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Abstract: The utilization of remote sensing technologies for archaeology was motivated by their
ability to map large areas within a short time at a reasonable cost. With recent advances in platform
and sensing technologies, uncrewed aerial vehicles (UAV) equipped with imaging and Light Detec-
tion and Ranging (LiDAR) systems have emerged as a promising tool due to their low cost, ease of
deployment/operation, and ability to provide high-resolution geospatial data. In some cases, ar-
chaeological sites might be covered with vegetation, which makes the identification of below-canopy
structures quite challenging. The ability of LiDAR energy to travel through gaps within vegetation
allows for the derivation of returns from hidden structures below the canopy. This study deals with
the development and deployment of a UAV system equipped with imaging and LiDAR sensing
technologies assisted by an integrated Global Navigation Satellite System/Inertial Navigation System
(GNSS/INS) for the archaeological mapping of Dana Island, Turkey. Data processing strategies are
also introduced for the detection and visualization of underground structures. More specifically, a
strategy has been developed for the robust identification of ground/terrain surface in a site char-
acterized by steep slopes and dense vegetation, as well as the presence of numerous underground
structures. The derived terrain surface is then used for the automated detection/localization of
underground structures, which are then visualized through a web portal. The proposed strategy has
shown a promising detection ability with an F1-score of approximately 92%.

Keywords: UAV; LiDAR; bare earth detection; digital terrain model; visualization; underground
structure detection; archaeological mapping

1. Introduction

Archaeology is the study of previous human activities and cultures through the re-
covery, documentation, and analysis of material remains and the environment when used,
modified, and perceived by people [1–3]. The accurate, detailed documentation of cultural
heritage sites is a crucial aspect of archaeology. The majority of documentation strategies
are based on labor and involve time-intensive, and sometimes invasive and hazardous, site
surveys [4–6]. Therefore, remote sensing technologies have emerged as a more practical ap-
proach to obtaining a detailed understanding of archaeological sites. More specifically, the
emergence of passive and active remote sensing modalities operating in different portions
of the electromagnetic spectrum allows for the derivation of a rich set of information, which
is useful for the detection and mapping of archaeological remains. Improvements in direct
georeferencing technologies, and lower-cost technologies, i.e., integrated Global Navigation
Satellite Systems/Inertial Navigation Systems (GNSS/INS), which allow for the control-
free mapping of such sites. This makes the remote sensing of archaeological sites a more
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attractive option for their documentation. Remote sensing data have traditionally been
acquired by spaceborne and airborne platforms [7–12]. In spite of their ability to improve
performance, these remote sensing systems do not provide reasonable resolution at an
affordable cost [10]. Over the last decade, uncrewed aerial vehicles (UAVs) have emerged as
promising remote sensing platforms. The use of UAVs is motivated by their low cost, ease
of deployment, autonomous operation, ability to fly under cloud cover, and ability to fill
an important gap between airborne and terrestrial sensing modalities [13–17]. The recent
availability of miniaturized sensing modalities and direct georeferencing technologies, to-
gether with the improved payload capacity of modern UAVs, are other factors that promote
the use of such platforms in a wide range of applications, including archaeology [4].

In terms of remote sensing modalities, imagery has been used for the derivation of
high-resolution orthophotos, which are quite useful for the 2D mapping of archaeological
sites. With the recent developments in Structure from Motion (SfM) algorithms, we are able
to generate dense point clouds that can cover a site, allowing for its 3D mapping [18–21].
However, for sites with heavy vegetation cover, image-based documentation fails to provide
useful information below canopy (e.g., hidden walls, and underground structures). In
this regard, Light Detection and Ranging (LiDAR) provides a viable alternative for under-
canopy mapping due to its ability to travel through tiny gaps while delivering results
pertaining to hidden structures. Thus, Terrestrial Laser Scanning (TLS) has been used
as a surveying tool in archaeology [22]. However, mapping an extensive archaeological
site with TLS is a time-intensive and data-heavy operation. Furthermore, vegetation
cover is a significant impediment to an accurate recording. This leads to the need for
expensive post-processing for registration and information extraction from the derived
point clouds [23–26]. Therefore, TLS is often preferred for smaller, unwooded areas as
well as architectural remains. Considering this, the use of LiDAR units onboard UAVs is
becoming an interesting concept for the mapping of archaeological sites [27–29].

In spite of its advantages, LiDAR-based remote sensing lacks the important infor-
mation necessary for understanding acquired scenes (e.g., lack of spectral information).
With the improved payload capabilities of modern UAVs, both camera and LiDAR systems
can be mounted on the platform, allowing for the simultaneous acquisition of image and
point cloud data. Incorporating a digital camera onboard UAVs provides more capabilities,
which enhances the processes of feature extraction, scene understanding, and the visual-
ization of derived products. The synergistic characteristics of image and LiDAR mapping
technologies allow for a more complete mapping/documentation. Table 1 provides a brief
summary of these complementary characteristics, which are illustrated in Figure 1.

Table 1. Synergistic characteristics of imaging and LiDAR technologies for mapping/documentation
of archaeological sites.

Approach Pros Cons Reference

Image-based

• Less expensive.
• Rich in semantic information.
• Lots of existing

image-processing strategies.

• Only provides information about the
canopy envelope.

• Affected by illumination conditions.
• Complex 3D reconstruction

(e.g., establishing reliable matchings
in overlapping imagery).

[4,18,21,30,31]

LiDAR-based

• Straightforward 3D reconstruction.
• Provides returns from

below-canopy structures.
• Not affected by illumination conditions.

• More expensive.
• Complex LiDAR

data-processing strategies.
• Less semantic information.

[28,30]
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the same location). 

In spite of the above characteristics of LiDAR data, the detection of underground 
structures (including cisterns) from point clouds remains a challenging task, especially 
when dealing with complex archaeological sites exhibiting steep slopes and dense vege-
tation [32–34]. The detection of cisterns is quite important for some archaeological sites, 
especially those in areas with limited access to fresh water. Inhabitation of such sites is 
only sustainable if a provision of fresh water is created. Having information about such 
structures is important for: (1) identifying the maximum population that can be sustained, 
(2) differentiating between private and public spaces, (3) the identification of the functions 
of damaged buildings, and (4) providing insight into the settlement layout and phases of 
occupation. For instance, on Dana Island, where a large maritime village developed from 
the first through the eighth century CE, cisterns were critical not only for resident popu-
lation but also for supplying the maritime vessels that used the island as a way station 
[35]. Using UAV LiDAR, researchers are able to answer fundamental archaeological ques-
tions such as the volume of quarrying, the spatial relationship between quarries and in-
habitation, and the transformation of the natural terrain into a highly modified industrial 
settlement. Moreover, it can address environmental concerns about denuding the island 
of its natural flora while drastically reducing the labor and finances required to map such 
a complex site. Therefore, this manuscript focuses on establishing a UAV system equipped 
with imaging and LiDAR remote sensing technologies aided by an integrated GNSS/INS 
unit to provide useful geospatial data for the detection of underground structures in gen-
eral, and cisterns in particular. 

Much of the current UAV LiDAR-based archeological work focuses on the descrip-
tive interpretation of results [36]. Some of the most famous recent studies typically present 

Figure 1. Illustration of a cistern in (a) an image and (b) LiDAR data (side view)—the cistern is hardly
visible in the image, while it is clear in the point cloud (the blue placemark and red dot show the
same location).

In spite of the above characteristics of LiDAR data, the detection of underground
structures (including cisterns) from point clouds remains a challenging task, especially
when dealing with complex archaeological sites exhibiting steep slopes and dense vege-
tation [32–34]. The detection of cisterns is quite important for some archaeological sites,
especially those in areas with limited access to fresh water. Inhabitation of such sites is
only sustainable if a provision of fresh water is created. Having information about such
structures is important for: (1) identifying the maximum population that can be sustained,
(2) differentiating between private and public spaces, (3) the identification of the functions
of damaged buildings, and (4) providing insight into the settlement layout and phases of
occupation. For instance, on Dana Island, where a large maritime village developed from
the first through the eighth century CE, cisterns were critical not only for resident popula-
tion but also for supplying the maritime vessels that used the island as a way station [35].
Using UAV LiDAR, researchers are able to answer fundamental archaeological questions
such as the volume of quarrying, the spatial relationship between quarries and inhabitation,
and the transformation of the natural terrain into a highly modified industrial settlement.
Moreover, it can address environmental concerns about denuding the island of its natural
flora while drastically reducing the labor and finances required to map such a complex site.
Therefore, this manuscript focuses on establishing a UAV system equipped with imaging
and LiDAR remote sensing technologies aided by an integrated GNSS/INS unit to provide
useful geospatial data for the detection of underground structures in general, and cisterns
in particular.

Much of the current UAV LiDAR-based archeological work focuses on the descriptive
interpretation of results [36]. Some of the most famous recent studies typically present
archaeological layers covered by vegetation, partial human-based reconstruction of missing
features, or broad framework outlines for a study area [37]. Our research pushes the bound-
aries of research by quantitatively interpreting LiDAR signals to recognize archaeological
features that are hard to survey and analyze at scale by human observation alone. Our
work also opens the way for more sophisticated analytic projects, which could infer the
degree and type of human occupation, leading to important socio-cultural conclusions
about the historical processes around the area of interest.

The detection of underground structures from UAV-based point clouds requires a
crucial ground-filtering step. Such UAV datasets could prove challenging due to the
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presence of above ground objects, land features of different sizes, and varying point
densities [38]. Ground filtering algorithms for LiDAR point clouds can be categorized
into three main groups: (1) morphology-based, (2) slope-based, and (3) surface-based
approaches. Morphology-based filtering separates above-ground and bare-earth points
using an opening operation [39–41], and it is robust in steep areas while removing smaller
non-ground features. Slope-based strategies [42–44] aim to distinguish bare-earth points
from above-ground points by detecting inconsistent slope changes. Hence, they are more
effective in flat areas but less so in areas with drastic terrain changes. The goal of surface-
based filtering [45–47] is to approximate bare-earth points using a mathematical description
of a Digital Terrain Model (DTM); however, it tends to ignore terrain details. Given the
characteristics of UAV LiDAR data in archaeological sites (e.g., steep areas with land
features of different sizes), surface-based filtering will likely be most suitable for this study.

Specifically, the cloth simulation filtering algorithm has frequently been compared
with other filtering approaches in previous studies. Serifoglu Yilmaz et al. [48] evaluated
the performance of seven commonly used ground-filtering algorithms [45,49–54] for UAV-
based point clouds. Their results showed that the cloth simulation filtering algorithm [45]
produces the best results since it has the advantage of requiring only a few, easily adjustable
parameters. Bolkas et al. [55] compared the use of UAV photogrammetry and TLS for
examining the performance of two ground-filtering algorithms (i.e., Agisoft Metashape
classification and cloth simulation filtering algorithms). They found that vegetation density
has a major impact on surface change estimation due to the varying levels of penetration,
while both ground-filtering algorithms provide acceptable results in areas with low vegeta-
tion density. In summary, among the existing ground-filtering algorithms, cloth simulation
shows great promise in handling data obtained from UAVs. However, modifications are
necessary to address challenges posed by noise and outliers in point clouds, as well as the
dense vegetation, sudden elevation changes, and/or underground structures that might be
frequent in archaeological sites.

In addition to using remote sensing technologies to develop algorithms capable of
archaeological site documentation, there is a lack of easy-to-use visualization tools con-
sidering the massive amount of captured data, especially LiDAR point clouds. There are
some commercial and opensource tools for remote sensing data visualization—e.g., Cloud-
Compare (http://www.cloudcompare.org/, accessed on 10 February 2023), VisionLidar
(https://geo-plus.com/point-cloud-software/, accessed on 10 February 2023), and Veesus
(https://veesus.com/, accessed on 10 February 2023). However, such software programs
rely on the availability of large amounts of computer memory storage and are limited by the
computational performance of the used hardware. With recent improvements in internet
speed, several web portals have been developed, allowing end-users to access point clouds
without prerequisite installation and data downloading [56–58]. However, a visualization
tool capable of integrating both image and point cloud data while providing end-users
with interactive means for the manipulation of such data (e.g., forward and backward
projection between 2D images and 3D point clouds) is still lacking. Therefore, another
objective of the proposed research is to develop a web portal for managing/visualizing
the collected UAV imagery and LiDAR data as well as the derived products. The main
objectives/contributions of this study can be summarized as follows:

• Develop a UAV-based remote sensing platform for the acquisition of image and
LiDAR data for the documentation of isolated, complex archaeological sites rich in
underground structures, such as cisterns and the basements of buildings.

• Develop a robust terrain model generation strategy that can handle rugged terrains
with sudden elevation changes, dense vegetation cover, and/or the presence of under-
ground structures.

• Develop a detection strategy for identifying underground structures in LiDAR point clouds.
• Develop a web-based visualization portal for illustrating image and LiDAR data

together with derived products while providing the end-users with easy-to-use switch-
ing between imaging and LiDAR data.

http://www.cloudcompare.org/
https://geo-plus.com/point-cloud-software/
https://veesus.com/
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• Illustrate the performance of the developed strategies using real datasets captured
over a complex archaeological site.

The remainder of this paper is organized as follows: Section 2 introduces the utilized
UAV system, study site, and acquired datasets; Section 3 presents the mathematical models
for LiDAR/image-based 3D point positioning (which are necessary for subsequent data
processing), proposed terrain model generation and underground structure detection
approaches, together with the developed web-visualization portal and its use in establishing
a reference dataset; experimental results are then reported and discussed in Section 4; finally,
the conclusions and recommendations for future work are summarized in Section 5.

2. Data Acquisition System, Study Site, and Dataset Description

One of the objectives of the proposed research is to develop and deploy a UAV-based
remote sensing system equipped with a digital camera and LiDAR remote sensing modali-
ties assisted by an integrated GNSS/INS unit. The system will be used for data acquisition
over a complex archaeological site. The following subsections outline the specifications of
the used UAV and provide details about the study site and acquired datasets.

2.1. UAV-Based Mobile Mapping System

An in-house-developed UAV mobile mapping system (MMS) was used in this study.
The UAV, as shown in Figure 2, was equipped with a LiDAR scanner—Velodyne VLP-32C,
a digital camera—Sony Alpha ILCE-7R, and an Applanix APX-15 UAV V2 GNSS/INS unit.
The LiDAR scanner has 32 laser beams that are radially aligned in a vertical plane with a 40◦

Field of View (FOV) at an angular resolution of 0.33◦. The laser beam assembly is rotated
around the unit’s vertical axis to provide a 360◦ horizontal FOV with an angular resolution
between 0.1◦ and 0.4◦. The VLP-32C emits 600,000 pulses per second for a maximum
measurement range of 200 m and±3 cm range accuracy [59]. The LiDAR unit was mounted
on the UAV with its vertical axis parallel to the flight direction. The Sony Alpha ILCE-7R is
a 36.4-megapixel off-the-shelf camera with a frame size of 7360 × 4912 pixels and 4.86 µm
pixel size [60]. The nominal focal length of the used lens is 35 mm. The camera, which
was set up on the UAV with its optical axis pointing in the nadir direction, is triggered
by an Arduino Micro microcontroller at a frame period of 1.5 s. The LiDAR and camera
units were directly georeferenced by the APX-15 UAV V2 GNSS/INS system [61], whose
data were post-processed using POSPac [62] to provide the position and orientation of
the body frame associated with the INS’ Inertial Measurement Unit (IMU) at 200 HZ.
Under open-sky conditions with good accessibility for the GNSS signal, the post-processing
positional accuracy of the GNSS/INS system ranged from ±2 to ±5 cm, and the roll/pitch
and heading accuracy were ±0.025◦ and ±0.08◦, respectively.
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2.2. Study Site and Dataset Description

The study site was Dana Island (36◦11′91”N, 33◦46′27”E), which was part of the
ancient Rough Cilicia (roughly rectangular in shape with dimensions of 2.7 km × 0.8 km)
in southern Turkey. Located 2 km off the Mediterranean coast, this rich archaeological
landscape includes a maritime village of the early Byzantine period and a hilltop occupation
that goes back to the Iron Age [35]. The coastal village along the western shoreline includes
houses, shops, hostels, baths, six churches, and other buildings related to seaborne travel.
This was also the site of a major quarrying operation, as evidenced by the extensive
limestone quarries across the settlement, and the infrastructure for exporting stone blocks
via maritime vessels. These materials provide a wealth of information about the social,
economic, political, and religious structures of the communities that lived on the island.
Dana Island is known for its rugged terrain, hot and arid environment, and limited access
to fresh water. Therefore, inhabitation was only possible by establishing a dense set of
cisterns, which were not only used by the resident population but also to supply the
maritime vessels that used Dana Island as a way station. The steep slope, rugged terrain,
dense vegetation cover, and availability of numerous underground structures in the island
make it an excellent site for testing the ability to use UAV LiDAR to detect and visualize
such structures.

The west coast of Dana Island, where most archaeological sites are located, was
covered by ten flight missions between 26 and 29 July 2019. Due to the isolated location
of the island, a local Trimble base station (SPS585) was established for differential GNSS
post-processing. The conducted missions, together with the local base station, are shown
in Figure 3. As an example, Figure 4 illustrates a color-coded point cloud over the area
covered by mission #2 (collected on 27 July). Since the LiDAR system allows for a wider
swath coverage across the flight line than the onboard camera, some of the LiDAR points
are not color-coded. The collection date, flying height, average speed, flight time, and
collected data of each mission are listed in Table 2.
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Figure 4. Illustration of a single mission coverage (mission #2 collected on 27 July 2019) along the
west coast of Dana Island with the LiDAR colored by RGB data (whenever available)—otherwise,
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Table 2. Specifications of UAV data acquisitions along the west coast of Dana Island.

Dataset Flying Height
(m)

Average Speed
(m/s)

Flight Time
(min) No. of Images No. of Points

(million)
Spatial Coverage

(ha)

Day1 *-M1 45–65 6.0 13 514 76 6.5
Day1 *-M2 30–50 5.8 10 518 87 7.8

Day2 *-M1 45 5.0 15 597 89 8.3
Day2 *-M2 60–80 5.0 15 607 58 9.7
Day2 *-M3 30–80 5.1 12 578 77 6.4

Day3 *-M1 45–50 5.5 15 590 96 6.6
Day3 *-M2 50–100 5.7 15 686 85 14.0
Day3 *-M3 60–90 5.0 14 625 145 13.0

Day4 *-M1 50–90 5.0 15 587 103 7.8
Day4 *-M2 22–40 3.0 17 663 115 2.0

* Days 1–4 correspond to 26–29 July 2019, respectively; M1, M2, and M3 correspond to conducted missions on a
given day.

3. Methodology

The methodology developed in this work starts by using LiDAR data from different
missions for the detection of underground structures. Original point clouds, acquired
imagery, and detected objects are then incorporated in a web-visualization portal allowing
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for interactive switching between 3D LiDAR data and 2D imagery. This section starts
with the mathematical models used for deriving 3D coordinates using LiDAR and imaging
systems, as well as establishing the 2D-to-3D transformation between image and point cloud
data. The methodology for underground structure detection is then explained, followed by
coverage of the web-visualization portal. Finally, we will introduce the utilization of the
developed portal for establishing a reference dataset, which will be utilized to assess the
performance of the underground structure detection approach.

3.1. Point Positioning Equations for GNSS/INS-Assisted LiDAR and Imaging Systems

The success of any multi-modal geospatial data-processing/integration activity is
contingent on ensuring the positional quality of such data (e.g., proper georeferencing
of the used sensors, together with a comprehensive modeling of the point-positioning
equations, relating their measurements to the respective ground coordinates). In general,
establishing the point-positioning equations for either LiDAR or imaging systems requires
two steps. First, we need to define the laser beam or imaging ray relative to the sensor
coordinate system. This definition is based on the sensor measurements (i.e., laser range
and pointing direction for a LiDAR and image coordinate measurements for a camera),
together with the Interior Orientation Parameters (IOP) of the used sensor (i.e., parameters
describing the encoder mechanism for a LiDAR or principal point coordinates, principal
distance, and distortion parameters for a camera). Second, the position and orientation
of the laser beam or imaging ray relative to the mapping frame are established through
the Exterior Orientation Parameters (EOP) that describe the position and orientation of the
sensor relative to the mapping frame.

The point positioning models for LiDAR and camera units are described in
Equations (1) and (2), respectively. In Equation (1), rlu(t)

I denotes the position of the foot-
print of a laser beam, emitted at time t, relative to the laser unit frame, while, rm

lu(t) and
Rm

lu(t) are the position and orientation information of the laser unit frame relative to the

mapping frame at time t—i.e., the EOP of the laser unit. The derivation of rlu(t)
I is based on

the range and pointing direction measurements of the LiDAR unit as well as its IOP. For a
GNSS/INS-assisted system, the estimation of rm

lu(t) and Rm
lu(t) can be derived according to

Equation (3), which is graphically explained in Figure 5, where rm
b(t) and Rm

b(t) are derived
from the GNSS/INS-data processing to define the position and orientation of the IMU
body frame relative to the mapping frame at time t; rb

lu and Rb
lu represent the lever arm and

boresight rotation matrix relating the laser unit and IMU body frame coordinate systems.
Thus, for a LiDAR system, the coordinates of an object point I in the mapping frame (rm

I )
can be derived through Equations (1) and (3).

The point positioning for an imaging system, on the other hand, is shown in Equation (2),
where rc(t)

i represents the imaging ray for point i relative to the camera coordinate system
at time t. This term is derived from the image coordinates of point i (xi and yi) and the
camera IOP, including the principal point coordinates of the used camera (xp and yp),
principal distance ( f ), as well as distortions in the x and y coordinates for image point i
(distxi and distyi ). Similarly, the position and orientation information of the camera frame
relative to the mapping frame (rm

c(t) and Rm
c(t)) are estimated using the GNSS/INS trajectory

information (rm
b(t)/Rm

b(t)) and mounting parameters relating to the camera frame and IMU

body frame (rb
c and Rb

c ), as shown in Equation (4) and Figure 5. Different from LiDAR,
image-based 3D reconstruction involves an unknown scale factor (λ(i, c, t) for image point
i captured by camera c at time t), which needs to be estimated.

rm
I = rm

lu(t) + Rm
lu(t)r

lu(t)
I (1)
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rm
I = rm

c(t) + λ(i, c, t)Rm
c(t) rc(t)

i , rc(t)
i =

 xi − xp − distxi

yi − yp − distyi

− f

 (2)

rm
lu(t) = rm

b(t) + Rm
b(t)r

b
lu & Rm

lu(t) = Rm
b(t)R

b
lu (3)

rm
c(t) = rm

b(t) + Rm
b(t)r

b
c & Rm

c(t) = Rm
b(t)R

b
c (4)
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Figure 5. Schematic diagram of the point positioning equations for LiDAR and camera units onboard
a GNSS/INS-assisted UAV system.

From the LiDAR/image-based point positioning equations (i.e., Equations (1)–(4)), it is
evident that accurate trajectory information and system calibration parameters (including
sensor IOP and mounting parameters) are critical for producing properly georeferenced
data from LiDAR and imaging systems. Considering that the utilized UAV-based MMS
was flown above the canopy under an open-sky condition without GNSS signal outages,
the post-processed trajectory is expected to be accurate. As for the system calibration pa-
rameters, the IOP of a LiDAR unit is usually provided by the manufacturer and is relatively
accurate/stable. Camera IOP and mounting parameters relating the LiDAR/camera sensor
frames to the IMU body frame were estimated through a system calibration procedure [63].

Based on the point positioning equation (Equations (1) and (3)), a LiDAR point cloud
was directly reconstructed. In this study, a LiDAR point was reconstructed only when the
direction of the corresponding laser beam was less than ±70◦ from the nadir direction. In
this study, imagery acquired by the onboard camera was used for visualization through
interactive backward and forward projection between 2D images and 3D LiDAR point
clouds. Such image-based visualization involves two main processes: (i) for a 3D object
identified in the point cloud, one should derive the corresponding point in an image where
it is visible (i.e., denoted as backward projection; (ii) for a selected feature point in an image,
we need to identify the corresponding location in a LiDAR point cloud (i.e., the location
denoted as forward projection). In other words, backward/forward projection processes
establish the link between the 2D imagery and 3D LiDAR point cloud, as shown in Figure 6.
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Figure 6. Illustration of backward and forward projection processes for visualization.

In the backward projection of an object point I in the LiDAR point cloud, its corre-
sponding image point (xi, yi) can be directly evaluated. More specifically, the image point
positioning equations (Equations (2) and (4)) can be reformulated into Equation (5), where
the image coordinates are represented as a function of known parameters—GNSS/INS
trajectory information, camera IOP, camera mounting parameters, and ground coordinates
of the object point—and the unknown scale factor λ(i, c, t). To eliminate the unknown
scale factor in this equation, the first and second rows are divided by the third one, and the
image point coordinates (xi, yi) are expressed as per Equations (6) and (7).

rc(t)
i =

1
λ(i, c, t)

[
Rc

bRb(t)
m

(
rm

I − rm
b(t) − Rm

b(t)r
b
c

)]
=

1
λ(i, c, t)

Nx
Ny
D

 (5)

xi = −c
Nx

D
+ xp + distxi (6)

yi = −c
Ny

D
+ yp + distyi (7)

For the forward projection of an image point (xi, yi), its corresponding 3D coordinates
are estimated by finding the intersection between the imaging ray and the 3D surface
defined by the LiDAR data. In particular, the unknown scale factor λ(i, c, t) in Equation
(2) is solved for in this process. To solve this scale factor in this work, an octree-based ray
tracing algorithm similar to the one proposed by Revelles et al. [64] was adopted. More
specifically, an octree of LiDAR points was first built. Then, a set of points was generated
at equal distances along the imaging ray. For each point along the light ray I, its closest
point in the LiDAR octree tree L was identified and the distance between these two points d
was computed. Next, starting from the point I1 that is closest to the perspective center, the
first point Ii that meets the following criteria was identified: (i) the distance di was smaller
than a threshold (e.g., 0.2 m) and (ii) the distance di was smaller than the distance from the
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next point di+1. These conditions guarantee that the intersection of the light ray with the
closest LiDAR surface (i.e., the visible surface) is identified. Finally, the forward projection
solution was derived by projecting the closest LiDAR point to Ii onto the imaging ray. This
process is schematically illustrated in Figure 7.
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Figure 7. Schematic illustration of the forward projection algorithm: starting from I1, I5 is the first
point that fulfills the distance criteria; although I8 and I10 also meet the criteria, the corresponding
surfaces are not visible.

3.2. Underground Structure Detection

The second objective of the proposed work in this study is to develop a robust,
automated strategy for the detection of underground structures similar to those in Figure 8.
The top two rows in this figure show situations where objects of interest can be detected
from imagery. However, the last row shows a situation where the underground structure
cannot be detected in the image due to canopy cover, although it is visible in the LiDAR
point cloud. Therefore, the proposed methodology is based on the utilization of LiDAR
data to detect these objects. As can be seen in Figure 8, for underground structures, LiDAR
returns below the ground. Therefore, a terrain model comprising the bare-earth point
cloud can be used for the identification of below-earth points, which could be grouped into
clusters that are hypothesized as underground structures. The flowchart of the proposed
methodology is shown in Figure 9.

The main challenges in deriving a reliable terrain model from LiDAR data over a
complex site such as Dana Island include (as can be seen in Figure 10): (1) the presence of
some noise/outliers in the point cloud; (2) dense vegetation that would lead to sparse points
below canopy; (3) rugged terrain with sudden elevation changes; and (4) the presence of
underground structures. Among the existing terrain model generation strategies, the cloth
simulation algorithm has been repeatedly used in the prior literature [65–67]. A schematic
diagram of the cloth simulation strategy is shown in Figure 11, which proceeds according
to four steps: (i) turn the point cloud upside down, (ii) define a cloth (consisting of particles
and their interconnections) with some rigidness, and place it above the point cloud, (iii) let
the cloth drop under the influence of gravity and designate the final shape of the cloth as
the DTM, and (iv) use the DTM to filter ground (i.e., bare earth points) from above-ground
points. In spite of this simple yet sound procedure, the cloth simulation would result
in less-desirable results for the derived DTM and bare-earth points when dealing with a
complex environment. To illustrate the resulting artifacts, Figure 12 shows the derived
terrain model and bare-earth points for the scenarios depicted in Figure 10 (one can see
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that the derived terrain model does not represent the actual ground surface). To produce
more reliable results, the cloth simulation strategy has been modified as discussed below.
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Figure 10. Sample LiDAR point clouds (colored by height) showing the challenges in DTM genera-
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Mitigation of noise/outlier points: In the original cloth simulation, the resting place 
of the cloth particles is defined by what is known as the intersection height value (IHV). 

Figure 10. Sample LiDAR point clouds (colored by height) showing the challenges in DTM generation:
(a) presence of noise/outlier points; (b) sparse points on the ground caused by dense vegetation;
(c) rugged terrain with sudden elevation change; and (d) presence of an underground structure.

Mitigation of noise/outlier points: In the original cloth simulation, the resting place
of the cloth particles is defined by what is known as the intersection height value (IHV). For
a given cloth particle, the IHV is established as the nearest LiDAR point to that particle in
2D (i.e., the highest point in the inverted point cloud). Such a definition makes the derived
DTM sensitive to the noise level and presence of outliers in the point cloud (Figure 12a). To
reduce the sensitivity to the presence of noisy/outlier points, we redefined the IHV as the
90th percentile of the elevations at the 2D vicinity for the particle in question (Figure 13—
Case B). The impact of this change is shown in Figure 14a.
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Figure 11. Schematic diagram of the cloth simulation strategy: (a) LiDAR points covering an area
with a tree; (b) inverted LiDAR points and initial cloth; (c) final cloth; and (d) derived DTM as well as
bare-earth and above-ground points.
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Figure 12. Derived DTM (in red), bare-earth points (in blue), and remaining points (in gray) using the
cloth simulation algorithm for the challenging scenarios in Figure 10: (a) presence of noise/outlier
points; (b) sparse points on the ground caused by dense vegetation; (c) rugged terrain with sudden
elevation change; and (d) presence of an underground structure.

Mitigation of sparse points along the ground: In situations where gaps can be found
along the ground due to the presence of above-ground structures and/or vegetation, the
resting place of the cloth will show sags (illustrated in Figure 13—Case C), which will
manifest as artificial peaks in the derived DTM (refer to Figure 12b). To reduce these
artificial peaks, we conducted an iterative cloth simulation procedure, which has been
presented in our previous work [46], where the rigidity of the inter-particle connections is
modified according to the defined bare earth in the previous iteration (i.e., the rigidity is
increased for particles that fall in areas with sparse bare-earth points as defined by the first
iteration). The impact of adopting such a mitigation strategy can be seen in Figure 14b.
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Mitigation of erroneous terrain model at locations with sudden elevation changes: In
such situations, the cloth will smoothly change its elevation on both sides of the cliff, lead-
ing to erroneous DTM and missing bare-earth points on one side of the cliff (Figure 12c).
This problem was handled through a post-processing strategy. After the generation of
the bare-earth points from the adaptive cloth simulation, we generated a raster grid with
the same DTM resolution. Then, we identified whether each cell included bare-earth
points. Cells with no associated bare-earth points were denoted as empty cells. For each
of the empty cells, we identified the neighboring non-empty cells and evaluated the min-
imum/maximum elevations of the bare-earth points in these cells. For the empty cell in
question, we searchd for above-ground points whose elevations were within the bare-earth
range of neighboring non-empty cells. If such points existed, they were added as bare-earth
points to that cell, and the corresponding DTM elevation was adjusted to the average eleva-
tion of such points. The improvement in the DTM generation and bare-earth classification
after considering this modification is shown in Figure 14c.

Mitigation of erroneous terrain model at locations of underground structures: As can
be seen in Figure 12d, the presence of underground structures with a considerable amount
of LiDAR returns at the base of these objects will lead to an erroneous DTM that dips at
those locations. In addition to the dips, we will miss a set of bare-earth points at both
sides of the structure. These missing points were handled through the previous mitigation
strategy, leaving the erroneous DTM elevation and bare-earth points at the base of the
underground structure. To mitigate such artifacts, we started by defining a raster grid of the
same resolution as the cloth simulation DTM. Then, we identified the bare-earth points asso-
ciated with each cell. For underground structures, the elevation of bare-earth points will be
significantly less than those outside the structure. Therefore, we started by identifying cells
that exhibited a lower elevation relative to their neighbors. These cells were then clustered
through a region-growing strategy. Clustered regions with a size that does not exceed
a predefined threshold, which depends on the expected size of underground structures,
were hypothesized to belong to non-ground objects. The bare-earth classification of points
in these cells was nullified, and the DTM elevation at their location was redefined as the
average elevation of neighboring DTM cells. The improvement in the ground-filtering
results obtained following this mitigation strategy can be seen in Figure 14d.
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with sudden elevation change; and (d) presence of an underground structure.

Once the DTM was generated from the modified cloth simulation, together with
the proposed post-processing mitigation strategies, the elevations of the LiDAR point
cloud were normalized by subtracting the DTM elevation (Figure 15). Following the
normalization, below-surface points were identified and clustered into groups using the
density-based spatial clustering of applications with noise (DBSCAN) algorithm [68]. Each
of these clusters was hypothesized to correspond to an underground structure (Figure 16).
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3.3. Web-Visualization Portal

The last objective of this study is to develop a web-visualization portal that can
be used by archaeologists to navigate through LiDAR point clouds, UAV images, and
detected underground structures. The design criteria for the visualization portal include:
(1) the ability to show a massive number of points and images; (2) not requiring local
data storage (i.e., it could use data stored in a cloud server); (3) not requiring software
installation; (4) providing some annotation tools; and (5) being amenable to developing
other tools, such as forward and backward projection between 2D images and 3D point
cloud data. In this work, Potree [69] was chosen for the development of the prototype
web-visualization portal since it meets the above design requirements. Potree is an open-
source code (http://www.potree.org), which can efficiently render a huge point cloud
(>109 points) through a web browser without the need for software installation or data
downloading [70]. It is also capable of displaying georeferenced meshes (either in ASCII
or binary format), shapefiles, and images. However, there is no built-in function for
backward/forward projection between imagery and point cloud data. Thus, as part of
this work, we developed backward/forward projection functions within the Potree web-
visualization portal. The portal architecture and developed backward/forward projection
functions are briefly discussed in the next paragraphs.

Potree Web-visualization Portal: The established structure of the portal is illustrated
in Figure 17. The front-end is the graphical user interface used to visualize the geo-

http://www.potree.org
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referenced data, such as point clouds and images. The back-end consists of various
visualization and/or computational functions that enable end-users to manipulate the
georeferenced data. Figure 18 shows a Cesium base map (https://cesium.com/, accessed
on 10 February 2023) and UAV LiDAR point cloud covering the study site (Dana Island),
together with the captured images. Since the georeferencing parameters of the imagery are
available from the UAV GNSS/INS trajectory and system calibration parameters (Equation
(4)), the displayed imagery is shown in the proper position and orientation relative to the
point cloud data. Finally, the georeferenced data (point cloud, imagery, and metadata)
of the web portal are stored in a database. As shown in Figure 17, the back-end receives
client requests from the front-end and processes them by coordinating with the database
using the visualization and/or computational functions. For example, in this study, the
backward/forward projection functions are realized through the back-end, which interacts
with the front-end and database.
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Backward/Forward Projection Functions: As shown in Figure 18, multiple georefer-
enced data acquired by different sensors can be rendered in the Potree web-visualization
portal. To provide the user with the ability to visualize corresponding features in both
image and point cloud data, backward/forward projection functions are established, as
described in Section 3.1. Figure 19 shows the point cloud and image viewers with a chosen
point (red dot) in the former and corresponding point (blue placemark) in the latter. For
backward projection, an object point selected in the LiDAR data is projected onto the
closest image where the point is visible. The backward projection function also allows for
visualization of the same object point in multiple images where the former is visible. This
could be useful in scenarios where an object point is not visible in one image while being
visible in others (this could happen in sites with elevation variations, which are responsible
for relief displacement, as can be seen in Figure 20). Figure 21 illustrates the forward
projection, where a selected point in an image is projected onto the LiDAR point cloud,
and the blue placemark in the former is projected as a red dot in the latter. Through these
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projection functions, end-users can visualize and navigate between properly georeferenced,
multi-modal remote sensing data captured at the same time/different times by the same
platform/different platforms.
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3.4. Establishing a Reference Dataset and Accuracy Assessment

In order to evaluate the potential of UAV LiDAR as well as the proposed detection
approach, a reference dataset with all existing underground structures is needed. Having
these reference data, together with the detection results, precision, recall, and F1-score
metrics, can be evaluated using Equations (8)–(10), where TP, FP, and FN are the true
positives, false positives, and false negatives, respectively. The precision metric represents
the proportion of truly detected underground structures among all identified ones using the
proposed strategy. The recall signifies the ability of the proposed methodology to detect all
existing underground structures in the site. The F1-score is the harmonic mean of precision
and recall (i.e., it could be used as the overall evaluation metric).

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1-score =
2× Precision× Recall

Precision + Recall
(10)

Curating a reference dataset for this study was quite challenging. Therefore, we had
to use a variety of sources to generate a reference dataset that is as complete as possible.
A portion of the reference data was available through multi-year field survey missions
by archaeologists on the site. Another set was derived through manual inspection of the
LiDAR point cloud and imagery data, which were manipulated through the developed
web-visualization portal. More specifically, the LiDAR data were carefully inspected to
determine potential underground structure locations. These potential locations were then
back-projected onto the imagery for verification. Alternatively, the operator could navigate
through the images and whenever an underground structure is identified, it could be
forward-projected onto the point cloud to derive its 3D location. Through this image-aided
LiDAR identification strategy, underground structures are classified into three categories:
(i) easy to see in the images, (ii) hard to see in the images, and (iii) no image available
(hereafter denoted as “easy_img”, “hard_img”, and “no_img”). Figure 22 shows sample
cistern point clouds and their corresponding images for the easy_img, hard_img, and
no_img categories. Figure 23 illustrates the reference dataset generated from manual
inspection and field survey.
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4. Experimental Results and Discussion

This section illustrates the feasibility of the proposed strategy for the detection/
visualization of underground structures using UAV LiDAR data. The assessment process
will be conducted through both qualitative and quantitative analyses, which are covered in
the following subsections.

4.1. Qualitative Evaluation

As shown in Table 1, a total of 5965 UAV images and roughly 931 million LiDAR points
were collected through ten missions over four days. The proposed underground structure
detection strategy was applied to these missions, and a total of 169 underground structures
were detected. For the qualitative evaluation of the detection results, we mainly relied on
the developed Potree web-visualization portal. The image and point cloud datasets were
rendered by the portal in less than ten seconds. Figure 24 demonstrates the Cesium base
maps overlaid with the LiDAR point clouds and UAV imagery from the ten missions. In
addition to the imagery and LiDAR data, detected underground structures can also be
visualized and annotated through the portal, as shown in Figure 25. The portal allows
for end-users to interact with the rendered data using its built-in functions (i.e., rotate,
zoom-in/out, move) without experiencing any lag, as shown in Figure 25b.
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The detected underground structures can be simultaneously visualized in the im-
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tions. Figure 26 illustrates a perspective view of annotated underground structure loca-
tions on the UAV LiDAR data. The backward projection function enables the user to vis-
ualize a specific underground structure location on all UAV images where it is visible (i.e., 
where its back-projection lies within the image frame), as shown in Figure 27. Conversely, 
for a given UAV image capturing an underground structure, its image coordinates can be 
forward-projected onto the LiDAR data, as shown in Figure 28. These backward and for-
ward projections can be used to qualitatively evaluate the validity of detected under-
ground structures. Figure 29 shows examples of detected cisterns in the LiDAR point 
cloud and corresponding images in which they are supposed to be visible while highlight-
ing situations where a cistern is clearly visible (Figure 29a) or not visible (Figure 29b) in 
an image. 
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cloud and corresponding images in which they are supposed to be visible while highlight-
ing situations where a cistern is clearly visible (Figure 29a) or not visible (Figure 29b) in 
an image. 

Figure 25. Illustrations of (a) top view (default) and (b) perspective view of the base map and UAV
point cloud overlaid with detected underground structures in the Potree web-visualization portal.

The detected underground structures can be simultaneously visualized in the imagery
and LiDAR data through the developed forward- and backward-projection functions.
Figure 26 illustrates a perspective view of annotated underground structure locations on
the UAV LiDAR data. The backward projection function enables the user to visualize a
specific underground structure location on all UAV images where it is visible (i.e., where its
back-projection lies within the image frame), as shown in Figure 27. Conversely, for a given
UAV image capturing an underground structure, its image coordinates can be forward-
projected onto the LiDAR data, as shown in Figure 28. These backward and forward
projections can be used to qualitatively evaluate the validity of detected underground
structures. Figure 29 shows examples of detected cisterns in the LiDAR point cloud and
corresponding images in which they are supposed to be visible while highlighting situations
where a cistern is clearly visible (Figure 29a) or not visible (Figure 29b) in an image.
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Figure 29. Samples of detected cistern locations (red dots) in the LiDAR point cloud and images
where they should be visible: (a) the cistern is clearly visible in the image and (b) the cistern is not
visible in the image due to canopy cover.

4.2. Quantitative Evaluation

A total of 169 underground structures (the majority of which is cisterns) were detected
in the LiDAR data by the proposed methodology. As already mentioned, these detected
underground structures were verified through backward projection and categorized ac-
cording to whether they are clearly visible in the images. Of the detected underground
structures, a total of 70 were difficult to identify in the imagery; however, these struc-
tures are clearly visible in the LiDAR data as below-terrain surface objects. On the other
hand, 93 underground structures were clearly visible in the image and LiDAR point cloud
data. Using manual inspection and field survey to curate the reference data, a total of 188
reference underground structures were generated. It should be noted that the number
and locations of the underground structures in the reference data are based on our best
efforts to obtain as complete a dataset as possible. Figure 30 illustrates the detected under-
ground structures and those existing in the reference dataset. The TP, FP, and FN values
are reported in Table 3. Figure 31 shows a sample situation with a false-positive detection.
This case shows a sudden terrain elevation change coupled with above-ground canopy.
Although the modified cloth simulation and proposed post-processing steps can handle
each of these scenarios individually, they fail to simultaneous addressing both scenarios. A
false-negative situation is shown in Figure 32. This false negative is caused by a cistern that
is filled with debris (i.e., points inside the cistern were not deep enough below the local
terrain surface to be detected as a below-ground object). Based on the reported values in
Table 3, the precision, recall, and F1-score are 0.97, 0.87, and 0.92, respectively.

Table 3. Classification of detection results according to the curated reference data.

Total Number of
Detected

Underground
Structures

True Positives False
Positives

False
Negatives

169

In total: 164

5 24easy_img hard_img no_img

93 70 1
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5. Conclusions

This paper investigated the potential of deploying a UAV system equipped with
GNSS/INS-assisted imaging and LiDAR units for the documentation of archaeological
sites. To ensure practical access to acquired data and potential products, a web-visualization
portal was developed without the need for high-end computational resources and the in-
stallation of a dedicated software. In addition, a methodology was developed for the
detection of underground structures in complex archaeological sites. An example of such a
site, Dana Island, Turkey, was selected for this study due to its rich archaeological land-
scape and presence of steep terrain with sudden elevation changes, which are sometimes
covered by vegetation. Image and LiDAR data from a total of ten UAV missions cap-
tured over four days were used in this study. The acquired data showed a high level of
detail and synergistic characteristics in imagery and LiDAR point clouds. A Potree web-
visualization portal was successful in rendering large imagery and LiDAR data. Moreover,
the implemented forward/backward projection capabilities of the portal confirmed the
georeferencing quality of the acquired data. The proposed underground structure detection
strategy focused on the derivation of a reliable terrain model in a complex environment
containing: (1) noisy/outlier points, (2) sparse ground points due to canopy cover, (3) the
presence of rugged terrain with sudden elevation change, and (4) the presence of numerous
below ground objects. The detection strategy showed a good performance with an F1-score
of 92%. However, we still obtained a few false positives and false negatives. The false
negatives were mainly attributed to cisterns filled with debris.

Furthermore, the quantitative evaluation of results in this paper highlights the im-
portance of incorporating field observations in future research. Although LiDAR sensing
technology can successfully detect the vast majority of underground structures, it is unable
to capture fully covered cisterns. Therefore, future research will investigate the use of
Ground-Penetrating Radar (GPR).

For LiDAR-based algorithms, current and future work will focus on refining the
terrain model generation strategies to handle situations where we have a combination of
challenging factors. One such combination was the cause of the detected false positives.
Regarding the false negatives obtained for those cisterns filled with debris, a hybrid strategy
that utilizes both imagery and LiDAR data will be proposed. Moreover, the expansion of
the data analytics to automatically detect other archaeological objects of interest (walls,
quarry cuts, building layout, etc.) will be also addressed. The Potree web-visualization
portal will be augmented by 2D- and 3D-plotting tools for the generation of precise sketches
of archaeological artifacts. Finally, the developed terrain extraction methodology will be
also investigated for the derivation of a reliable terrain model from UAV LiDAR data in
natural forests with a complex terrain (i.e., steep ravines, debris, and canopy undergrowth).
A reliable terrain model will be valuable for the precise determination of tree heights, which
is important for the management of forest ecosystems.

Author Contributions: Conceptualization, G.V., N.K.R., S.A.M. and A.H.; formal analysis, investiga-
tion, methodology, and validation, Y.-H.S., S.-Y.S., H.R., Y.-T.C., T.Z., J.L., C.Z. and A.H.; software,
Y.-H.S., S.-Y.S., H.R., Y.-T.C., T.Z., J.L. and C.Z.; writing—original draft preparation Y.-H.S., S.-Y.S.,
H.R., Y.-T.C., T.Z., J.L., C.Z. and A.H.; writing—review and editing, Y.-H.S., S.-Y.S., H.R., Y.-T.C., T.Z.,
J.L., C.Z., G.V., N.K.R., S.A.M. and A.H.; supervision, G.V., N.K.R., S.A.M. and A.H. All authors have
read and agreed to the published version of the manuscript.

Funding: The work was partially supported by Koç University Stavros Niarchos Foundation Center
for Late Antique and Byzantine Studies (GABAM) and Mimar Sinan Fine Arts University Scientific
Research Fund. The work was partially conducted within the Purdue’s interdisciplinary ROSETTA
(Remote Observation and Sensing Technologies and Technique in Archaeo-Anthropology) initiative
and the Civil Engineering Center for Applications of UAS for a Sustainable Environment (CE-CAUSE).
The work was partially supported by multiple Purdue University grants and awards, including
the Laboratory & University Core Facility Research Equipment Program Grant that funded the
drone and LiDAR equipment, the College of Liberal arts Aspire program for travel support, and the
Humanities Without Walls seed grant administered by Purdue University for research activities. It



Remote Sens. 2023, 15, 1876 28 of 30

was also partially supported by the Republic of Korea’s MSIT (Ministry of Science and ICT), under
the High-Potential Individuals Global Training Program (Task No. RS-2022-00155232) supervised
by the IITP (Institute of Information and Communications Technology Planning & Evaluation). The
views and opinions of the authors expressed herein do not necessarily state or reflect those of the
Turkish/United States/Korean Government or any agency thereof.

Data Availability Statement: Data sharing is not applicable to this paper.

Acknowledgments: We would like to thank Truman Parrish for facilitating the manual inspection of
LiDAR data acquisition on Dana Island. The contents of this paper reflect the views of the authors,
who are responsible for the facts and accuracy of the data presented herein, and do not necessarily
reflect the official views or policies of the sponsoring organizations or data vendors. These contents
do not constitute a standard, specification, or regulation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Binford, L.R. Archaeology as anthropology. In American Antiquity; Society for American Archaeology: Washington, DC, USA,

1962; Volume 28, pp. 217–225.
2. Butzer, K.W. Environment and Archaeology; Aldine: Chicago, IL, USA, 1964.
3. Clarke, D.L. Analytical Archaeology; Routledge: London, UK, 2014.
4. Argyrou, A.; Agapiou, A. A Review of Artificial Intelligence and Remote Sensing for Archaeological Research. Remote Sens. 2022,

14, 6000. [CrossRef]
5. Herz, N.; Garrison, E.G. Geological Methods for Archaeology; Oxford University Press: Oxford, UK, 1997.
6. Renfrew, C.; Bahn, P. Archaeology: Theories, Methods and Practice; Thames and Hudson: London, UK, 2012.
7. Chen, F.; You, J.; Tang, P.; Zhou, W.; Masini, N.; Lasaponara, R. Unique performance of spaceborne SAR remote sensing in cultural

heritage applications: Overviews and perspectives. Archaeol. Prospect. 2018, 25, 71–79. [CrossRef]
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9. Štular, B.; Lozić, E.; Eichert, S. Airborne LiDAR-derived digital elevation model for archaeology. Remote Sens. 2021, 13, 1855.

[CrossRef]
10. Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and

spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote
Sens. Environ. 2019, 232, 111280. [CrossRef]

11. Orcutt, J. Earth System Monitoring, Introduction. In Earth System Monitoring: Selected Entries from the Encyclopedia of Sustainability
Science and Technology; Springer: New York, NY, USA, 2013; pp. 1–5.

12. Zaina, F.; Tapete, D. Satellite-Based Methodology for Purposes of Rescue Archaeology of Cultural Heritage Threatened by Dam
Construction. Remote Sens. 2022, 14, 1009. [CrossRef]

13. Lin, J.; Wang, M.; Yang, J.; Yang, Q. Landslide identification and information extraction based on optical and multispectral uav
remote sensing imagery. IOP Conf. Ser. Earth Environ. Sci. 2017, 57, 012017. [CrossRef]

14. Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B.
Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990.
[CrossRef]

15. Osco, L.P.; Marcato, J., Jr.; Ramos, A.P.M.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.; Pistori, H.;
Gonçalves, W.N.; Li, J. A review on deep learning in UAV remote sensing. Int. J. Appl. Earth Observ. Geoinf. 2021, 102, 102456.
[CrossRef]

16. Sothe, C.; Dalponte, M.; Almeida, C.M.D.; Schimalski, M.B.; Lima, C.L.; Liesenberg, V.; Miyoshi, G.T.; Tommaselli, A.M.G. Tree
species classification in a highly diverse subtropical forest integrating UAV-based photogrammetric point cloud and hyperspectral
data. Remote Sens. 2019, 11, 1338. [CrossRef]

17. Zang, W.; Lin, J.; Wang, Y.; Tao, H. Investigating small-scale water pollution with UAV remote sensing technology. In Proceedings
of the World Automation Congress 2012, Puerto Vallarta, Mexico, 24–28 June 2012.

18. Lo Brutto, M.; Burruso, A.; D’Argenio, A. Uav Systems for Photogrammetric Data Acquisition of Archaeological Sites. Int. J. Herit.
Digit. Era 2012, 1 (Suppl. S1), 7–13. [CrossRef]

19. Ebolese, D.; Lo Brutto, M.; Dardanelli, G. UAV Survey for the Archaeological Map of Lilybaeum (Marsala, Italy). Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-2/W11, 495–502. [CrossRef]

20. Muñoz-Nieto, A.L.; Rodriguez-Gonzalvez, P.; Gonzales-Aguilera, D.; Fernandez-Hernandez, J.; Gomez-Lahoz, J.; Picon-Cabrera, I.;
Herrero-Pascual, J.S.; Hernandez-Lopez, D. UAV Archaeological Reconstruction: The Study Case of Chamartin Hillfort (Avila,
Spain). ISPRS Ann. Photogr. Remote Sens. Spatial Inf. Sci. 2014, II-5, 259–265. [CrossRef]

http://doi.org/10.3390/rs14236000
http://doi.org/10.1002/arp.1591
http://doi.org/10.3390/rs13163228
http://doi.org/10.3390/rs13091855
http://doi.org/10.1016/j.rse.2019.111280
http://doi.org/10.3390/rs14041009
http://doi.org/10.1088/1755-1315/57/1/012017
http://doi.org/10.3390/rs70302971
http://doi.org/10.1016/j.jag.2021.102456
http://doi.org/10.3390/rs11111338
http://doi.org/10.1260/2047-4970.1.0.7
http://doi.org/10.5194/isprs-archives-XLII-2-W11-495-2019
http://doi.org/10.5194/isprsannals-II-5-259-2014


Remote Sens. 2023, 15, 1876 29 of 30

21. Fernndez-Hernndez, J.; Gonzlez-Aguilera, D.; Rodrguez-Gonzlvez, P.; Juan, M.-T. Image-Based Modelling from Unmanned
Aerial Vehicle (UAV) Photogrammetry: An Effective, Low-Cost Tool for Archaeological Applications. Archaeometry 2015, 57,
128–145. [CrossRef]

22. Peña-Villasenín, S.; Gil-Docampo, M.; Juan, O.-S. Professional SfM and TLS vs a simple SfM photogrammetry for 3D modelling of
rock art and radiance scaling shading in engraving detection. J. Cult. Herit. 2019, 37, 238–246. [CrossRef]

23. Levick, S.R.; Whiteside, T.; Loewensteiner, D.A.; Rudge, M.; Bartolo, R. Leveraging TLS as a calibration and validation tool for
MLS and ULS mapping of savanna structure and biomass at landscape-scales. Remote Sens. 2021, 13, 257. [CrossRef]

24. Shao, J.; Zhang, W.; Mellado, N.; Grussenmeyer, P.; Li, R.; Chen, Y.; Wan, P.; Zhang, X.; Cai, S. Automated markerless registration
of point clouds from TLS and structured light scanner for heritage documentation. J. Cult. Herit. 2019, 35, 16–24. [CrossRef]

25. Taddia, Y.; Stecchi, F.; Pellegrinelli, A. Coastal mapping using DJI Phantom 4 RTK in post-processing kinematic mode. Drones
2020, 4, 9. [CrossRef]

26. Zang, Y.; Yang, B.; Li, J.; Guan, H. An accurate TLS and UAV image point clouds registration method for deformation detection of
chaotic hillside areas. Remote Sens. 2019, 11, 647. [CrossRef]

27. Monterroso-Checa, A.; Moreno-Escribano, J.C.; Gasparini, M.; Conejo-Moreno, J.A.; Domínguez-Jiménez, J.L. Revealing Archaeo-
logical Sites under Mediterranean Forest Canopy Using LiDAR: El Viandar Castle (husum) in El Hoyo (Belmez-Córdoba, Spain).
Drones 2021, 5, 72. [CrossRef]

28. Masini, N.; Abate, N.; Gizzi, F.T.; Vitale, V.; Amodio, A.M.; Sileo, M.; Biscione, M.; Lasaponara, R.; Bentivenga, M.; Cavalcante, F.
UAV LiDAR Based Approach for the Detection and Interpretation of Archaeological Micro Topography under Canopy—The
Rediscovery of Perticara (Basilicata, Italy). Remote Sens. 2022, 14, 6074. [CrossRef]

29. Schroder, W.; Murtha, T.; Golden, C.; Scherer, A.K.; Broadbent, E.N.; Zambrano, A.M.A.; Herndon, K.; Griffin, R. UAV LiDAR
Survey for Archaeological Documentation in Chiapas, Mexico. Remote Sens. 2021, 13, 4731. [CrossRef]

30. Doyle, C.; Luzzadder-Beach, S.; Beach, T. Advances in remote sensing of the early Anthropocene in tropical wetlands: From
biplanes to lidar and machine learning. Prog. Phys. Geogr. Earth Environ. 2022, 03091333221134185. [CrossRef]

31. Kadhim, I.; Abed, F.M. The Potential of LiDAR and UAV-Photogrammetric Data Analysis to Interpret Archaeological Sites:
A Case Study of Chun Castle in South-West England. ISPRS Int. J. Geo-Inf. 2021, 10, 41. [CrossRef]

32. Enríquez, C.; Jurado, J.M.; Bailey, A.; Callén, D.; Collado, M.J.; Espina, G.; Marroquín, P.; Oliva, E.; Osla, E.; Ramos, M.I.; et al.
The UAS-based 3D image characterization of Mozarabic church ruins in Bobastro (Malaga), Spain. Remote Sens. 2020, 12, 2377.
[CrossRef]

33. Temizer, T.; Nemli, G.; Ekizce, E.G.; Ekizce, A.E. 3D documentation of a historical monument using terrestrial laser scanning case
study: Byzantine Water Cistern, Istanbul. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2013, 5, W2. [CrossRef]

34. Willis, A.; Sui, Y.; Ringle, W.; Galor, K. Design and implementation of an inexpensive LIDAR scanning system with applications
in archaeology. In Three-Dimensional Imaging Metrology; SPIE: Bellingham, WA, USA, 2009.
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