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Abstract: As an important geophysical data processing technique, seismic inversion estimates sub-
surface rock properties with seismic observations. However, anisotropic inversion, intended for
a vertical transverse isotropy (VTI) media that primarily describes shale gas/oil resources, suffers
from high nonlinearity. Simulated annealing is a widely used global optimization algorithm for solv-
ing nonlinear seismic inverse problems, but it involves multiple optimization parameters (e.g., initial
temperature, search limit, and perturbation range). The importance of such parameters has been
proven whilst the relevant analysis is limited in seismic inversion studies. This work hereby proposes
a sequential anisotropic inversion method for VTI media, wherein we combine Bayesian linear and
simulated annealing nonlinear inversion schemes. The simulated annealing is featured by adaptive
optimization parameters aided by the linear result. Rather than the conventional method, the adap-
tive setting can be implemented trace by trace for complex reservoirs, which endows the method with
enhanced stability and extended applicability. Synthetic tests and practical application demonstrate
the validity of the method, wherein the obtained stiffness parameters facilitate the characterization of
potential shale reservoirs with an improved accuracy.

Keywords: seismic anisotropic inversion; VTI medium; sequential inversion; simulated annealing;
optimization parameters

1. Introduction

Prestack AVO/AVA (amplitude variation with offset/angle) seismic inversion aims
to quantitatively explore the information of subsurface elastic (e.g., longitudinal and
transverse wave velocities, density, anisotropy, etc.) [1–8] or petrophysical parameters
(e.g., porosity, fluid saturation, mineral content, etc.) [9–13] and then provides a database for
geofluid identification, lithology classification, and reservoir prediction [14]. By using the
processed seismic gathers as input data and geological or logging data as prior constraints,
it is one of the most effective techniques in seismic exploration of the oil/gas industries.

Under the assumption of an isotropic media, the traditional prestack AVO/AVA inver-
sion achieved great successes for wide applications in sandstone hydrocarbon reservoir
exploration. However, some of the highly promising unconventional resources, such as
shale gas and coalbed methane, are currently considered the most important alternative re-
sources [15]. Influenced by the oriented clay particles or horizontal laminar structures [16],
most shale and coal may exhibit the vertical transverse isotropy (VTI) anisotropic charac-
teristics [17,18], of which the seismic wavefield responses are significantly different from
those of conventional sandstones [19,20]. Therefore, seismic inversions based on anisotropy
theory are expected for the exploration of such unconventional reservoirs.

For the AVO/AVA modeling of VTI media, Carcione [21], Graebner [22], Schoenberg,
and Protázio [23] gave the exact expressions for the corresponding reflection coefficients,
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which are functions of the elastic stiffness parameters. Thomsen [24] defined the three pa-
rameters, ε, δ, and γ, in order to characterize the anisotropy features of a VTI media. Then,
under the assumption of weak anisotropy, Rüger [25,26] derived a simplified expression
for the reflection coefficient as a function of the three Thomsen’s parameters. Due to the
simple and linear forms, the Rüger approximation and its modified forms have become the
widely used reflection coefficient expressions for AVO/AVA inversion of VTI media [27–31].
However, these approximations have lower accuracy at large incidence angles and are
restricted to the assumptions of weak anisotropy and weak impedance contrasts, which
limit the accuracy and applicability of the corresponding inversions [32,33]. The forward
operator is a key factor of the inversion and significantly affects the result. It is therefore
recommended to employ the exact formulation of the reflection coefficients to improve the
accuracy of the VTI inversion. However, the solution to the inverse problem is difficult
to obtain analytically, due to the high nonlinearity of the exact-equation-based forward
operator. In addition, compared to the isotropic inversions (with three target parame-
ters), the VTI inverse problem involve more unknown parameters (five or even more),
leading to higher ill-posedness and thus more difficulties in practice [28,30,33]. To this
end, the global optimization algorithm is an important approach for solving the prestack
inversion problems.

Simulated annealing (SA), a Monte Carlo based heuristic algorithm, has the advantage
of overstepping local extremes for highly nonlinear inverse problems, and is one of the
most widely applied global optimization algorithms [34–36]. SA is proposed because of
the similarity between the annealing process of solids and general optimization problems.
The algorithm is featured by the probabilistic acceptance of candidate solutions according
to the Metropolis criterion for achieving a global optimal solution. Rothman [37] initially
introduced SA into the geophysical field to solve the residual static correction problem for
seismic data processing. Since then, SA has been extended to the field of seismic inversion
due to its robustness and reliability [38]. However, SA involves a variety of optimization
parameters (e.g., the initial temperature, the search limit, and the perturbation range of
model parameters, etc.), the settings of which have an important influence on the inversion
result [39]. At present, these optimization parameters are basically set by trial and error
approaches and adjusted by inversion tests with synthetic or borehole-side seismic traces,
which are highly empirical and prone to an unstable result. Attempts have been made
for the quantitative setting of optimization parameters. Basu and Frazer [40] suggested
that a higher initial temperature and smaller damping coefficient contribute to the mature
convergence of the inversion process. Aarts and Korst [41] proposed to determine the initial
temperature according to the first acceptation probability. However, the reported works
mainly focus on the setting of initial temperature. The relevant studies on setting optimiza-
tion parameters are still limited for solving seismic inversion problems. There are fewer
studies on comprehensively initializing such parameters, especially for the anisotropic in-
version, which should adaptively and properly initialize multiple optimization parameters
to improve the accuracy of final result.

Since the anisotropic inversion for VTI media is complicated in comparison to the
conventional prestack inversions [33], it is important to reduce the artificial interferences
and improve the stability and applicability of the algorithm. In this work, we presented
a sequential inversion method for VTI media by combining the Bayesian linear and SA-
based nonlinear inversion approaches. In particular, the optimization parameters are
adaptively initialized aided by the linear inversion result for the SA algorithm. The
proposed method aims to improve the simultaneous estimation of the four elastic stiffness
parameters (c33, c55, c11, and c55) with enhanced stability and applicability. Although the
commonly used Rüger approximation has limited accuracy at large angle ranges and
strong impedance contrasts, the approximation-based linear inversion is convenient for
implementing with high efficiency. Therefore, such linear results can provide a preliminary
model to assist the optimization parameter estimation of the subsequent SA nonlinear
inversion. For the nonlinear inversion, Graebner’s exact formulation [22] is introduced
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as the forward operator to improve the accuracy and applicability. The VTI inversion
requires simultaneous estimations of five target parameters, which leads to an inverse
problem with higher ill-posedness and more local minima. Since it is difficult to solve
using the commonly used linear optimization, the SA algorithm aided by the adaptive
optimization parameter setting is adopted to solve the inverse problem. The sequential
inversion process includes two steps: the Rüger approximation based Bayesian linear
inversion, followed by the SA nonlinear inversion based on Graebner’s exact formulation.
In the first step, the preliminary estimations of the stiffness parameters can be obtained
efficiently using the linear anisotropic inversion. Then, based on the preliminary result, the
initial temperature and perturbation ranges can be obtained quantitatively according to
the local potential energy trace by trace, and the search limit (solution space) that depends
on the preliminary result can also be properly reduced, all of which is used to initialize
the subsequent SA nonlinear inversion (the second step). This sequential scheme aims to
improve the stability of the optimization process and the accuracy of the final result for
seismic anisotropic inversion.

The paper is organized as follows. First, we present the theory of the proposed
sequential anisotropic inversion method, including Graebner’s exact formulation of the
reflection coefficients of the VTI media, the nonlinear inversion with the fast simulated
annealing algorithm, and the adaptive optimization parameter setting aided by the linear
Rüger approximation based linear inversion. Then, according to the synthetic data tests,
we analyze the influences of the initial temperature, the perturbation range, and the search
limit on the accuracy of inversion results. Finally, the proposed method is tested by using
both synthetic data and field data applications, which demonstrate the validity of the
sequential inversion scheme for anisotropic multi-parameter inversion.

2. Theory
2.1. Forward Modeling for VTI Media

Based on the convolution model, the synthetic record d can be obtained by multiplying
a reflection/transmission coefficient vector R(m, θ) with a wavelet matrix W as follows:

d = G(m) + e = W ·R(m, θ) + e (1)

where G(m) represents the forward operator and e is a vector of random noise.
R = [RPP , RPS , TPP , TPS ]

T contains the reflection coefficients of PP (RPP) and PS (RPS),
and the transmission coefficients of PP (TPP) and PS (TPS). For an interface separating
two VTI media, the exact analytical expression of R is a function of the elastic parameters
m (including four elasticities of c11, c13, c33, and c55, density ρ), and the incidence angle
θ [22], which can be computed by

S ·R = b (2)

with

S =


`U

P nU
S −`L

P −nL
S

nU
P −`U

S nL
P −`L

S
aU bU aL bL

dU eU −dL −eL

 and b =


−`U

P
nU

P
aU

−dU

 (3)

where the superscripts U and L represent the parameters of the upper and lower layers,
respectively, and the subscripts P and S denote the P- and S-wave modes, respectively. The
specific expressions of the components (a∗, b∗, d∗, and e∗, with ∗ = U, L) of Equation (3)
are given in Appendix A.

2.2. Prestack Seismic Anisotropic Inversion

In the prestack seismic inversion, an objective function is set up and solved by an op-
timization method. However, due to the presence of noise and the nonlinearity of the
forward operator, the inverse problem is ill-posed. The regularization techniques are
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commonly introduced to mitigate the ill condition. Based on the Bayes’ theorem [42], the
objective function can be derived as follows (see Appendix B):

P(m|d) = 1√
2π|Σe|

· exp
[
(d− G(m))TΣ−1

e (d− G(m))
]

· 1
(2π|Σm|)n/2 · exp

[(
m− ¯

m
)T

Σ−1
m

(
m− ¯

m
)] (4)

where P(m|d) denotes the posterior probability. The model parameter vector m includes
five target parameters of the anisotropic inversion, namely the elastic stiffnesses c11, c13, c33,
and c55, and the density ρ. Σm represents the covariance matrix of the model parameters m,
the expression of which is given in Appendix B. Σe is the covariance matrix of the random
noises. Maximizing Equation (4) leads to the estimation of unknown parameters m, which
can be treated with minimizing the objective function of

J(m) = (d− G(m))TΣ−1
e (d− G(m)) + λ

(
m− ¯

m
)T

Σ−1
m

(
m− ¯

m
)

(5)

where λ is a trade-off regularization parameter, which is introduced to balance the data
and the prior terms during inversion process.

2.3. Optimization Method Based on Fast Simulated Annealing

The inversion procedure is an optimization approach minimizing the objective func-
tion of Equation (5). By considering the highly nonlinear forward modeling (the relations
between subsurface property parameters and survey data), the simulated annealing is
a widely adopted global optimization algorithm to achieve the optimal solution for seismic
inversion problems [43,44]. Compared to linear optimization, the algorithm is capable of
jumping out of local minima. In this work, following the classic form of fast simulated
annealing (FSA) [34,35], we derive the perturbation/update of a model parameter in the
k-th iteration as

mk+1 = mk + Tksign(ξ − 0.5)
⌊
(1 + 1/Tk)

|2·ξ−1| − 1
⌋

∆m (6)

where mk+1 and mk are the perturbed and present model parameters, respectively. ∆m
represents the perturbation range, by which the step/size of model update at each iteration
is restricted. sign(·) represents the sign function and ξ is a random number between 0 and
1. Tk denotes the present temperature at the k-th iteration, which starts with the pre-defined
initial temperature T0. The temperature gradually reduces based on the cooling schedule,

Tk = T0 exp
(
−βk1/N

)
(7)

where β denotes the damping coefficient and is commonly set as a constant, N represents
the dimension of model parameters (for VTI anisotropic inversion, N equals to 5). At
the k-th iteration, we may accept the perturbation mk+1 conditionally according to the
acceptance probability Pk as

Pk(mk → mk+1) =

{
1, ∆E < 0

exp(−(∆E)k/Tk), ∆E > 0
(8)

where ∆E denotes the energy difference between the objective functions with the present
and perturbed model parameters at the k-th iteration. According to the defined Markov
chain length, the procedure may be repeated several times until the maximum iteration
number is reached.
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2.4. Adaptive Optimization Parameter Setting

Although the SA algorithm has advantages for solving nonlinear inverse problems, it
involves with a variety of optimization parameters, among which the search limit, perturba-
tion range, and initial temperature directly determine the convergence of the optimization
process and thereby influence the accuracy of inversion results. Therefore, we propose
a sequential prestack seismic inversion based on the FSA algorithm with an adaptive
optimization parameter setting, the procedure of which is described in Algorithm 1 and
Figure 1. In the following, the algorithm is summarized: (1) set the initial mean and co-
variance matrix of the five parameters for the linear inversion according the well log data;
(2) perform the linear inversion based on the Rüger approximation to generate the prelimi-
nary result (linear result); (3) set the linear result as the initial model for the subsequent
FSA inversion and set up the prior term; (4) estimate the initial temperature, perturbation
ranges, and search limits of FSA trace by trace with the linear inversion result; (5) obtain
the final result by using the FSA nonlinear optimization approach.

2.4.1. Linear Inversion Based on the Rüger Approximation

The linear inversion by the Rüger approximation is a commonly used method to
estimate the elastic parameters for VTI media, e.g., shale rocks, etc. [26,28,30]. Such a linear
method has high computational efficiency; however, it obtains inverted results with limited
accuracy due to the simplified forward engine with the linear optimization. Although
the linear inversion results deviate from the true models to some extent, they can still
provide assistances or prior information for a subsequent nonlinear inversion. Therefore,
we propose to adopt the Rüger approximation based linear inversion as the first step of the
sequential scheme.

In the Rüger approximation based linear inversion, the inverted parameter vector
is set as x, including P-wave velocity vP, S-wave velocity vS, density ρ, and the two
Thomsen’s anisotropic parameters, ε and δ. A discrete version of the reflection coefficient r
is performed.

r = ADx (9)

where the matrix A is defined with the coefficients AvP(θ), AvS(θ), Aρ(θ), Aε(θ), and Aδ(θ)
(see Appendix C), and D is the first-order difference matrix. The corresponding synthetic
record can be obtained by the convolution model as

d = Fx + e = WADx + e (10)

where the matrix F represents the forward operator, and W is a wavelet matrix at a certain
incidence angle. According to Buland and Omre [42], the explicit analytical solution of the
inverse problem is derived based on the Bayesian framework,

µx|d = µx + (FΣx)
T
(

FΣxFT + Σe

)−1
(d− Fµx) (11)

where µx and Σx are the expectation and covariance matrices of x, respectively, which can
be estimated with well log data, and µx|d, the posterior expectation, corresponds to the
linear inversion result.

Based on the aforementioned inversion result, namely, vP, vS, ρ, ε, and δ, we can obtain
the four stiffness parameters according to following equations [32]:

c33 = v2
Pρ, c55 = v2

Sρ, c11 = (2ε + 1)v2
Pρ (12)

c13 =

[
2δρ2v2

P

(
v2

P − v2
S

)
+ ρ2

(
v2

P − v2
S

)2
] 1

2
− ρv2

S (13)
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2.4.2. Initial Temperature Setting

For the traditional nonlinear inversion methods, the initial temperature is commonly
set as a constant for all seismic traces, according to trial and error from models or logging
data tests. Such an empirical setting may introduce errors, and it is difficult to obtain
an optimal initial value for nonlinear seismic inversion. The temperature initialization
therefore cannot be adaptively adjusted, which should change trace by trace with the
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input data condition for 2D/3D field applications. In this work, we propose to adaptively
estimate the initial temperature according to the local energy variation aided by the linear
inversion result, as

T0,i = −

Nest
∑

k=1
[J(mi,k)− J((mL)i)]

Nest · ln(P0,i)
(14)

where i denotes the i-th trace of model with i = 1, 2, ..., imax, k is the k-th iteration with
k = 1, 2, ..., Nest, with Nest denotes the iteration number for the estimation, which is set as
1000 in practice. The local energy is associated with the objective function value for the
model parameters within a specific area (e.g., a seismic trace). The local energy variation
is controlled by the temperature, which essentially determines the acceptance probability.
We obtain the values of the objective function Ji,k(mi,k) and Ji(mL) by substituting the
perturbed model at the i-th trace and the k-th iteration, mi,k, and the linear result at the i-th
trace, (mL)i, into Equation (5), respectively. P0,i is the initial acceptance probability, which
is expected to be large (~0.95).

In practice, the perturbation of mi,k in the estimation cannot follow Equation (6) since
the initial temperature is unknown. The perturbation is thus simplified as

mi,k+1 = mi,k + sign(ξ − 0.5)∆m (15)

2.4.3. Search Limit and Perturbation Range Setting

Setting the suitable search limit and perturbation range for nonlinear inversion is
a key factor to accelerate the convergence and improve the result. The limits denoted
by [mmin, mmax] are expected to be small and at the same time cover all possible solution
spaces. With mj representing the model parameter at the j-th depth point, and based on the
linear result, we set the search limit as

mmin,j =

{
(1− 2b)mL,j,

(
mR,j −mL,j

)
< bmL,j

(1− 2b)mR,j − 2b
(
mR,j −mL,j

)
,
(
mR,j −mL,j

)
≥ bmL,j

(16)

mmax,j =

{
(1 + 2b)mL,j,

(
mR,j −mL,j

)
< bmL,j

(1 + 2b)mR,j + 2b
(
mR,j −mL,j

)
,
(
mR,j −mL,j

)
≥ bmL,j

(17)

where mL,j is the inversion result of the linear optimization, and mR,j denotes a true value at
the same depth point extracted from reference well data. A scale coefficient b is set to vary
with the relative variation of the inverted parameter. The size of search limit depends on the
accuracy of the linear result, mL,j. When the linear result is less different from the reference
true value, a smaller window can be obtained according to Equations (16) and (17), while
a wider search window can be obtained when the result contains many anomalies.

The perturbation range ∆m is important for updating model parameters in Equation (6).
An overlarge range may cause an unstable inversion process, whilst a small range may
cause the model parameter unable to reach the global optimal solution. We set the pertur-
bation range according to the linear result, and the range is the mean of maximum and
minimum values of the result at each trace,

∆mj =
1
2
[
max

(
mL,j

)
−min

(
mL,j

)]
(18)
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Algorithm 1 The Proposed Sequential Prestack Anisotropic Inversion Method

1. Input: the observed prestack seismic data d, and the logging data
2. Initialization for linear inversion:

2-1. Initialize the model vector for the linear inversion, and we obtain x0 = [vP0, vS0, ρ0, ε0, δ0]
2-2. Initialize the initial statistical relations among the five parameters from x0, and we obtain
Σx0 and µx0 of Equation (11)

3. Stage 1 linear inversion
Adopt Equation (11) and start the loop: k = 1, 2, 3, ... do
3-1. Compute the synthetic data based on the initial model by using the Rüger approximation
of Appendix C and the forward operator matrix F according to Equation (10)
3-2. Calculate the posterior expectation µx|d according to Equation (11)
3-3. Compute the misfit d-µd. Output the inversion result x = µx|d if the maximum iteration is
reached, or x0 = µx|d, and repeat steps 2–3
3-4. Compute the model vector mL = [c33L,c55L,c11L,c13L,ρL] according to Equation (12) based
on x

4. Preliminary output: the result mL of the first step
5. Initialization for nonlinear inversion:

5-1. Set m0 = mL as the initial model of the nonlinear inversion
5-2. Initialize the statistical relations among the five target parameters from m0, and we obtain

Cm0 and
¯
m of Equation (5)

5-3. Generate the initial temperature according to Equation (13) based on m0
5-4. Generate the search limit and perturbation range according to Equations (16) and (17)
based on m0

6. Stage 2 nonlinear inversion:
Adopt the objective function (5) and start the loop: k = 1, 2, 3, ... do
6-1. Perturb the model parameter according to Equation (6) and calculate the
acceptance probability
6-2. Reject or accept the perturbation according to Equation (8); repeat the process several times
within the Markov chain
6-3. Reduce the temperature and repeat 6-1 to 6-2 until twenty consecutive perturbations are
rejected or the maximum iteration is reached

7. Final output: the final result mN.

3. Effect of Optimization Parameter

In this section, the effects of the optimization parameters (the initial temperature,
perturbation range, and search limit) on the FSA-based inversion result are analylzed. The
inverted parameters include the four stiffness parameters (c33, c55, c11, c13) and density
ρ. Three sets of tests are designed, i.e., Test 1 varying initial temperature, Test 2 on the
different perturbation ranges, and Test 3 on the different search limits generated based on
the two types of initial models. A well log model is considered for the tests and the true
curves are given in Figure 2. The input data are a synthetic angle gather ranging from 0 to
40 degrees by convolving a Ricker wavelet of 45 Hz dominant frequency with the exact
reflection coefficient proposed by Graebner [22], shown in Figure 3.

3.1. Initial Temperature

Test 1: In analyzing the influence of initial temperature, all the other optimization
parameters are fixed, including the initial model, perturbation range, regularization weight,
search limit, and the number of iterations. Three initial temperatures are analyzed, i.e.,
a high temperature (T0H = 2.62), a moderate one (T0M = 0.131), and a low one (T0L = 0.00262).
The initial model of five parameters is given with black dash curve and the search limit
is designed based on the initial model with the orange dash curve in Figure 4a. The
perturbation range is set as ∆mPA = [∆c33, ∆c55, ∆c11, ∆c13, ∆ρ] = [0.111 Gpa, 0.170 Gpa,
0.241 Gpa, 0.101 Gpa, 0.0073 g/cm3]. Figure 4a–c shows the inversion results obtained
by the FSA optimization approach with the low, moderate, and high initial temperatures,
respectively. To demonstrate the effect of initial temperature on the convergence rate
and result, the convergence curves are given describing the misfit (objective function)



Remote Sens. 2023, 15, 1891 9 of 29

evolution for the three optimization procedures in Figure 5. It is shown that the initial
temperature exhibits apparent effects on the inversion result, which vary with the different
target parameters. The results of stiffness parameters c11 and c13 are more sensitive to the
temperature. Compared with the high and low temperatures, the moderate one (Figure 4b)
yields the best result, which can be observed from the estimations of c55, c11, and c13 in
Figure 4d. Notably, the low temperature typically suffers from immature convergence.
Although the high initial temperature (blue curve in Figure 5) increases the convergence
rate, it causes more fluctuations at the early stage and fails to obtain a reasonable estimation.
Therefore, proper setting of initial temperature improves the convergence performance as
well as the final result.
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FSA optimization approach with the low, moderate, and high initial temperatures, respec-
tively. To demonstrate the effect of initial temperature on the convergence rate and result, 
the convergence curves are given describing the misfit (objective function) evolution for 
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Figure 3. The input synthetic seismic gather for model test generated by using the well logs of
Figure 2.



Remote Sens. 2023, 15, 1891 10 of 29

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 32 
 

 

the three optimization procedures in Figure 5. It is shown that the initial temperature ex-
hibits apparent effects on the inversion result, which vary with the different target param-
eters. The results of stiffness parameters c11 and c13 are more sensitive to the temperature. 
Compared with the high and low temperatures, the moderate one (Figure 4b) yields the 
best result, which can be observed from the estimations of c55, c11, and c13 in Figure 4d. 
Notably, the low temperature typically suffers from immature convergence. Although the 
high initial temperature (blue curve in Figure 5) increases the convergence rate, it causes 
more fluctuations at the early stage and fails to obtain a reasonable estimation. Therefore, 
proper setting of initial temperature improves the convergence performance as well as the 
final result. 

 
(a) 

 
(b) 

40 55 70
c33 (Gpa)

0  

25 

50 

75 

100
12 18 24
c33 (Gpa)

0  

25 

50 

75 

100
50 70 90
c33 (Gpa)

0  

25 

50 

75 

100
12 18 24
c33 (Gpa)

0  

25 

50 

75 

100

True values
Initial model
Inversion result
Search limit

40 55 70
c33 (Gpa)

0  

25 

50 

75 

100
12 18 24
c33 (Gpa)

0  

25 

50 

75 

100
50 70 90
c33 (Gpa)

0  

25 

50 

75 

100
12 18 24
c33 (Gpa)

0  

25 

50 

75 

100

True values
Initial model
Inversion result
Search limit

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 32 
 

 

 
(c) 

 
(d) 

Figure 4. Inversion results with the well model by the FSA optimization at different initial temper-
atures: (a) the low temperature T0L, (b) the moderate temperature T0M, (c) the high temperature T0H, 
and (d) the comparison of the three sets of results from (a) to (c). The black solid, black dash, and 
orange dash curves are the true logs, the initial models, and the search limits, respectively. The def-
initions of inverted curves are given in the legend. 

40 55 70
c33 (Gpa)

0  

25 

50 

75 

100
12 18 24
c33 (Gpa)

0  

25 

50 

75 

100
50 70 90
c33 (Gpa)

0  

25 

50 

75 

100
12 18 24
c33 (Gpa)

0  

25 

50 

75 

100

True values
Initial model
Inversion result
Search limit

40 55 70
c33 (Gpa)

0

25

50

75

100
12 20 28
c55 (Gpa)

0

25

50

75

100
60 70 80
c11 (Gpa)

0  

25 

50 

75 

100
12 17 22
c13 (Gpa)

0

25

50

75

100

True values
T0L Low
T0M Moderate
T0H High

Figure 4. Inversion results with the well model by the FSA optimization at different initial temper-
atures: (a) the low temperature T0L, (b) the moderate temperature T0M, (c) the high temperature
T0H, and (d) the comparison of the three sets of results from (a) to (c). The black solid, black dash,
and orange dash curves are the true logs, the initial models, and the search limits, respectively. The
definitions of inverted curves are given in the legend.
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Figure 5. Misfits varying with iteration numbers by using the different initial temperatures. The
arrow shows the direction of temperature increase. The definitions of curves are given in the legend.

3.2. Perturbation Range

Test 2: To analyze the influences of perturbation ranges on the result, four inversions
are performed by using different perturbation ranges. Similarly, the other optimization
parameters are fixed. The initial model, regularization weight, search limit, and the number
of iterations are the same as those of Test 1. The initial temperature is set as 0.5, which corre-
sponds to the moderate temperature according to previous analysis, and the initial model
and search limit are given as black and orange dash curves in Figure 6a–d, respectively.
The four perturbation range vectors are

∆mPA1 = [∆c331, ∆c551, ∆c111, ∆c131, ∆ρ1]

=
[
0.043Gpa,0.051Gpa,0.072Gpa,0.029Gpa,0.0022g/cm3

]
,

∆mPA2 = [∆c332, ∆c552, ∆c112, ∆c132, ∆ρ2]

=
[
0.112Gpa,0.135Gpa,0.192Gpa,0.077Gpa,0.0058g/cm3

]
,

∆mPA3 = [∆c333, ∆c553, ∆c113, ∆c133, ∆ρ3]

=
[
0.166Gpa,0.187Gpa,0.265Gpa,0.106Gpa,0.0087g/cm3

]
,

∆mPA4 = [∆c334, ∆c554, ∆c114, ∆c134, ∆ρ4]

=
[
0.334Gpa,0.424Gpa,0.580Gpa,0.233Gpa,0.018g/cm3

]
,

The ranges gradually increase from ∆mPA1 to ∆mPA2, by which four sets of the in-
version results are obtained with the conventional FSA and shown in Figure 6a–d. The
influence of perturbation range on inversion can be observed with the comparisons of
inverted results (Figure 6e) and convergence curves (Figure 7). It is shown that (a) similar
to the initial temperature, the perturbation range has more significant effects on c11 and
c13 among the four stiffness parameters; (b) a small range may lead to an immature con-
vergence of the optimization procedure and fail to obtain an acceptable result; (c) with the
increase of ranges, the convergence speed generally increases and the final misfit decreases
(see ∆mPA1 to ∆mPA3 in Figure 7); (d) the moderate range ∆mPA3 yields the best inversion
result; (e) the overlarge range ∆mPA4 leads to an unstable inversion result (gray curve in
Figure 6e) with more errors (greater misfit). In setting a perturbation range, an adaptive
method may be essential to provide a suitable and moderate one.
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Figure 6. Inversion results with the well model by the FSA optimization at different perturbation
ranges: (a) the perturbation range ∆mPA1, (b) the perturbation range ∆mPA2, (c) the perturbation
range ∆mPA3, (d) the perturbation range ∆mPA4, and (e) the comparison of the four sets of results
from (a) to (d). The perturbation ranges gradually increase from ∆mPA1 to ∆mPA4. The black solid,
black dash, and orange dash curves denote the true logs, the initial models, and the search limits,
respectively. The definitions of inverted curves are given in the legend.

3.3. Search Limit

Test 3: Since the search limit is generated according to the initial model, the four search
limits are considered to analyze the effects on the FSA inversion, which are modified based
on the smoothing initial models. We obtain two smoothing initial models by changing the
smoothing parameter SP (the span of the moving average filter), namely, the initial model
1 with SP = 25 and the initial model 2 with SP = 15. Smaller SP better describes the true
model. A scale factor is applied on the initial model, and a small, moderate, or large limit
is obtained depending on the factor. The search limits are given as limit 1 (orange dash
curve in Figure 8a), and a small limit generated with the initial model 1 (black dash curve);
limit 2 (orange dash curve in Figure 8b), and a moderate limit with the initial model 1;
limit 3 (orange dash curve in Figure 8c), and a large limit with the initial model 1; limit
4 (orange dash curve in Figure 8d), a moderate limit with the initial model 2 (black dash
curve in Figure 8d). The other optimization parameters are fixed, the initial temperature
is set as 0.5, and the perturbation range vector and number of iterations are the same as
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Test 1. Figure 8a–d shows the inversion results with the limits 1–4, respectively, and the
comparison of these results are given in Figure 8e. To quantify the optimization processes,
the corresponding convergence curves are shown in Figure 9. By using the initial model
1, the result with the small limit is unacceptable, especially for the case when it starts
from the initial model with an apparent difference from the true model (yellow curve in
Figure 8e). The convergence speed improves and the final misfit (error) reduces when the
limit is extended to a moderate one (red curve in Figure 9). With a successive increase of
the limit, the misfit slightly increases (blue curve in Figure 9), indicating that the large limit
is not essentially needed. Limit 4 yields the best result with the lowest error, which can be
observed from the gray curve in both Figures 8e and 9. The search limit has a significant
influence on the FSA inversion. A suitable limit generated from an appropriate initial
model could be much more helpful.
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Figure 8. Inversion results with the well model by the FSA optimization at different search limits
(the orange dash curves): (a) limit 1, a small limit generated with the initial model 1, (b) limit 2,
a moderate limit generated with the initial model 1, (c) limit 3, a large limit generated with the initial
model 1, (d) limit 4, a moderate limit generated with the initial model 2, and (e) the comparison of
four sets of inversion results from (a) to (d). The black solid, black dash, and orange dash curves are
the true logs, the initial models, and search limits, respectively. The definitions of inverted curves are
given in the legend.
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4. Synthetic Data Test

The well log model in Figure 2 is further considered to verify the proposed method
by using the synthetic input gather as shown in Figure 3. In this section, three inversions
are compared, i.e., Test 4 of the commonly used linear inversion based on the Rüger
approximation (the linear step of the sequential method), Test 5 of the nonlinear inversion
based on the Graebner exact reflection coefficient by using the FSA method with the
adaptive optimization parameter setting aided by the linear result (the nonlinear step of the
sequential method), and Test 6 of the full nonlinear inversion based on the Graebner exact
reflection coefficient by using the conventional FSA without the aid of the linear result. The
damping coefficient is set as 0.95 and the maximum iteration is set as 20,000 in the tests.
However, to improve the inversion efficiency, the iteration process will be terminated if
twenty consecutive perturbations are rejected.

In Test 4, we first obtain the inversion results of the parameters vP, vS, ρ, ε, and δ,
and then compute the estimations of c33, c55, c11, c13, and ρ according to Equation (12),
which are the outputs of the linear step of the sequential method. In Test 5, we set up the
initial model, and we compute the prior term and estimate the optimization parameters
(including the initial temperature, perturbation range, and search limit) aided by the linear
result of Test 4, followed by the FSA nonlinear inversion. The preliminary (Test 4) and final
results (Test 5) of the proposed method are shown as the blue curve in Figure 10a and the
red curve in Figure 10c, respectively. The black solid and black dash curves are the true
logs and the initial model for the linear inversion (Test 4), respectively. The orange dash
curve in Figure 10b shows the search limit generated from the linear result. We compute the
correlation coefficients between the true model and the results of the Rüger linear inversion
(the commonly used method and the linear step of the sequential scheme) and the FSA aided
by the linear results (the nonlinear step of the sequential scheme), respectively, as is shown
in Table 1. Figure 10 indicates that although the linear result of Test 4 contains anomalies
(see Table 1), they are close to the true values compared with the provided initial models
(see the black dash curve). The setting method of search limit (Equations (16) and (17))
considers all feasible solution spaces as well as reduces the searching window. The FSA
approach yields a significant improvement of inversion result, especially for the anisotropy-
related stiffnesses c11 and c13 and density ρ, when it is constrained by the linear result and
the adaptive parameter settings are incorporated. The improvement can be quantified with
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the corresponding correlation coefficients, i.e., 0.9932 (c33), 0.9825 (c55), 0.9801 (c11), 0.9717
(c13), and 0.9201 (ρ).
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Table 1. Correlation coefficients of the inversion results in Figure 10a,c and the true models.

Correlation Coefficients c33 c55 c11 c13 ρ

Rüger inversion (linear step) 0.9605 0.9413 0.9324 0.9102 0.8731
Aided FSA (nonlinear step) 0.9932 0.9825 0.9801 0.9717 0.9201

Test 6 adopts the conventional FSA, which is not constrained by the linear result. The
initial temperature and perturbation range vector are the same as Test 3. The search limit
(orange dash curve in Figure 11a) is obtained by the constrains of the provided initial model
(black dash curve in Figure 11a). Figure 11b shows the comparison of the results of Test 5
(red) and Test 6 (gray). Table 2 shows the correlation coefficients between the result of the
conventional FSA (gray curves in Figure 11a) and the true model. The sequential method
with an adaptive parameter setting (Test 5) yields a better result than the conventional FSA
(Test 6), especially for c11, c13, and ρ, where the lower correlation coefficients of the result of
Test 6 are obtained (see Table 2). Since the anisotropic inversion for VTI media is concerned
with the anisotropy-related parameters c11 and c13, the proposed method with adaptive
FSA is helpful in inverting the anisotropy information.

Remote Sens. 2023, 15, x FOR PEER REVIEW 21 of 32 
 

 

Table 1. Correlation coefficients of the inversion results in Figure 10a,c and the true models. 

Correlation Coeffi-
cients 

c33 c55 c11 c13 ρ 

Rüger inversion 
(linear step) 

0.9605 0.9413 0.9324 0.9102 0.8731 

Aided FSA (non-
linear step) 

0.9932 0.9825 0.9801 0.9717 0.9201 

Test 6 adopts the conventional FSA, which is not constrained by the linear result. The 
initial temperature and perturbation range vector are the same as Test 3. The search limit 
(orange dash curve in Figure 11a) is obtained by the constrains of the provided initial 
model (black dash curve in Figure 11a). Figure 11b shows the comparison of the results of 
Test 5 (red) and Test 6 (gray). Table 2 shows the correlation coefficients between the result 
of the conventional FSA (gray curves in Figure 11a) and the true model. The sequential 
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Figure 11. Nonlinear inversion result with the well model by the conventional FSA without the aid
of linear inversion. (a) Search limit and (b) comparison of the results by the nonlinear inversion (gray
curve) and proposed method (red curve). The black solid, black dash, and orange dash curves are the
true logs, the initial model, and the search limit, respectively. The red curves are same as those in
Figure 10c.
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Table 2. Correlation coefficients of the inversion results in Figure 11a and the true models.

Correlation Coefficients c33 c55 c11 c13 ρ

Conventional FSA 0.9806 0.9719 0.9626 0.9495 0.8737

Although the proposed method improves the results of the five parameters, it is also
shown that the results of c13 and ρ exhibit lower accuracy compared to those of c33, c55,
and c11. There is a highly coupled relation between density and the four stiff parameters
according to Equation (12), which causes the unacceptable density. To overcome this
problem, the parameterization of the objective function should be improved by decoupling
density with the other parameters. To obtain a better result of c13, a joint inversion with PP
and PS data may be considered.

To further evaluate the proposed method, we analyze the inversion result from seismic
data with different noise levels in terms of signal-to-noise ratios (SNRs) in Test 7. The
Gaussian random noise is added to the synthetic gather (Figure 12a) to obtain the new
input data, as shown in Figure 12b–d, which correspond to the noisy gathers with SNRs of
10, 5, and 3, respectively. The noise may be caused by forward modeling or observation
errors. The inversion results are shown in Figure 13 with the accuracy in terms of correlation
coefficient listed in Table 3. Although the density result exhibits the lowest accuracy in
those tests, its accuracy exhibits a reduction of 5% as the SNR of seismic data declines
from 10 dB to 3 dB (and a reduction of 8% from noise free to noise level of 3 dB). The test
indicates the proposed method has a satisfactory anti-noise performance with the adopted
global optimization.
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Figure 12. Synthetic PP seismograms computed with the exact reflection coefficient of VTI media 
with different SNRs by adding white Gaussian noises. (a) Noise free, (b) SNR = 10, (c) SNR = 5, and 
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Figure 12. Synthetic PP seismograms computed with the exact reflection coefficient of VTI media
with different SNRs by adding white Gaussian noises. (a) Noise free, (b) SNR = 10, (c) SNR = 5, and
(d) SNR = 3.
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Table 3. Correlation coefficients of the inversion results in Figure 13a–c and the true models.

Correlation Coefficients c33 c55 c11 c13 ρ

SNR = 10 0.9846 0.9731 0.9703 0.9598 0.8889
SNR = 5 0.9808 0.9681 0.9611 0.9543 0.8769
SNR = 3 0.9744 0.9630 0.9587 0.9501 0.8643

5. Real Data Application

A real seismic dataset is considered to verify the proposed method. The seismic data
is acquired from a gas-bearing shale reservoir survey of Sichuan Basin, southwest China.
The log data of a well for the target layers are shown in Figure 14, including the four elastic
stiffness parameters of c33, c55, c11, and c13, and density ρ. The input data are seismic angle
gathers. Each gather ranges from 5 to 45 degrees. Five partially stacked seismic profiles are
obtained by processing the angle gathers corresponding to the constant angle sections of
9, 17, 25, 33, and 41 degrees. The angle-dependent source wavelets for the inversion are
extracted from these data using the statistical method [45].

We first perform the Rüger approximation based linear inversion to obtain the pre-
liminary result. The initial model used for the linear inversion is built by interpolating
logs along the interpreted geological horizons. The linear inversion result is shown in
Figure 15, and is overlapped by the relevant log curves at the well location. We set the linear
result as the initial model for the subsequent FSA inversion. The optimization parameters
of FSA are set according to the linear result, where the initial temperature, search limit,
and perturbation range are estimated trace by trace according to Equations (14)–(18). The
estimation aided by the linear result enables an adaptive optimization setting according
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to the data of each seismic gather. The prior term is computed based on the linear result
so as to provide a reliable constraint for the nonlinear inversion. Figure 16a–e shows the
final results of the five parameters using the proposed method. Compared to the linear
result, the final results reveal more structural details with better lateral continuity. In order
to evaluate the two sets of results, we compute the correlation coefficients between the true
logs and the results at the well location (Table 4). From this it is revealed that, compared
to the linear result, the sequential inversion result shows a better consistency with the log
data.
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Figure 14. Well logs of the target layer. The panels from left to right give the true values of four stiff-
ness parameters of c33, c55, c11, and c13, and density ρ.

Table 4. Correlation coefficients of the inversion results by seismic traces near the well in
Figures 13 and 14 and the real logs.

Correlation Coefficients c33 c55 c11 c13 ρ

Rüger inversion (linear step) 0.818 0.767 0.726 0.631 0.627
Aided FSA (nonlinear step) 0.875 0.841 0.819 0.721 0.715
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annealing for solving the seismic VTI inversion problem. Admittedly, other nonlinear or 
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6. Discussion

The proposed method is motivated by the significance of setting optimization parame-
ters in the simulated annealing algorithm, especially for complex reservoirs involved with
the observation variations among different seismic traces in a VTI inversion. We hereby
propose the sequential inversion method, wherein the simulated annealing nonlinear in-
version is driven by a Bayesian linear inversion. In particular, the linear result not only
provides reliable prior constraints, but also enables an adaptive setting of the optimization
parameters for the simulated annealing inversion.

The simulated annealing endows better capability of escaping local minima for the
multi-modal and multi-parameter inverse problems. Furthermore, the proposed method
does not require considerable extra computational cost, since the linear inversion and
optimization parameter estimation take much less time compared with the simulated
annealing inversion process, which enables us to select the global optimization of simulated
annealing for solving the seismic VTI inversion problem. Admittedly, other nonlinear
or probabilistic inversion methods can also be employed; however, this work focuses on
addressing the observation variations among different seismic traces for complex reservoirs
rather than delving into the algorithm itself. The efforts that we have made (the two-step
inversion strategy) not only improve the accuracy of optimization parameters, but also
provide reliable prior models to constrain the inversion process, which make the proposed
method a broad applicability.

The test indicates that twenty thousand iterations are required to guarantee conver-
gence. In practice, the optimization process is terminated if twenty consecutive perturba-
tions are rejected, by which the total iteration number can be largely reduced. However,
the computational cost should be considered when applying to large-scale 3D surveys.
Future studies are supposed to make efforts on improving the computational efficiency for
the method.

7. Conclusions

In this work, we propose a sequential inversion method for VTI media by using the
FSA approach with adaptive setting of the optimization parameters. The method adaptively
estimates the optimization parameters (i.e., initial temperature, perturbation limit, and
search range) of FSA aided by the linear inversion result, which effectively improves the
final results. Since forward modeling is a key factor of inversion procedure, the exact
reflection coefficient of VTI media proposed by Graebner is employed to improve the
accuracy of the method. The proposed method is tested on both synthetic and real seismic
data, which demonstrates the advantage over the conventional FSA inversion. The method
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obtains the results with improved accuracy and stability, especially for c11 and c13. Whereas,
further improvement can be achieved on density and c13 by decoupling density with the
other parameters and employing a joint PP- and PS-wave inversion scheme.
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Appendix A

According to Graebner [22] and Luo et al. [33], the components of Equation (3) are
derived as follows:

a∗=U,L = c∗55(s
∗
P`
∗
P + pn∗P), b∗=U,L = c∗55(s

∗
Sn∗S + p`∗S), (A1)

d∗=U,L = p`∗Pc∗13 + s∗Pn∗Pc∗33, e∗=U,L = pn∗Sc∗13 − s∗S`
∗
Sc∗33 (A2)

where `∗ and n∗ with ∗ = P, S denote the direction cosines,

`∗=P,S =

√
c33s2∗ + c55 p2 − ρ

(c55 + c33)s2∗ + (c11 + c55)p2 − 2ρ
(A3)

n∗=P,S =

√
c55s2∗ + c11 p2 − ρ

(c55 + c33)s2∗ + (c11 + c55)p2 − 2ρ
(A4)

In Equations (A1)–(A4), p denotes the horizontal slowness. sP or sS is the vertical
slowness and has the expression

sP =
1√
2
·
√

K1 −
√

K2
1 − 4K2K3, sS =

1√
2
·
√

K1 +
√

K2
1 − 4K2K3 (A5)

with

K1 =
ρ

c33
+

ρ

c55
−
[

c11

c55
+

c55

c33
− (c13 + c55)

2

c33c55

]
p2, (A6)

K2 =
c11

c33
p2 − ρ

c33
, K3 = p2 − ρ

c55
. (A7)

Appendix B

Based on Bayes’ theorem [42], the objective function takes the shape of

P(m|d) = P(d|m)× P(m)

P(d)
∝ P(d|m)× P(m) (A8)

where P(m|d) and P(d|m) denote the posterior probability and likelihood functions, re-
spectively. P(m) and P(d) (when P(d) is given as a constant) are the prior and marginal
probability functions, respectively. By assuming that the random noise e in Equation (1)
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follows a zero-mean Gaussian distribution for seismic observations [42,46–49], the posterior
probability is derived as follows:

P(d|m) =
1√

2π|Σe|
· exp

[
(d− G(m))TΣ−1

e (d− G(m))
]

(A9)

where Σe denotes the covariance matrix of the random noises, which is a diagonal matrix
with the noise variance according to the signal-to-noise ratio of seismic data.

The prior probability of m can also be treated as a Gaussian distribution to provide
general constraints on the inversion process [34,48–51]. However, other distributions can
be adopted by considering specific subsurface model properties [13]. The prior probability
P(m) is

P(m) =
1

(2π|Σm|)n/2 · exp

[(
m− ¯

m
)T

Σ−1
m

(
m− ¯

m
)]

(A10)

In which
¯
m and n are the mean value and dimension of m, respectively. For the

anisotropic inversion of VTI medium, the covariance matrix Σm of m can be derived:

Σm =


σc33 c33 σc33 c55 σc33 c11 σc33 c13 σc33 ρ

σc33 c55 σc55 c55 σc55 c11 σc55 c13 σc55 ρ

σc33 c11 σc55 c11 σc11 c11 σc11 c13 σc11 ρ

σc33 c13 σc55 c13 σc11 c13 σc13 c13 σc13 ρ

σc33 ρ σc55 ρ σc11 ρ σc13 ρ σρ ρ

 (A11)

The covariance matrix Σm plays a role in improving the stability of multi-parameter
inversion process, since the elastic parameters of subsurface rocks commonly exhibit the
statistical correlations to some extent. σc33 c55 is taken as an example, which represents the
covariance of the stiffnesses c33 and c55.

Combining Equations (A8)–(A11), we have the posterior probability function P(m|d)
as Equation (4).

Appendix C

According to Rüger [25,26] and Luo et al. [51], the reflection coefficient of the PP wave
can be derived as the sum of isotropic background and anisotropic perturbation,

r = riso + raniso (A12)

where riso and raniso represent the isotropic and anisotropic terms, respectively. The isotropic
term is consistent with the commonly used approximation for an isotropic media,

riso = BvP · rvP + BvS · rvS + Bρ · rρ (A13)

where

BvP =
1

2 cos2 θ
, BvS = −4(vS)

2

(vP)
2 sin2 θ, Bρ = 0.5− 2(vS)

2

(vP)
2 sin2 θ (A14)

The anisotropic term can be derived as follows:

raniso = Bε · rε + Bδ · rδ (A15)

where

Bε =
sin2 θ

2
, Bδ =

1
2

sin2 θ tan2 θ (A16)
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For Equations (A2)–(A4), θ is the incidence angle of P-wave. rvP, rvS, rρ, rε, and rδ

denote the reflectivities related to P-wave velocity vP, S-wave velocity vS, density ρ, and
Thomsen’s anisotropic parameters ε and δ, respectively, and

rvP =
∆vP
vP

, rvS =
∆vS
vS

, rρ =
∆ρ

ρ
, rε = ∆ε, rδ = ∆δ (A17)

where vP, vS, and ρ denote the average velocities and density of the upper and lower layers.
∆vP, ∆vS, ∆ρ, ∆ε, and ∆δ represent the differences of five properties across the interface.
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