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Abstract: Subarctic palsa mires undergo substantial transformation under climate impacts, and 
today a reliable marker of their degradation is the vegetation cover. We studied the correspondence 
between the surface traits of palsa degradation, as expressed in the vegetation composition, and the 
interior condition of permafrost within subarctic palsa mires in the central part of the Kola Penin-
sula. We have employed a set of methods to collect the data, including geobotanical relevés, un-
manned aerial system (UAS) photogrammetry, and ground-penetrating radar (GPR) survey. Based 
on RGB orthophoto values and morphometric variables, we produced a land cover classification 
(LCC) consistent with the vegetation classes identified during field measurements. The outcome 
proves that the additional morphometric predictors improve the accuracy of classification algo-
rithms. We identified three major patterns in GPR cross-sections defining (i) permafrost in palsas, 
(ii) water saturated peat, and (iii) the regular peat layer. As a result, our GPR data demonstrated a 
high correlation with land cover classes and pointed to some vegetation features controlled by the 
peat deposit inner structure. Under our results, palsas with thawing permafrost can be appraised 
using sequences of LCC. This is primarily the lichen hummock—tall shrub—carpet vegetation 
(LH–TSh–C) sequence from palsa top to foot. We have also detected an asymmetric configuration 
of permafrost in some palsas in the west-to-east direction and hypothesized that it can relate to the 
wind regime of the area and snow accumulation on the eastern slopes. Our results highlight that 
the combined application of the remote UAS photogrammetry and GPR survey enables a more 
precise delineation of the lateral degradation of palsas. 

Keywords: digital elevation model; GPR cross-sections; patterns; machine learning; land cover  
classification; morphometric predictors; Lovozero 
 

1. Introduction 
Fennoscandian subarctic palsa mires are vulnerable ecosystems undergoing signif-

icant transformation under climate impacts [1–7]. Modern bioclimatic models predict 
that the territory of Fennoscandia may, in the mid-run (20–40 years), become climatically 
unsuitable for peatland permafrost [8,9]. Recent studies likewise highlight the complex 
dynamics of the permafrost of high-latitude peatlands and point to the need for a com-
prehensive approach in particular to their ecohydrological study [10,11]. Degradation of 
discontinuous permafrost in Fennoscandia is primarily attributed to a growing snow 
cover thickness, while air temperature has remained statistically unchanged [12]. This 
current situation requires a thorough monitoring of palsa mires to predict potential eco-
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logical damage from their degradation and to work out mitigation strategies. 
Arctic- and subarctic-type palsa mires have a perennial cryogenic core at the base of 

the peat deposit. They are common at the southern limit of sporadic permafrost and re-
quire specific environmental conditions to remain stable [13–15]. Palsas are peat-covered, 
dome-shaped frost mounds forming specific landform types that are typical for 
low-gradient postglacial landscapes, and their cyclicity of development, stages of for-
mation, and processes of thermal erosion make them objects of scientific interest [16,17]. 
Palsa mires are usually noted for high morphological diversity and their microrelief 
features can be formed by thermokarst and thermal erosion processes [18]. The peatland’s 
geomorphology, hydrological conditions, and topography of the underlying substrate 
influence the vegetation diversity, peat accumulation, and formation of higher palsas 
[19]. Hence, the landscape features, morphology, hydrology, and vegetation composition 
must be considered when analyzing palsa mire dynamics [20,21]. An important marker 
for the permafrost degradation assessment in palsa mires is the vegetation composition 
[22]. Total loss of the frozen core in hummocks leads to more active development of the 
subshrub canopy, which then promotes the woody vegetation settlement [23]. Another 
possible vegetation succession is the mosses’ replacement with herbaceous and subshrub 
communities. Meanwhile, mosses play a key role in long-term processes in arctic eco-
systems: peat accumulation, the development of microtopography, and permafrost sta-
bility [24]. The above processes form an important indicator of a profound change in 
mires’ ecosystem condition. Apart from the peat moisture increase one would expect 
from permafrost thawing, the ratio between the warmed active layer and the underlying 
frozen layer may promote drying up through evapotranspiration with effects on the 
vegetation cover [25]. 

Objects of particular interest in terms of palsa collapse monitoring are mires at the 
southern boundary of the permafrost region. The reason is the higher rates of palsa decay 
and the associated significant changes, so that individual trends of ecosystem change can 
be detected through observations of a short duration [5,6]. In north-eastern Fen-
noscandia, permafrost occurs in the Kola Peninsula [26,27]. The palsa mires of the Kola 
Peninsula have been studied in fewer numbers and in less detail than those in the 
neighboring regions of Norway, Sweden, and Finland [28], where they are under 
long-term monitoring. It was previously assumed that the palsa mires of the Kola Pen-
insula have been stable over the past 80 years [29]. This conclusion cannot be reliable, 
however, since the assessment was based only on the mean annual temperature and 
thickness of the active layer on palsas. It is currently known that palsa mires undergo 
predominantly lateral permafrost degradation [5], while in the vertical projection, in-
cluding the active layer, the seasonal growth of palsa permafrost has a great influence 
according to a model suggested by Seppälä [15]. Meteorological observations on the Kola 
Peninsula over 50 years specified an average temperature rise of 2.38 ± 1.08 °C and re-
vealed an increase in the humidity in springtime and its decline in autumn [30]. Hence, 
we have to expect active palsa mire degradation to happen in this Arctic region as well in 
the short term. A process to note is all vegetation element transformations in the palsa 
mires of the Kola Peninsula, which point to the stability issue of permafrost landforms 
under present-day climatic conditions [7,31,32]. 

The areal loss of palsas is non-linear, often rapid and episodic [21]. Therefore, remote 
sensing methods are becoming increasingly important in the assessment of permafrost 
degradation in palsa mires [33,34]. Landscape research based on such methods is relevant 
for the Kola Peninsula, especially in central and eastern parts, where transport infra-
structure for ground observations is underdeveloped. A useful tool in the study and 
modeling of natural ecosystem transformation is the land cover classification (LCC) de-
veloped using remote sensing data [35]. Land cover maps for arctic and subarctic regions 
are widely used in vegetation assessments [33,36–40] and to predict permafrost thawing 
and carbon stores in soils [41–44]. The land cover and topographic characteristics, as well 
as subsurface changes, are essential components to be documented in a comprehensive 
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study of permafrost. For instance, palsa mires have been studied by methods such as 
combinations of LiDAR and ERT [45,46] and ERT and GPR [47,48]. A significant role in 
the assessment of permafrost degradations should also be given to the control of the hy-
drological conditions in the peat deposit based on geophysical monitoring, considering 
that the drainage effect can vary the ground temperature in palsa mires by up to 2 °C [49]. 

Conformant to this concept, we combined aerial photogrammetry with in situ veg-
etation relevé surveying and GPR surveying with manual probing. Our purpose was to 
evaluate the correspondence between the surface traits of palsas’ degradation expressed 
in the landscape features and vegetation composition and the permafrost interior condi-
tion and peat hydrology based on remote sensing methods. 

2. Study Site 
The Lovozero palsa mire we surveyed lies in the sporadic permafrost region of the 

Kola Peninsula [27], near the town of Lovozero, Murmansk Region (WGS 84 68.011869°N; 
35.084062°E), at 160 m elevation (Figure 1). It is a component part of a large mire system 
where flat-topped frozen peat hummocks and wet melted flarks alternate. The palsas are 
ridge-shaped in plan view, 0.7–1.2 m (up to 2.0 m) high, occupying 60–70% of the site 
area, while active layer thickness on hummocks ranges within 20–60 cm. The peat deposit 
in the mire is estimated to be 0.8–2.6 m thick, and sand and sandy loam underlies it. 
There is no doubt that palsas in this mire are degrading, but we see no large areas with 
crack formation and peat surface erosion. The vegetation on hummocks and in flarks 
differs both with regard to the key taxa composition and in the nutrition and moisture 
status. Oligotrophic subshrub–moss–lichen communities dominate on hummocks, and 
mesotrophic sedge–cottongrass–sphagnum communities on flarks [50]. A previous hy-
drological monitoring survey of the Lovozero mire showed there was no water table in 
the palsas throughout most of the season since the water from snowmelt and rainfall 
rolled down the permafrost layer boundary into flarks [51]. 
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Figure 1. Location of the surveyed palsa mire on the Kola Peninsula, an overview of the distribu-
tion of permafrost abundance (a), the regional elevation map according to GMTED2010 [52] (b), 
and the site outline on the Google satellite image (c). Brown et al. (2002) [26], Romanenko & Gar-
ankina (2012) [27]. 

3. Methods 
We carried out all the fieldwork in July 2021, during the most active vegetation 

growing season. The surface area of the site surveyed in the Lovozero mire was 0.3 km2. 
At the initial stage of the research, we conducted aerial photography. Next, we performed 
ground observations. In addition to taking ground-penetrating radar (GPR) measure-
ments and relevés, ground activities included the documentation of permafrost thawing 
traits and peat erosion areas (Figure 2). 
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Figure 2. Photographs from fieldwork on Lovozero mire: GPR surveying of palsas (a), relevé sam-
pling in a flark (b), meltwater accumulation area with the associated vegetation succession (c), peat 
erosion area on hummock slope (d). 

4. UAS Photogrammetry 
Unmanned aerial systems (UASs) have been successfully used in vegetation moni-

toring [38,53–56]. Their key benefits are the relatively inexpensive maintenance and 
high-resolution images as the output. Using UAS-derived orthophotos and digital eleva-
tion models (DEMs), researchers can delineate palsa hummocks at 0.03–0.05 m grid cell 
resolution and explore their attributes [34,57]. The usage of UASs has proved to work 
well in subarctic palsa mire surveys, delivering high-resolution imagery [33]. 
High-resolution DEMs were produced using structure-from-motion (SfM) photogram-
metry, which has a proven performance for natural objects of complex topography [58]. 

We took aerial photos using DJI Phantom 4 Pro V2.0. This UAS is fitted with an in-
ertial measurement unit (IMU) and GPS, which determine its position and height during 
flight so that the geographic coordinates of the center of the photos are known (the 
claimed accuracy of GPS positioning is 0.1 to 1.5 m). The drone is also equipped with an 
enhanced FC6310S digital camera with a wide-angle lens and 1″ 20 MP CMOS sensor. 
The system produces 5472 × 3648-pixel RGB images, and the spatial resolution of the re-
sultant composite image depends on the drone flight altitude and photo overlap. 

As the mire is rather large and the battery capacity (25 min at maximum) limits the 
UAS flight time, the territory to be covered by the aerial survey was divided into two 
adjacent 350 × 300 m plots using the Pix4DCapture flight planning application (Figure 
S1). The Double Grid flight mode was applied (frontal and lateral overlaps of 80–70%, 
flight altitude of 70 m, camera tilt angle of 80°). The flights produced 1014 images with a 
1.96 cm/px resolution. We realized photogrammetry processing with Agisoft Metashape 
Professional software and pooled aerial photos from two flights into one project. The 
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processing algorithm included several stages: image alignment, building dense cloud, 
raster DEM, and orthophoto with WGS84 referencing. High-quality processing settings 
were selected at all stages. 

The drone flights occurred without the use of a GNSS receiver and ground control 
points. This, as expected, led to low rates of accuracy in fixing photographic centers in the 
WGS-84 system. The average errors in the coordinates of the centers were 0.57 m for 
longitude and 0.88 m for latitude, which correspond to the declared technical character-
istics of the selected UAS (1.5 m). Our study did not require obtaining a high-precision 
reference to the global positioning system. However, we needed an accuracy sufficient 
for DEM reconstruction during photogrammetric processing and for further use in data 
processing. Thus, to achieve the goal, we used the local coordinate system without 
high-precision binding to global positioning. During photogrammetric processing, the 
average discrepancy (re-projection error—the distance between the initial projection of a 
point on the image and the projection of the reconstructed three-dimensional point on the 
same image) for two flights was 0.53 px with a size of 2.41 × 2.41 μm. GPS inaccuracy and 
small errors in photogrammetric processing had a low effect on the quality of the final 
DEM. 

The photogrammetry processing results specified in Table 1 formed the input for 
machine learning for the aim of land cover classification (LCC). To enable local-scale land 
cover classification, the orthophoto and DEM spatial resolution was reduced to 0.5 m/px. 
We have changed the resolution of the images to reduce the size and improve the speed 
of data processing. Moreover, reducing the resolution allows you to filter images and 
exclude noise during further classification. We conducted the calculation of the pixel 
values of the transformed image using the “nearest neighbor” method. 

Table 1. Results of photogrammetry processing of UAS data. 

 Orthophoto DEM 
Spatial resolution, cm/px 1.96 3.92 

Number of channels 3 (RGB) 1 

5. Ground-Penetrating Radar Measurements 
Ground-penetrating radar (GPR) surveying is a non-invasive geophysical method in 

which nanosecond fixed-frequency electromagnetic (EM) pulses are emitted into the 
subsurface and the returning signal reflected by interior interfaces and local heterogene-
ities in the ground is recorded and analyzed [59]. The characteristics that define EM wave 
propagation are the dielectric constant and electric conductivity. The GPR method works 
well in permafrost studies through the contrastive electrophysical properties of the fro-
zen ground in regions with discontinuous permafrost [60–62], palsa hummocks included 
[63,64]. As shown by seasonal GPR measurements in palsa mires, summer GPR 
cross-sections reveal only the upper boundary of permafrost in palsas, whereas the bot-
tom boundary is detectable in wintertime records [65]. Studies of Yildiz et al. [66] on a 
combined application of UAS photogrammetry and GPR for quantifying snow cover 
thickness have illustrated that this approach can be promising for palsa research. 

We performed field surveys using GPR OKO-2 with an antenna unit with a 400 MHz 
central frequency (Logis-Geotech, Moscow, Russia). With this frequency, the subsurface 
can be probed down to 5 m depth at a vertical resolution of ±5 cm. The time window was 
200 ns; the step size for probing the profile was 10 cm. We performed the final GPR data 
processing in GeoScan32. Before the interpretation, we applied the main record pro-
cessing tools: zero time correction; bandpass filter and mean subtraction—to eliminate 
DC shift and signal saturation; amplitude gain—to compensate signal attenuation; and 
the selection of reflectors and velocity analysis—to delineate the actual position of inter-
faces in the peat deposit. The analysis of the velocities derived from diffracted wave hy-
perbolic fitting found variability from 3.9 cm ns−1 in the high moisture part of the peat 



Remote Sens. 2023, 15, 1896 7 of 22 
 

 

deposit to 8.6 cm ns−1 in its elevated, driest part. The time-section was translated to the 
depth-section using an average velocity value of 4.7 cm ns−1. We derived the topographic 
correction for GPR cross-sections from the DEM obtained by the processing of UAS data. 
Five GPR profiles were taken in total, three of which traversed the site from west to east 
and the other two from north to south. With the help of manual soundings to verify the 
GPR data, we controlled the positions of the permafrost top in palsa hummocks and the 
thickness of the peat in the flarks. 

6. Machine Learning for Land Cover Classification 
Machine-learning methods are used in dealing with non-linear relationships be-

tween environmental parameters and remote sensing variables [43]. Machine learning 
encompasses an array of intellectual data analysis techniques, which can recognize pat-
terns in datasets and predict quantitative variables. We have developed multiple algo-
rithms for classification and forecasting. Some of the popular ones are the naive Bayes 
(NB) classifier, artificial neural networks (ANNs), random forests (RFs), and support 
vector machines (SVMs) [67,68]. These algorithms represent different supervision strate-
gies: the NB classifier is a statistical learning algorithm, RF training is based on logic, and 
SVMs and ANNs are perceptron-based [69]. Reportedly, SVMs and RFs commonly out-
perform ANNs [70]. For LCC, we tested different strategies and therefore used three al-
gorithms from different strategies—an NB classifier, a RF, and an SVM. The testing of the 
algorithms and selection of the optimal ones can improve the output of palsa mires’ spa-
tial variability and dynamics estimation. 

The NB classifier is a simple classification model [71]. Using the training dataset, the 
algorithm estimates the mean vectors and covariance matrices for each class and then 
makes predictions based thereon. The SVM algorithm maps feature vectors in multidi-
mensional space using the kernel function and plots an optimal linear discriminant 
function in that space [72]. The RF is a machine-learning algorithm suggested by 
Breiman, which is based on an ensemble of decision trees. Thus, the key underlying idea 
is to use a large ensemble of decision trees, each of which alone may produce classifica-
tions of rather poor quality, but, there being sufficient trees, the eventual output is quite 
accurate [73]. 

We used a spatially referenced array of environmental data as a predictor to deter-
mine the spatial properties of the study site. The predictors were RGB channel values for 
the orthophoto discretized to a 0.5 m resolution. We computed a DEM at a 0.5 m spatial 
resolution to generate additional morphometric datasets to be used as predictors in ma-
chine learning: the slope, topographic position index (TPI) [74], and topographic wetness 
index (TWI) [75]. The TWI is the slope and area function, which is commonly used for the 
quantification and topographic control of hydrological processes. Sites that have a ten-
dency to accumulate water (large areas in catchments) and have minor slope angles will 
have high TWI values, whereas well-drained dry areas (steep slopes) are associated with 
low TWI values. 

The slope is an important landscape parameter. The surface slope determines runoff 
and drainage, the rate of the translocation of material, erosion processes, and soil thick-
ness. The topographic position index (TPI) compares the elevation of each cell to the 
mean elevation of a specified neighborhood around that cell [76]. TPI values can be 
standardized to produce a classification. Weiss [76] suggests the following classification 
of landforms: 
• Valley: TPI ≤ −1 SD; 
• Lower slope: −1 SD < TPI ≤ −0.5 SD; 
• Flat area: −0.5 SD < TPI < 0.5 SD, slope ≤ 5°; 
• Middle slope: −0.5 SD < TPI < 0.5 SD, slope > 5°; 
• Upper slope: 0.5 SD < TPI ≤ 1 SD; 
• Ridge: TPI > 1 SD. 
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The training sample for the Lovozero mire land cover comprised 120 polygons, 2 × 2 
m each (4 × 4 pixels), and the polygons are evenly dispersed over the territory and belong 
to one of the six land cover classes. We visually interpreted the training sample according 
to the received orthophotomap based on ground data. Polygons were determined ran-
domly and presented uniformly across all land cover classes; each had 20 training points. 
In addition to open water (W), we distinguished five vegetation classes: lichen hummock 
vegetation (LH), carpet vegetation (C), tall graminoid vegetation (TG), moist hummock 
vegetation (MH), and tall shrub vegetation (TSh) (Figure 3). The classification quality 
assessment was also based on a set of 120 ground control points. The control points were 
chosen independently of the training samples. They were also visually interpreted from 
the orthophotomap. We produced a detailed geobotanical description for each class to 
control the plant species’ diversity in the vegetation cover (Table 2). The overall accuracy 
was determined for all the land covers [77]. Geospatial analysis, raster and vector pro-
cessing were realized in QGIS, accuracy was calculated using the Semi-Automatic Clas-
sification Plugin, and machine learning performed by built-in tools in SAGA [78]. 

 
Figure 3. RGB imagery matrix for land cover classification in the surveyed site. 
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Table 2. Geobotanical characteristics of individual land cover classes. 

Land Cover Class Herb and Subshrub Layer 
Mean 

Cover (%) Moss and Lichen Layer 
Mean Cover 

(%) 
lichen hummock vege-

tation (LH) 
Empetrum hermaphroditum Hagerup, Rubus 

chamaemorus L., Vaccinium vitis-idaea L. 
20 

Cladonia ssp., Flavocetraria nivalis (L.) 
Kärnefelt et A. Thell  

90 

carpet vegetation (C) 
Eriophorum vaginatum L., Carex limosa L., C. 

rotundata Wahlenb. 
20 

Sphagnum balticum (Russow) C.E.O. 
Jensen, Sphagnum lindbergii Schimp. 

90 

tall graminoid vegeta-
tion (TG) 

Eriophorum russeolum Fr., Eriophorum an-
gustifolium Honck. 

45 Sphagnum riparium Ångstr. 80 

moist hummock vege-
tation (MH) 

Rubus chamaemorus L., Empetrum her-
maphroditum Hagerup, Andromeda polifolia 

L., Eriophorum vaginatum L. 
40 

Sphagnum fuscum (Schimp.) H. 
Klinggr., Sphagnum capillifolium 

(Ehrh.) Hedw. 
95 

tall shrub vegetation 
(TSh) 

Betula nana L., Ledum palustre L. 70 
Pleurozium schreberi (Willd. ex Brid.) 
Mitt., Sphagnum fuscum (Schimp.) H. 

Klinggr. 
40 

7. Results 
During the first stage, we analyzed the imagery obtained by UAS photogrammetry. 

The final detailed orthophoto of a 0.3 km2 area (high-resolution image, Figure S2) pro-
vided us with a set of morphological variables for the surveyed site. The DEM depicted 
the overall layout and shapes of the palsas and revealed a monotonic elevation trend on 
the study site (Figure 4a). We found the overall terrain elevation grew by 3 m from north 
to south, with the largest palsas concentrated in the southern part. The detected elevation 
trend is associated with an increase in the thickness of the peat deposit, which grew in the 
paleolake basin. Palsa hummocks were predominantly 1–1.5 m high, and their area var-
ied from 190 to 1700 m2. Such morphology is associated with the general patterns of peat 
deposit growth, which involves peat accumulation and the accompanying deposition of 
water, including in the permafrost form. The surface slope in the area ranged from 1 to 
10°, with an average of 3.6°. The slopes of the palsas proved to be comparable, notwith-
standing their size variation (Figure 4b). Apparently, the frost heaving process was iden-
tical in all palsas, resulting in equal uplift amplitudes. This means the initial parameters 
(peat temperature, moisture content, and thickness) were equivalent to most of the peat 
deposit area, except for the northern and eastern margins of the site. Along the northern 
and eastern outline of the site, there is a byroad, which could significantly affect the hy-
drological situation of this mire parts (Figure 1c). As a result, in these points, we observed 
obvious signs of mire system transformation, including complete permafrost degrada-
tion. The TPI map clearly visualized the above factors and that all palsas on the site have 
a similar morphometric structure (Figure 4c). The TWI distribution was quite complex 
and mosaic, especially in low-lying areas, where small-scale drainage channels have 
formed (Figure 4d). Meanwhile, the overall TWI was low. Judging by the morphostruc-
tural slope and TPI characteristics of the surveyed palsa mire site, its center used to hold a 
small water reservoir, which was then drained up by permafrost and the host peat. 
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Figure 4. DEM (a) and morphometric dataset: slope (b), topographic position index (c), and topo-
graphic wetness index (d) with GPR profile lines. 

Our next step was to study the statistics on the environmental parameters in each 
land cover class on the site according to the training sample (Figure 5). Analysis revealed 
that subshrub–lichen vegetation (LH) was mainly localized on palsa tops with an average 
elevation of 163.3 m and therefore had the highest average TPI = 0.5 and a very low TWI = 
3.4. Cottongrass–sedge–sphagnum carpet vegetation (C) mostly grew in the hollows su-
perseding collapsed palsas, which had a TPI = −0.2 and slope less than 1 deg. This class 
occurred chiefly at 162.6 m elevations and featured a high average TWI = 6.5. Cot-
tongrass–sphagnum vegetation (TG) often grew at the foot of palsas with a minor slope 
of 2.7 deg, a medium TPI = −0.18, and, at the lowest, 162 m elevations. The identification 
of this class is essential as it fringes degraded palsas and is an indicator of ongoing per-
mafrost thawing. Subshrub–sphagnum vegetation (MH) had TPI and TWI values very 
similar to the predictors of C and TG, while differing slightly in slope. Tall shrub vegeta-
tion (TSh) occupied palsa slopes and so had the highest average slope value (5.3 deg) and 
its widest range (2–8°). Other distinctions of the TSh class were the average TPI = 0.2 and 
the sample’s lowest TWI = 3. The open water class (W) stood out the most for the lowest 
elevation of 161.3 m and a near-zero slope, as well as for the lowest average TPI = −0.3 and 
the highest TWI = 6.9. Thus, in terms of morphometric parameters, there are significant 
differences between the means and variances of various LCCs. We have used these dif-
ferences and added morphometric parameters for automatic land cover classification. 
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Figure 5. Means and standard deviations (SD) of morphometric variable values for training sample 
data (a)—elevation, (b)—slope, (c)—topographic position index, and (d)—topographic wetness 
index. 

The LCC produced by all classification algorithms was in good agreement with the 
classes distinguished both by in situ relevé surveys and identified visually in the ortho-
photos (Figure S3). The LCC algorithms demonstrated a quite high overall accuracy, but 
we received the best results using the NB algorithm (Figure 6). We computed the pro-
ducer accuracy to compare the algorithm’s performance for each land cover class (Table 
S1). We found that the highest producer accuracy for most of the classes was achieved by 
the NB classifier (Table 3). The exceptions were the LH and C classes, which were identi-
fied the most accurately by the RF algorithm. Classification by RF delivered the worst 
producer accuracy levels for the classes TSh and W. The class identified the most accu-
rately was C, probably because of the relative color evenness of the RGB pixels (Figure 3) 
and the near absence of slope. Shade was not a problem, as there are almost no tall plants 
within the site. In the plot’s south, the NB algorithm classified single shadows correctly, 
while other algorithms did not give a good result for the southern part. 

All algorithms showed that the greatest cover in the surveyed palsa site belonged to 
the TSh class, which was 33% of the total area on average (Table 4). This class mainly 
occurred along the edges, where permafrost had already thawed and the peat deposit 
was drier. The next most common class was MH, covering 24% of the study site, also with 
a localization in the zones of collapsed palsas. The classes LH, С, and TG occupied ap-
proximately equal proportions of 11–15% of the total area. 

Table 3. Algorithms’ classification accuracy. 

Classification Algorithms Overall Accuracy, % 
Producer Accuracy 

LH C TG MH TSh W 
NB 86.4 80.9 87.5 89.1 89.3 84.4 91.7 
RF 78.7 83.4 89.4 81.3 82.8 72.1 67.6 

SVM 82.5 70.7 86.5 77.9 84.8 84 89.8 

Further, we used the model obtained by the NB method, since it is more accurate for 
most classes (Figure 6). We examined the mean values and standard deviations of mor-
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phometric parameters’ distribution in LCC over all pixels for the NB model (Figure 7). 
For LCCs, an increase in variance for all parameters and insignificant deviations of the 
mean values were revealed in comparison with the training set. The most stable were the 
average values of absolute elevations; we found almost no differences. We observed the 
largest discrepancy across all LCCs for the slope, because it was of little value in the LCC 
prediction. According to the TPI data, for all classes, we observed a similar distribution as 
for the training sample. Simultaneously, the overall decrease in the TPI level for all pixels 
was through the training polygons’ location closer to the large palsas. We identified for 
the TWI an increase in the dispersion of values, with LH and TSh classes being the most 
stable. These classes correlated to palsas and were characterized by less water accumula-
tion and, equally, less variability of TWI values. 

 
Figure 6. Land cover classification using the normal Bayes (NB) algorithm. 



Remote Sens. 2023, 15, 1896 13 of 22 
 

 

 
Figure 7. Means and standard deviations (SDs) of morphometric variable values for LCC over all 
image pixels (a)—elevation, (b)—slope, (c)—topographic position index, and (d)—topographic 
wetness index. 

Table 4. Percentage distribution of land cover classes computed by three machine-learning algo-
rithms. 

Cover Type 
Covered Area, % 

NB RF SVM 
lichen hummock vegetation (LH) 11 14 10 
carpet vegetation (C) 13 13 14 
tall graminoid vegetation (TG) 15 20 11 
moist hummock vegetation (MH) 24 21 25 
tall shrub vegetation (TSh) 33 30 37 
open water(W) 3 3 3 

Finally, we identified the permafrost table in the GPR cross-sections, considering the 
LCC-based conclusion regarding the effect of permafrost condition on the classes’ dis-
tribution. Having a single spatially referenced orthophoto, we could compare the peat 
deposit’s interior structure against the distribution of the predictors and land cover clas-
ses on its surface. We identified three major GPR patterns in all the resultant 
cross-sections: (i) a clear interface at 0.3–0.8 m depth followed by abrupt signal attenua-
tion, showing permafrost in palsas; (ii) a group of subparallel reflectors with sharp dif-
ferences in amplitude, showing soaked peat, in particular because of permafrost thawing; 
(iii) wavy and discontinuous reflectors of varying intensity, bound on the bottom by an 
extensive interface, showing a regular peat layer and its boundary with the mineral bed. 
In fact, these patterns are quite typical of all palsa mires and GPR images of a similar kind 
have been described by Kohout et al. [65], Sjöberg et al. [47], and Jones et al. [79]. 

Figures 8 and 9 present the longitudinal and transversal GPR cross-sections of the 
study site with the respective TWI values and land cover classes according to the results 
of classification by the NB algorithm. After making a general comparison, we found a 
confident correlation between TWI <3 with the LH class and the permafrost table position 
within the palsa, as well as for TWI >5 with the С class and flarks with the most intensive 
horizontal reflectors. We deduced that palsas with permafrost were characterized by a 
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certain sequence of classes reflected in GPR cross-sections. The top of the palsa was oc-
cupied by the LH class, which changed to TSh on the slope and then to C if there was 
meltwater accumulated upon permafrost thawing or, otherwise, to MH in drier habitats. 
This sequence of land cover classes appears in GPR cross-sections as a change from a 
pattern with a single extensive interface underlain by a signal attenuation zone at 60 ns to 
a pattern with high-amplitude subhorizontal reflectors showing at travel times exceeding 
100 ns. Continuous GPR interfaces, uniform throughout their length, delineate areas 
where permafrost is still stable. Some palsas have narrow bands of TG vegetation along 
their edges, which may point to an activation of permafrost thawing. We defined this 
class in GPR cross-sections by local attenuation regions with a partial loss of the perma-
frost table interface. It is important to note that, if a palsa stands out in the relief but is 
permafrost-free, the said sequence of classes does not hold. The sequence LH–TSh–C, 
which we found to indicate palsas with ongoing permafrost thawing, can be observed in 
profile 1, 220 m point (Figure 8a); profile 2, 15 m point (Figure 8b); profile 3, 35 m point 
(Figure 8c); profile 4, 155 m point (Figure 9a); and profile 5, 405 m point (Figure 9b). 
Sometimes, we noticed a non-symmetric layout of land cover classes regarding the palsa 
top. This may be evidence of variations in the rate and directivity of permafrost degra-
dation across the area. The broken symmetry also shows in GPR cross-sections as 
changes in reflector intensity about the central axis of the palsa hummock (e.g., for palsas 
at 60, 90, and 200 m elevations in Section 1). 

Parts of investigated palsa mires with no frozen peat featured a mosaic arrangement 
of land cover classes. In individual cases, we depicted an abrupt change of classes after 
2–3 m, which is a sign of a higher diversity of vegetation groups. Zuidhoff and Kolstrup 
[80] reported a rise in biodiversity as palsa degradation triggered the formation of new 
wet growing sites. The wave field of GPR cross-sections for such areas differed from what 
we observed in intervals with permafrost and is more typical of peatlands—extensive 
series of reflectors with local features of echo-signal amplitudes because of natural peat 
heterogeneity. We have confidently delineated an extended interface marking the top of 
the mineral base of the peat deposit. In addition, we defined reflectors generated by the 
underlying sand layers at GPR signal travel times greater than 120 ns. Such sequences of 
classes were the most explicit in profile 1 in the 350–375 m interval (Figure 8a), in profile 3 
in the 220–360 m interval (Figure 8c), and in profile 6 in the 0–70 m interval (Figure 9b). 
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Figure 8. GPR cross-section, graph of TWI and LCC intervals from profiles GPR 1 (a), GPR 2 (b), 
and GPR 3 (c); dashed lines delineate permafrost table. 



Remote Sens. 2023, 15, 1896 16 of 22 
 

 

 
Figure 9. GPR cross-section, graph of TWI and LCC intervals from profiles GPR 4 (a) and GPR 5 (b); 
dashed lines delineate permafrost table. 

To show the relationship between the structure of the peat deposit and LCC in Fig-
ure 10, we have recognized marker GPR patterns. We observed that the C and MH classes 
have a greater intensity of GPR signal amplitudes related to peat humidity. When there 
was uniform peat moisture for the C class, we traced continuous reflectors on the GPR 
record. With unstable humidity for the MH class, the reflectors become more intermit-
tent. LH–TSh classes on dry peat also have similar signal attenuation, which makes it 
easy to determine them. The identification internal specification of the TG class was more 
difficult, since, according to the TWI, it belongs to the wetness zones. However, GPR 
patterns did not confirm this. This land class formation was associated with the lateral 
melting of permafrost in palsas. We assumed that the water coming from the palsa had a 
limited distribution in the thickness of the peat deposit. As a result, hygrophilous 
sphagnum moss grew up on the top soaked part (up to a depth of 70 cm), but below the 
peat remains dry. A further attenuation of the GPR signal could be associated with the 
remnants of permafrost at depth. Inclined or subvertical local zones with intense reflec-
tors also characterized this class. We correlated them with erosion cracks in peat, which 
are filled with meltwater. 
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Figure 10. Fragments of GPR cross-sections illustrating GPR patterns under surfaces with different 
LCCs (NB algorithm). 

8. Discussion 
Predicting palsa dynamics requires an understanding of the set of processes associ-

ated with permafrost growth and degradation. We believe that the substantial time dis-
creteness and time shift of the vegetation succession remote sensing data alone do not 
suffice for the accurate control of hummock collapse in palsa mires. Analysis of mor-
phometric variables, such as palsa area, is not a reliable indicator of irreversible perma-
frost degradation, since palsas’ growth and thaw can be altered by some seasonal anom-
alies. Therefore, simultaneous analysis of data on the interior structure of palsas, the 
shape and spatial distribution of permafrost, and the wetness of the peat deposit can help 
predict their climate resilience more accurately. The monitoring of palsa mires, which are 
often difficult to access, requires the application of combinations of remote sensing tech-
niques. Thus, UAS-based surveying, which may be additionally combined with airborne 
GPR survey, may ultimately become the key method of palsa mire monitoring. Such 
technical solutions are now available [81], and subarctic and arctic territories can be a 
promising test ground, as they lack tall vegetation and can be surveyed by flying at low 
altitudes. GPR measurements made in a limited area of peatlands can provide ground 
reference points for processing data of large-scale remote sensing methods, such as in-
SAR. For example, variability in ecohydrology and peat density affects peat surface mo-
tion [82,83]. Therefore, the identification of these additional factors influencing the dy-
namism of the peatland ecosystem will simplify remote monitoring, preliminarily em-
phasizing areas of changes. With studying palsas, GPR data about the morphology and 
spatial distribution of permafrost can be used to predict areas of their collapse using SAR 
or LiDAR methods. In general, GPR is an actual component of digital soil mapping, in-
cluding peatland [84]. 

Our findings confirm a correlation to exist between surface characteristics and the 
interior structure of palsa mires. For each identified LCC, we have found an original GPR 
pattern. Therefore, palsa monitoring is more efficient based on a sequence analysis of 
vegetation cover–surface morphology–peat internal structure, because all these elements 
have responses to external climatic impacts and are inseparable from each other. In this 
regard, prospects are opening for predicting the vegetation cover based on the surface 
morphometry and internal features of peat. This can be useful where there are no ground 
observations or a low contrast of different vegetation classes in the optical range. 

The GPR-determined thickness of the active layer on palsas in the surveyed site in 
July was 30–70 cm and 43 cm on average. These values fit in the 20–60 cm range of active 
layer measurements taken at this site in 1986 [50]. Thus, we have substantiated that active 
layer thickness is not so unequivocal as a predictor of permafrost condition and that both 
the exterior and the interior spatial structure of palsa mires should be monitored, and this 
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agrees with current trends and discussions on this matter [85,86]. GPR data can be po-
tentially used as additional predictors for machine learning, but the precondition is to 
decide on the required survey parameters and their expediency within the study design. 
The involvement of additional predictors can improve the quality of the classification of 
Subarctic peatlands. Namely, when considering a similar classification problem, Palace et 
al. [33] performed the analysis using RGB imagery supplemented with the results of 
textural analysis by artificial neural networks (ANNs). The final overall misclassification 
rate was 32%, and the authors remarked that SfM computing of topography can be added 
to machine learning to reduce the rate of pixel misclassification. Our results corroborate 
this statement, since the average overall error percentages for the algorithms were 
NB—12.8%, RF—23.2%, and SVM—17.7%. In research, we also encountered a problem of 
GPR and UAS data synchronization and consistency, which was mentioned by Yildiz et 
al. [66] previously. Thus, a unified algorithm has to be designed for merging predictors 
from different sources into a single GIS project. 

At present, lateral degradation along the margins is regarded as the principal 
mechanism for areal loss of peat plateaus [79,85], which is valid also for palsa hummocks. 
The palsa area can be quantified from a DEM by the elevation of the inflection point of 
the plateau edge, whereas the exact location of the permafrost boundary is debatable [85]. 
Our GPR data underline that permafrost inside palsas may be irregular and does not 
always mirror the edge dynamics. We found a west-to-east asymmetry in the position of 
permafrost in some palsa hummocks (Figure 8a,b), whereas in the north-to-south direc-
tion (Figure 9a,b) the permafrost layer was usually symmetrical relative to the palsa 
shape. In the study area (Lovozero), winds in winter predominantly blow in the western 
direction, which may cause snow accumulation on the leeward side, on the eastern slope. 
This is another reason to consider the factor of snow cover thickness, corroborating the 
findings of Seppälä [15] and Martin et al. [85]. Thus, scenarios of permafrost degradation 
in palsa mires are to rely on accurate estimates of the current permafrost configuration in 
hummocks, their position relative to the surface morphology, and the probability of rapid 
collapse. 

9. Conclusions 
We performed integrated fieldwork and aerial surveying supplemented with GPR 

surveys for land cover clustering and analysis of vegetation and geomorphology patterns 
for a subarctic palsa mire in the central part of the Kola Peninsula. Our results verified the 
morphometric predictors’ importance for machine learning since they improve the ac-
curacy of LCC algorithms. However, we found that LCC may be equivocal in describing 
the permafrost condition in palsas. Our GPR data not only identified a high correlation 
with TWI values and LCC but also pinpointed some features of the vegetation cover 
shaped by the interior structure of the peat deposit and by the permafrost position. We 
assert that the condition of individual palsas can be revealed by identifying sequences of 
LCC classes, consistent with GPR patterns. Our results emphasize the need to expand the 
range of techniques for palsa mire diagnosis and monitoring, considering that the com-
plex of UAS photogrammetry and GPR in our study delivered a more accurate delinea-
tion of lateral erosion areas of permafrost. 
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