.1892, 0.1861 and 0.1808 cm3/cm3, respectively. The average values of retrieved SSM on 
corresponding dates were 0.1876, 0.1833 and 0.1783 cm3/cm3, respectively, which were 
consistent with the field measured SSM in general. 

 
(a) (b) 
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Figure 4. Inversion results of regional SSM in the study area on 11 September 2021: (a) spatial dis-
tribution of retrieved SSM; (b) frequency distribution of retrieved and measured SSM. 

 
(a) (b) 

Figure 5. Inversion results of regional SSM in the study area on 23 September 2021: (a) spatial dis-
tribution of retrieved SSM; (b) frequency distribution of retrieved and measured SSM. 

 
(a) (b) 

Figure 6. Inversion results of regional SSM in the study area on 5 October 2021: (a) spatial distribu-
tion of retrieved SSM; (b) frequency distribution of retrieved and measured SSM. 
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4. Discussion 
4.1. Data Augmentation 

Field measurements are necessary for soil moisture inversion. In practice, there are 
two main methods of field measuring. One is the traditional manual measuring method 
based on manual ground sampling and measurement on the date of satellite transits 
[1,4,6,8,12–20,22,25,26,31,33,36,38]. The other is the automatic measuring method based on 
ground-based observation stations or networks in the study area [2,3,7,21,23,24,29]. Com-
pared with the automatic measuring method, the field measured SSM data obtained 
through the traditional manual measuring method are often more difficult to collect, and 
usually in a limited number of times and in small quantities. 

For those areas without any ground-based observation sites or automatic observation 
networks, like the study area in this paper, due to the limitations of time and space, the 
data obtained by manual field measurement are generally limited. The small size of field 
measured SSM data have a negative effect on SSM inversion accuracy, since there is in-
sufficient data to train the inversion model and make a meaningful evaluation on the in-
version results. 

The experimental results shown in Tables 3 and 6 demonstrated that, the proposed 
inversion method based on data augmentation was effective to supply more sample data 
for SSM inversion and further improved the inversion accuracy, providing a feasible ref-
erence for SSM inversion studies based on small sample size of field measured data. 

It is worth noting that, the alpha approximation method used in this paper for data 
augmentation has a certain precondition, which assumed that the vegetation conditions 
and surface roughness remain unchanged in the short spanned period. So, the proposed 
method in this paper is not suitable for SSM inversion in those areas with large changes 
in the vegetation conditions and surface roughness in the study period. In fact, even in a 
short period, this precondition is difficult to strictly meet. In this study, although the dates 
of 11 September 2021 and 5 October 2021 were close to the middle date of 23 September 
2021, and the vegetation conditions and surface roughness kept constant on the whole 
according to the field survey and actual situation, small changes in some parts of the study 
area were ineluctable. This fact affected the application of the alpha approximation 
method and further the SSM inversion accuracy of the proposed method. In the future, 
more reliable and effective data augmentation methods will be explored to expand the 
sample size, thus to further improving the SSM inversion accuracy. 

4.2. Accuracy Analysis 
After data augmentation, the parameters extracted from remote sensing data and 

machine learning models for SSM inversion were optimized to improve the SSM inversion 
accuracy further. 

Three parameter optimization methods, which were Pearson correlation analysis, RF 
and PCA, were proven to be effective for parameter optimization in SSM inversion 
[22,34,38], and so chosen in this study to reduce the redundant features and improve the 
accuracy of model estimation. The experimental results shown in Tables 4 and 5 and Fig-
ure 3 indicated that, it was hard to get a uniform optimal feature subset through these 
three different optimization methods, due to their different optimization principles and 
evaluation criteria. Inspired by the research in reference [22], the extracted parameters and 
the used inversion models were optimized in the whole in this study by using different 
combinations of parameter optimization methods and machine learning models. In order 
to ensure the homogeneity of the experiments, the first eight features in each ranking re-
sult of the feature optimization method were uniformly selected as the ideal feature subset 
for the subsequent experiments. However, it was not ensured that the subsets with the 
first eight features for all these three methods could all reach the final maximum inversion 
accuracy for all these nine model combinations. Different sizes of optimal feature subsets 
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for different feature selection methods may be more reasonable for the proposed method 
and will be explored in this study to further improve the SSM inversion accuracy. 

Three typical machine learning models commonly used in SSM inversion, which 
were GA-BP [36,38], SVR [15,18,19,26,33], and RF [16,23,33,34,38], were selected in this 
study because of their good performance in SSM inversion based on the small size of sam-
ples [15,16,19,33,36,38]. Combined with three parameter optimization methods, the per-
formance of nine different model combinations in SSM inversion was compared in the 
experiments. According to the experimental results shown in Table 6, the combination of 
employing RF for feature selection and RF for SSM inversion offered the maximum inver-
sion accuracy, with higher R2 and lower RSME and MAE than other combinations. 

The performance of GA-BP and SVR models was a little worse than that of the RF 
model in this study, although they are generally considered to have good generalization 
ability when the sample size is small. One possible reason is that some parameters of GA-
BP and SVR models may be not set properly and could be further optimized. Another 
possible reason is that there was an over-fitting issue in their training process because the 
sample size in this study was too small, which also affected the performance of the RF 
model in this study. 

A total of 41 measured SSM samples were obtained in the field survey, and expanded 
to 93 samples after data augmentation. Compared with the original sample data and pre-
vious SSM inversion studies based on small samples [1,4,6,15,16,18,19,33,36,38], the sam-
ple size had increased. However, due to the limited initial sample size and the limitations 
of the alpha approximation method, the sample size was still limited, which was prone to 
over-fitting issues in practice. A considerable sample set is still the guarantee for sufficient 
model training and reasonable inversion accuracy. More field measurements are planned 
in this study in the future. 

Even though, for those SSM inversion studies based on a small sample size of field 
measured data, as demonstrated in this study, the data augmentation method was still an 
effective way to supply more sample data and further improved the inversion accuracy. 

5. Conclusions 
An SSM inversion method combining sample augmentation, feature optimization, 

and machine learning models was investigated in this paper. First, sample augmentation 
was applied to the field-measured SSM data to address the issue that inversion accuracy 
was impacted by the sample size. Sentinel-1 SAR data and Sentinel-2 optical data were 
integrated to extract and select several feature parameters. The optimal inversion model 
was chosen by combining various feature selection methods with machine learning mod-
els at the same time to achieve optimal inversion accuracy. The experimental results indi-
cated that the inversion accuracy had improved after sample augmentation, and the com-
bination of employing RF for feature selection and RF for SSM inversion offered the max-
imum inversion accuracy, with R2, RMSE and MAE of 0.7256, 0.0539 cm3/cm3 and 0.0422 
cm3/cm3, respectively. The proposed method was finally used to invert the regional SSM 
of the study area. The inversion results indicated that the proposed method had good 
performance in regional applications with a small sample size, and provided a feasible 
way for SSM inversion in those areas where the vegetation conditions and surface rough-
ness remain unchanged within a certain time span. In the future, more effective methods 
of data augmentation and machine learning can be explored to further improve the SSM 
inversion accuracy. 
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