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Abstract: Understanding on the spatiotemporal interactions between ecosystem services (ESs) and
social–ecological drivers is crucial for the design of sustainable development strategies for coastal
wetlands. In this paper, we took the Yellow River Delta (YRD) as a case study, based on multiple
evaluation methods to study the spatiotemporal dynamics of ESs in the YRD from 1980 to 2020. With
the help of principal component analysis (PCA) for identification of multiple drivers, we researched
the spatiotemporal differentiation and influence mechanism of drivers on ESs, using the coupling
coordination degree (CCD) model and geographically and temporally weighted regression (GTWR)
model, and subsequently provided the development strategy for each district in Dongying City. The
results showed that (1) the patterns of ESs were spatially heterogeneous, with a fluctuating upward
trend from 1980 to 2020, which was mainly affected by regulating service. (2) Our spatiotemporal
analysis of ES interactions identified that cultural service was mainly disorder with other ESs.
Nevertheless, in wetlands, various ESs can basically develop in a coordinated manner. (3) We
integrated multiple drivers into five principal components by PCA, to which the response of ESs had
spatial heterogeneity. (4) Consequently, we integrated spatiotemporal knowledge on ES interactions
and their drivers into spatial planning.

Keywords: Yellow River Delta; ecosystem service; coupled coordination degree; multiple driver;
spatiotemporal heterogeneity

1. Introduction

Coastal wetland ecosystems provide a wealth of ecosystem goods and services to
human societies [1], and directly or indirectly may facilitate sustainable human well-
being [2,3], but coastal wetland ecosystems are also under serious threat from natural and
human disturbances [4,5], such as sea level rise, reclamation [6], overuse [5], pollution,
coastal erosion [7], and biological invasion [8]. Parallel with that, coastal wetland ecosystem
services (ESs) are at risk of developmental dissonance between them [9], which not only
results in the loss of coastal wetland ecosystem diversity [7], but also seriously weakens
coastal wetland ESs [10]. In order to ensure the ability to provide human well-being
continuously and examine the coordinated development level of urbanization and ESs,
it is of great significance to assess the value of coastal wetland ESs scientifically [11], and
explore the impact of social–ecological drivers on ESs, whose spatial heterogeneity can be
conducive to a more efficient coastal resources development strategy, to ensure the better
sustainable use of coastal resources [12].

Dongying City, located in the north of Shandong Province, is in the junction region
of rivers, land, and sea, as a typical ecological transition zone. Over the past decades of
reform and opening up, the land use/land cover (LULC) of Dongying City has undergone
tremendous changes, and is currently the petrochemical base of Shandong Province, with
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a large number of industrial construction lands [11]. In particular, with strong human
interference, as an important part of the Yellow River Delta (YRD), Dongying City has the
social–economic conditions directly relating to the Yellow River estuary and also has a great
impact on the whole Shandong Province, which faces major ecological problems, such as
salinization and vegetation destruction [11,13]. Therefore, this paper selected Dongying
City, a typical municipal area where the YRD is located, as the study area.

The previous studies on the trade-offs/synergies between ESs poorly understood the
spatial dynamics of coupled coordination among complex systems, so the coordination
degree between ESs has not yet been fully investigated [14]. In view of this research gap,
this study evaluated the interactions and coupled coordination of ESs in the YRD from 1980
to 2020 using the coupled coordination degree (CCD) model. Moreover, the correlation
between drivers has largely been ignored by previous studies [15,16], which may lead
to information redundancy, resulting in the complexity and uncertainty of subsequent
analysis. Principal component analysis (PCA) can transform a group of related variables
into a group of unrelated principal components (PCs), reducing information redundancy
while maintaining the original information as much as possible, which reduces the cal-
culation workload and increases the accuracy of subsequent analysis [17]. Consequently,
multiple drivers summarized by this paper were transformed into several unrelated PCs
by PCA, eliminating the impact of correlation between them. In addition, the analysis
of coastal wetland ESs should consider not only the spatial heterogeneity of regionaliza-
tion process variables, but also their temporal unsteadiness, which was what previous
studies [18–20] lacked for comprehensive consideration. This study incorporated the geo-
graphically and temporally weighted regression (GTWR) model, which could reveal the
spatiotemporal response characteristics of the regional ESs to the drivers more comprehen-
sively [21], so as to provide theoretical support for the development of regionally ecological
conservation measures.

The objectives of this study were to (1) reveal the spatiotemporal dynamics of ESs in
the YRD from 1980 to 2020; (2) determine the spatial heterogeneity of trade-offs/synergies
and CCD between ESs; (3) identify the dominant social–ecological drivers of ESs, as well as
their spatial heterogeneity; (4) provide insights into the spatial planning and management
strategies of Dongying City. The research framework diagram of this study is shown in
Figure 1.

Figure 1. Research framework diagram. Green symbols represent the estimation method of the inter-
action of ecosystem services; yellow symbols represent the estimation method of ecosystem services;
purple symbols represent principal component analysis; blue symbols represent geographically and
temporally weighted regression model.
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2. Materials and Methods
2.1. Study Area

Considering the integrity of the administrative region and the availability of research
data, the entire Dongying city was taken as the study area in this study (Figure 2).

Figure 2. The location of Dongying city and its land use/land cover (LULC). (a) The location of
Dongying city. (b–f) The LULC of Dongying city in 1980, 1990, 2000, 2010, and 2020, which was
adopted from remote sensing monitoring data of LULC in China (http://www.dsac.cn/DataProduct/
Detail/200804) (accessed on 1 February 2023). (g) The legends of LULC.

In terms of administrative division, 93% of the YRD belongs to Dongying City and
7% to Binzhou City [11]. Consequently, previous research on the YRD mostly focused on
the whole Dongying City (118◦7′~119◦10′E, 36◦55′~38◦10′N), including Dongying District,
Hekou District, Kenli County, Lijin County, and Guangrao County.

The YRD is a new land formed by the deposition of the Yellow River in the past
hundred years, and has a continental monsoon climate. The terrain of the YRD inclines
from southwest to northeast along the Yellow River trend, and the natural gradient is
1/8000~1/12,000, due to which a large amount of sediment is deposited in the Yellow
River, forming the “suspended river on the ground”. This area has large groundwater
mineralization, high soil salinity, few woody plants, and a meadow landscape as the main
body. The distribution of vegetation is mainly restricted by water, soil salinity, phreatic
water level, landform type, and human activities [11].

2.2. Data Sources

The data sources for the assessment of ESs and social–ecological drivers are shown in
Table 1. According to the research purpose and regional characteristics, LULC is divided
into eight categories: croplands, forest, grasslands, water bodies, wetlands, urban built-up
lands, rural built-up lands, and barren. After obtaining data for 1980, 1990, 2000, 2010,
and 2020 in Table 1, all raster data with different spatial resolutions were resampled to
30 m × 30 m resolution to ensure the accuracy of the regional research by referring to
relevant research [13,22].

2.3. ES Assessment

We identified 10 ESs based on the following criteria: (1) consistency with the classifica-
tion of ESs by Millennium Ecological Assessment (MEA) [26] and previous studies [27];
(2) representativeness of ESs for social–economic conditions in the study area; (3) availabil-
ity and feasibility of data. According to the characteristics of the YRD and the classification
of ESs in the MEA [26], the YRD wetland ESs were classified as supporting service (SS),
regulating service (RS), provisioning service (PS), and cultural service (CS) (Table 2). The

http://www.dsac.cn/DataProduct/Detail/200804
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final evaluation system included 10 indicators, namely food production (FP), raw material
(RM), soil conservation (SC), carbon storage (Ca.), habitat quality (HQ), gas regulation
(GR), climate regulation (CR), water yield (WY), waste treatment (WT), and relaxation
(Re.). Firstly, the ESs in 1980, 1990, 2000, 2010, and 2020 were quantified in monetary form.
For the subsequent analysis, we superimposed all ESs classifications into four categories,
namely SS, RS, SS, and CS.

Table 1. Summary of the primary data.

Data Type Data Source/Processing

LULC Remote sensing monitoring data of LULCs in China (http://www.dsac.cn/DataProduct/Detail/200804)
(accessed on 1 February 2023)

Precipitation WorldClim Historical monthly weather data [23,24] (https://www.worldclim.org/data/monthlywth.html)
(accessed on 1 February 2023)

Temperature WorldClim Historical monthly weather data [23,24] (https://www.worldclim.org/data/monthlywth.html)
(accessed on 1 February 2023)

Digital elevation
model (DEM)

SRTMDEMUTM 90M Resolution DEM Products (https://www.gscloud.cn/sources/accessdata/306?pid=302)
(accessed on 3 February 2023)

Net primary productivity (NPP) 1 km raster dataset of monthly NPP of terrestrial ecosystems in China (http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=1212)
(accessed on 3 February 2023)

Rainfall erosivity
Rainfall erosivity mapping over mainland China based on high-density hourly rainfall records [25]

(https://gda.bnu.edu.cn/sypt/sjgx/tdlytdfgsjj/111228.html)
(accessed on 3 February 2023)

Hydrographic net Euclidean distance from Yellow River

Gross domestic product (GDP) Resource and Environment Science and Data Center (https://www.resdc.cn/DOI/DOI.aspx?DOIID=33)
(accessed on 3 February 2023)

Population WorldPop Open Population Repository (WOPR) (https://hub.worldpop.org/)
(accessed on 7 February 2023)

Landscape disturbance Remote sensing monitoring data of LULCs in China (http://www.dsac.cn/DataProduct/Detail/200804)
(accessed on 1 February 2023)

Traffic roads Euclidean distance from roads, whose data were obtained from OpenStreetMap (http://www.openstreetmap.org/)
(accessed on 7 February 2023).

Shoreline use intensity
Geospatial Data Cloud

(https://www.gscloud.cn/sources/index?pid=1&rootid=1)
(accessed on 7 February 2023)

Salinization
Geospatial Data Cloud

(https://www.gscloud.cn/sources/index?pid=1&rootid=1)
(accessed on 7 February 2023

Runoff Yellow River Sediment Bulletin
Sediment load Index of Connectivity

Table 2. Overview of ecosystem services assessed in this study.

Category Ecosystem Service Formula Paraphrase

Provisioning service
Food production V1 =

n
∑

i=1
Si × PF

Si is the area of the cell i; n is the total number of cells; and PF is the value
equivalent factor of food production.

Raw material V2 =
n
∑

i=1
Si × PR

Si is the area of the cell i; n is the total number of cells; and PR is the value
equivalent factor of raw material.

Supporting service

Soil conservation SCAi = PSASAi −USLEi
V3 = SCAi × nut× Ps

USLEi , PSAi and SCAi are the soil erosion amount every year, the potential soil
erosion amount, and the soil conservation amount, respectively; nut is total
nitrogen, phosphorus, and potassium nutrients in unit mass of soil [28,29];

and Ps is average price of nitrogen, phosphorus and potassium fertilizers [30].

Carbon storage C = Ca + Cb + Cs + Cd
V4 = C× Pc

Ca is the carbon density of aboveground carbon storage (kg/km2); Cb is the
carbon density of underground carbon storage (kg/km2); Cs is the carbon

density in soil (kg/km2); Cd is the carbon density of litter (kg/km2); and Pc is
the carbon fixation price [31].

Habitat quality V5 =
n
∑

i=1
Si × PH

Si is the area of the cell i; n is the total number of cells; and PH is the value
equivalent factor of habitat quality.

Regulating service

Gas regulation V6 = NPP× 1.16× Po NPP is the annual net primary productivity; and Po is the price of oxygen [32].

Climate regulation V7 =
n
∑

i=1
Si × Pcr

Si is the area of the cell i; n is the total number of cells; and Pcr is the value
equivalent factor of climate regulation.

Water yield WYi =
(

1− AREi
Pi

)
× Pi

V8 = WYi × Py

WYi is the water yield in cell i, AREi is the mean reference evapotranspiration
every year in cell I; Pi is the precipitation every year in cell I; and Py is cost of

unit reservoir capacity [33].

Waste treatment V9 =
n
∑

i=1
Si × Pw

Si is the area of the cell i; n is the total number of cells; and Pr is the value
equivalent factor of waste treatment.

Cultural service Relaxation V10 =
n
∑

i=1
Si × Pre

Si is the area of the cell i; n is the total number of cells; and Pre is the value
equivalent factor of relaxation.

http://www.dsac.cn/DataProduct/Detail/200804
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http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=1212
https://gda.bnu.edu.cn/sypt/sjgx/tdlytdfgsjj/111228.html
https://www.resdc.cn/DOI/DOI.aspx?DOIID=33
https://hub.worldpop.org/
http://www.dsac.cn/DataProduct/Detail/200804
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https://www.gscloud.cn/sources/index?pid=1&rootid=1
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2.3.1. Equivalent Value Factors (EVF) Method

Xie et al. proposed the equivalent value factors of ESs applicable to China [27]
(Table S1). Some researchers [34,35] poorly understood the regional differences and di-
rectly adopted the EVF. Referring to correlational research [27,36], this paper performed
unit value equivalent correction in the YRD based on grain price changes.

First, we made the correction through grain prices. Many scholars considered natural
grain production as equal to 1/7 of actual grain production [36,37]. In this paper, the
average prices of three major food grains were used as the basis, and the average net profit
of farmlands excluding human input costs was used as the standard equivalence factor.
The ratio of urban unit grain production in the YRD to national unit area grain production
in the same period was used as the correction factor [38], which was further corrected for
grain prices using the consumer food price index for residents to take inflation into account.
Eventually, the economic value of equivalent factors for the YRD was determined.

δ =
1
7
× R + M + N

3
× α

β
× λ (1)

where δ is the equivalent value of a standard unit; R, M, and N are the prices of wheat,
corn, and rice, respectively (yuan); α and β are the local food production per unit area
and the national food production per unit area in the same time, respectively; and λ is the
consumer food price index for residents.

In this paper, according to the corrected grain price and the equivalent value factors of
ESs applicable to China [27] (Table S1), we compiled the ES value factor equivalents per
unit area for each LULC in the YRD, which was used to estimate the value of Re, WT, FP,
CR, GR, and RW.

2.3.2. WY

The WY of each grid is the difference between the input water (precipitation) and out-
put water (evapotranspiration and surface runoff) of each grid unit. The WY is calculated
with Equation (2) [39].

WYi =
(

1− AREi
Pi

)
× Pi

V8 = WYi × Py

(2)

where WYi is the WY in cell i; AREi is the mean reference evapotranspiration every year;
Pi is the mean precipitation every year; V8 is the value of WY; and Py is the cost of unit
reservoir capacity [33]. The calculation methods of related factors are presented in the
Supplementary Materials.

2.3.3. Ca

The Carbon Storage and Sequestration model multiplies the area of each LULC by its
carbon density and then sums them to obtain the total carbon storage of the study area, as
shown in Equation (3).

C = Cabove + Cbelow + Csoil + Cdead (3)

where C is the total carbon density (kg/km2); Cabove is the carbon density of aboveground
carbon storage (kg/km2); Cbelow is the carbon density of underground carbon storage
(kg/km2); Csoil is the carbon density in soil (kg/km2); and Cdead is the carbon density of
litter (kg/km2). The carbon densities of the YRD were adopted from the correction equation,
which is presented in the Supplementary Materials.

The Ca. value is as follows.
V4 = C× Pc (4)

where V4 is the value of Ca. (CNY); C is the total carbon density (kg/km2); and Pc is the
carbon fixation price (kg/CNY) [31].
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2.3.4. SC

The seduction delivery ratio module mainly makes use of universal soil loss equation
(USLE), as shown in Equation (5) [40].

USLEi = Ri × Ki × LSi × Ci × Pi

PSAi = Ri × Ki × LSi

SCAi = RKLSi −USLEi

(5)

where Ri is rainfall erosion; Ki is soil erodibility; LSi is the factor of slope and slope length;
Ci is the vegetation coverage factor; Pi is the management factor; and USLEi, PSAi and
SCAi are the soil erosion amount every year, the potential soil erosion amount and the
soil conservation amount, respectively. The calculation methods of the above-mentioned
factors are presented in the Supplementary Materials.

Wetland soil loss takes away a large amount of nutrients, and the value of wetland
conservation soil can be replaced by the value of wetland reduction of soil fertility loss.
In this paper, we mainly selected nutrients such as nitrogen, phosphorus, and potassium,
which are easily soluble in water or easily separated from the soil by external forces, and
cannot be recovered with the lost soil. The average values of nutrient contents of soils in
the YRD [28] are shown in Table 3.

Table 3. Average nutrient content of soils in the Yellow River Delta.

Category Nitrogen Phosphorus Potassium Total

Content (%) 0.050 0.055 2.65 2.755

The value of soil fertility was used to estimate the value of SC.

V3 = SCAi × nut× Ps (6)

where nut is total nitrogen, phosphorus, and potassium nutrients in unit mass of soil [28,29];
and Ps is average price of nitrogen, phosphorus, and potassium fertilizers [30].

2.3.5. GR

In the ecosystem, vegetation synthesizes organic matter through photosynthesis and also
releases O2. According to the equation of photosynthesis and respiration of plants, 1.19 g
of O2 is released for every 1 g of dry matter produced. In this study, we downloaded the
NPP data of ecosystems in the study area (http://www.geodoi.ac.cn) (accessed on 3 February
2023), and the material masses of O2 released from 1980 to 2020 were converted separately.

V6 = NPP× 1.16× Po (7)

where V6 is the value of GR (CNY); NPP is the annual net primary productivity (kg/km2);
and Po is the price of oxygen (CNY/kg) [32].

2.4. Quantification of Correlations between ESs
2.4.1. Correlation Analysis

Since data on various types of ESs showed a non-normal distribution, we used Spear-
man’s non-parametric correlation analysis to determine trade-offs/synergies between
ESs [41,42]. A positive correlation between ESs indicates a synergy, while a negative
correlation indicates a trade-off.

http://www.geodoi.ac.cn
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2.4.2. CCD Model

The CCD model was used to analyze the coordinated development level of things [43].
It is widely used in studying the coupling coordination relationship of multiple systems,
and can also be used to discuss the coupling coordination relationship between ESs and
economic development [43].

Although correlation can reflect the interaction between ESs, it is difficult to reflect
the overall coordination level of the two systems. The CCD refers to the degree of coor-
dinated development between systems, which reflects the state of the coupling degree.
Consequently, CCD was introduced to reflect the overall coordination level of ESs. In order
to eliminate differences in scales, ESs were standardized, followed by the above-mentioned
model analysis to analyze the level of synchronization and coordination of the two ESs.

The standardized formula is as follows.

ESVi
′ =

(ESVi − ESVmin)

(ESV max − ESVmin)
(8)

where ESVi demotes the value of ES i; ESVi
′ demotes the standardized data; and ESVmax

and ESVmin are the maximum and minimum values, respectively.
The formula of the CCD model is as below [44,45]:

D =
√

C·T

C = 2·
√

(U1·U2)

(U1+U2)
2

T = a·U1 + b·U2

(9)

where D is the CCD, taking the value of [0, 1], with a larger D indicating a more coordinated
development level of the two ESs; C is the coupling degree, taking the value of [0, 1], with
a larger C indicating a better coupling state of the two systems, and a smaller C indicating
the worse, which will tend to disorderly development; T is the composite coordination
index of the two systems; and U1 and U2 are the values of two ESs, whose weights are
a and b. In this study, we have no prejudice on the importance of ESs, each of which is
equally important to human beings, so a = b = 0.5 [43–45].

In order to study the development stage of the CCD clearly, according to the relevant
study [43,46], we determined the 10 grading standards of the degrees (Table 4).

Table 4. Classification of coupling coordination degrees.

D Value Interval Coupling Coordination Type

0.0 < D ≤ 0.19 Serious disorder
0.2 < D ≤ 0.29 Moderate disorder
0.3 < D ≤ 0.39 Mild disorder
0.4 < D ≤ 0.49 Almost disorder
0.5 < D ≤ 0.59 Slight coordination
0.6 < D ≤ 0.69 Primary coordination
0.7 < D ≤ 0.79 Moderate coordination
0.8 < D ≤ 0.89 High coordination
0.9 < D ≤ 1.00 Extreme coordination

2.5. Social–Ecological Drivers of ESs
2.5.1. Selection of Social–Ecological Drivers

The ESs in the YRD are not only affected by local drivers, but also by the huge amount
of water and sediment brought by the Yellow River and the influence from the ocean [19].
According to the relevant literature [16] and the particularity of the study area, three types
of drivers were considered, for which 11 specific drivers were proposed, which are shown in
Table 5. Meteorological conditions are the basis for the stability of the structure and function
of the coastal wetland ecosystem, whose environmental bases are soil and hydrological
conditions, while social–economic development is the external driver for the evolution of
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the coastal wetland. The formulae and reference studies for specific indicators are shown
in the Supplementary Materials.

Table 5. Social–economic drivers and their sources in the Yellow River Delta.

Type of Drivers Data

Meteorological conditions Precipitation
Temperature

Soil and hydrological conditions

Salinization
Runoff

Sediment load
Hydrographic net

Social–economic development

GDP
Population

Landscape disturbance
Traffic roads

Shoreline use intensity

2.5.2. PCA

PCA can transform a group of related variables into a group of unrelated PCs, which
reduces the calculation workload and increases the accuracy of subsequent analysis [26].
Through ArcGIS10.2, 11 multivariate drivers in the YRD from 1980 to 2020 were extracted.
On account of the large number of drivers and the correlation between them, it was
necessary to reduce the dimensionality of these 11 drivers as well as the interference of
data redundancy.

2.5.3. The GTWR Model

The GTWR model introduces the time dimension into the geographically weighted
regression (GWR) model, which can obtain the dual information of time and space, mak-
ing the estimation results more effective [13,47]. The formula of the GTWR model is as
follows [48]:

yi = β0(ui, vi, ti) +
p

∑
k=1

βk(ui, vi, ti)xik + εi (10)

where ui and vi are the latitude and longitude coordinates of the center of gravity; (ui, vi, ti)
is the spatiotemporal coordinate of the ith sample point; β0(ui, vi, ti) is the regression
constant at point i; βk(ui, vi, ti) is the kth regression parameter at point i; xik is the value of
the independent variable xk at point i; and εi is the residual term of the model.

PCA of multiple drivers was performed using ArcGIS 10.2, whose results were used
to identify spatial interactions with ESs by the GTWR model.

3. Results
3.1. Spatiotemporal Variations of ESs
3.1.1. Spatiotemporal Variations

The temporal variability and change rate of ESs in the YRD from 1980 to 2020 is
shown in Figure 3. ESs in the YRD in 1980, 1990, 2000, 2010, and 2020 were CNY 37.01,
48.89, 42.47, 48.30, and 50.49 billion, respectively, with an overall fluctuating upward trend,
where RS generated the largest share, followed by SS, which was consistent with previous
studies [13,49]. In RS, GR accounted for the largest share, followed by WY and WT. PS and
CS showed a fluctuating upward trend, while RS and SS remained relatively unchanged,
which indicated that the ESs provided by artificial ecosystems increased. The change rates
of SS and CS from 2000 to 2010 were relatively high, while WY had the highest rate between
1980 and 1990, followed by SC between 2010 and 2020.
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Figure 3. The temporal variability and change rate of ecosystem services (ESs) in the Yellow River
Delta (YRD) from 1980 to 2020. (a,b) The temporal variability of ESs in the YRD from 1980 to 2020.
(c,d) The change rate of ESs in the YRD from 1980 to 2020. (FP: food production, RM: raw material, SC:
soil conservation, Ca.: carbon storage, HQ: habitat quality, GR: gas regulation, CR: climate regulation,
WY: water yield, WT: waste treatment, Re.: relaxation.)

The results indicated that the pattern of ESs in the YRD showed spatial heterogeneity,
while remaining relatively similar and stable (Figure 4). The high supply areas of PS and SS
were mainly located in the southwest of the croplands, while the high supply areas of RS
and CS were mainly located in the wetlands. Specifically, the spatial pattern of RS showed
a gradient distribution from southwest to northeast.

Figure 4. The spatiotemporal patterns of ecosystem services in the Yellow River Delta from 1980 to 2020.
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3.1.2. Trade-Offs and Synergies between ESs

A total of 45 correlations were identified between 10 ESs per year, whose correlations
were statistically significant (p < 0.05) (Figure 5). There were similarities in the correlations in
all 5 years. First of all, the relationships between Re. and other ESs were basically negative,
with higher trade-offs between FP, RM, CS, and WY. Secondly, other ES were basically positive
correlations, among which WT, FP, CR, RM, HQ, and CS had high synergies.

Figure 5. Correlations among 10 types of ecosystem services (** represents p < 0.01) in the Yellow
River Delta, 1980–2020. The lower left part of each panel shows the Spearman’s correlation coefficients.
The blue and red symbols represent positive and negative correlations, respectively.
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3.2. CCD Evaluation

The CCD of ESs in the YRD from 1980 to 2020 is shown in Figure 6. The results
showed that the mean values of CCD among ESs from 1980 to 2020 fluctuated slightly
in the range of 0.4–0.6 and 0.1–0.3, respectively. The average CCD of the PS–SS was the
highest, followed by RS–SS and PS–RS, both between 0.4 and 0.6, indicating that these ESs
were in the high coupling, generally in a moderate coordination state. The average CCD of
the PS–CS was the lowest, followed by CS–SS and RS–CS, which were both between 0.1
and 0.3, indicating that the CS and other ESs were generally in a low coordination state,
leading to a dysfunctional state. Combined with the results of the correlation analysis, it
showed that the CS was always strongly associated with other ESs while the coordination
effect was weak.

Figure 6. The coupling coordination degree (CCD) of ecosystem services (ESs) in the Yellow River
Delta from 1980 to 2020. (a–e) The pie charts showed the area share of different CCD between ESs.
(f) The temporal variability of mean value of CCD between ESs.
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The spatial heterogeneity of CCD between ESs was obvious, while the trend was
relatively stable, and the difference had a great relationship with LULC.

3.3. GTWR Analysis of Multiple Drivers and ESs
3.3.1. PCA

Firstly, the Kaiser–Meyer–Olkin (KMO) and Bartlett tests for the 11 drivers showed
that the KMO value was >0.5 and the p value of the Bartlett test was <0.001, indicating that
these 11 indicators could be analyzed by PCA. Secondly, the cumulative contribution of the
first five eigenvalues reached 73.484%, as shown in Table 6, which generally indicated a
more satisfactory cumulative above 70%.

Table 6. Total variance explained.

Principal Component Eigenvalue Contribution Rate (%) Cumulative Contribution
Rate (%)

1 1.851 16.824 16.824
2 1.834 16.668 33.493
3 1.700 15.450 48.943
4 1.633 14.847 63.791
5 1.066 9.693 73.484

It can be seen from Table 7 that, in the first PC, the absolute value of the hydrographic
net and runoff loads was relatively large, indicating that these variables had high correlation
coefficients with the first PC, which can be named hydrologic conditions. In the second
PC, the absolute value of temperature and sediment loads were relatively large. Since
temperature is one of the important factors for vegetation growth, which is an important
factor for sediment transport, the second PC can be called vegetation influence. In the third
PC, the absolute value of population, GDP, traffic roads, and shoreline use intensity loads
were large, so the third PC was called social economy. In the fourth PC, the absolute values
of precipitation and salinization loads were large. Considering that the cause of salinization
is strongly associated with precipitation, the fourth PC was consequently called water–salt
balance. In the fifth PC, the absolute value of landscape disturbance load was large, so the
fifth PC was called landscape disturbance. The spatial pattern of PCs of social–economic
drivers in the YRD from 1980 to 2020 is shown in Figure 7.

Table 7. Component matrix.

Driver
Principal Component

1 2 3 4 5

Hydrographic net 0.926 0.231 0.029 0.000 −0.008
Temperature −0.058 0.834 0.026 0.388 0.142
Precipitation −0.246 0.222 0.308 0.683 −0.068
Traffic roads 0.438 −0.238 −0.550 0.222 −0.173

Landscape disturbance −0.042 −0.062 0.022 0.011 0.956
Population −0.020 −0.161 0.650 −0.019 0.005

GDP 0.168 0.002 0.795 0.174 0.024
Shoreline use intensity 0.418 −0.061 −0.478 −0.268 0.188

Salinization 0.025 0.044 −0.049 0.879 0.047
Runoff −0.726 0.494 −0.075 0.296 0.128

Sediment load 0.068 0.836 −0.102 −0.066 −0.209

3.3.2. GTWR Analysis

Using the GTWR plug-in for ArcGIS 10.2 (with automatic optimal settings for band-
width) produced by Huang et al. [48], the regression results can explain the relation between
PCs and ESs. A parameter greater than 0 indicated that the explanatory variables were
driving ESs, with a larger parameter indicating a stronger driving effect, while a parameter
less than 0 indicated that the explanatory variables were inhibiting ESs, with a larger abso-
lute value indicating a stronger inhibiting effect. The natural breakpoint method was used
to classify the effects of each PC on ESs into six categories: weak positive effect, middle
positive effect, strong positive effect, weak negative effect, middle negative effect, and
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strong negative effect, and finally the spatiotemporal variation was plotted, as shown in
Figure 8.

Figure 7. Principal components of social–economic drivers in the Yellow River Delta, 1980–2020.

Figure 8. Spatiotemporal variation in the impact of principal components on ecosystem services.
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For SS, PS, and RS, the vegetation influence was a positive driver while water–salt
balance and landscape disturbance were basically negative drivers. The driving effect of
hydrographic net was opposite to that of social economy. The former had a strong negative
driving effect in the northeast and a strong positive driving effect in the southwest, while
the latter had an opposite effect. The role of each PC for CS was opposite to that of the
other ESs. Landscape disturbance and water–salt balance on CS were the positive drivers,
while vegetation influence was negative.

4. Discussion
4.1. Reasons for Spatiotemporal Variation of ESs

From 1968 to 2020, the precipitation in Dongying City decreased by 66.31 mm/a,
especially in the late 20th century, when the annual precipitation was the lowest. The
precipitation in 1990 reached 893.76 mm, which was the extreme value of precipitation
during this period [50]. Moreover, parallel with that, there were fewer urban-up lands
but more forest and grasslands, so the value of WY was high, which in turn affected the
total ES value in 1990. Previous studies have shown that vegetation has a deep connection
with RS [11,47]. From 1996 to 2001, the unified water transfer in the Yellow River basin
was initiated, resulting in the decrease of bare lands and the increase of croplands [51].
Dongying City took this opportunity effectively to restore a large number of wetlands,
which not only increased carbon storage, but also reduced soil erosion and flooding [52].
To sum up, the change of vegetation and wetlands led to an overall fluctuating upward
trend in RS in Dongying City.

4.2. Trade-Offs/Synergies Based on the CCD Model and Correlation

The trade-offs/synergies between ESs were identified by the CCD model and cor-
relation in our research, which showed that CS and other ESs were basically in a state
of trade-off and imbalance, while the other ESs were basically in a state of synergy and
coordinated development. We found large similarities between the results of the CCD
model and correlation (Figures 6 and 9) while there was little discrepancy in the respective
change, which suggested that the relationships between ESs were relatively stable [53].

The spatial pattern of the CCD of ES in the YRD from 1980 to 2020 showed spatial
heterogeneity. CS and the other ESs were basically in a state of coordination in wetlands,
which in other LULCs were in a state of imbalance, which is generally consistent with
previous studies [54,55]. In wetlands, all kinds of ESs can basically develop in a coordinated
way, while in build-up lands and barren they cannot. Consequently, Dongying City
needs to control urbanization and industrialization to maintain the sustainable supply
of key ESs [56], which is consistent with previous studies [57,58]. To sum up, the results
indicate that there is still more room to improve the ES status in urban and bare lands for
sustainable development of regional ESs. The results of the correlation analysis lack spatial
description, while the CCD model can remedy the flaw, providing a new way of thinking
the relationships between ESs and monitoring the sustainable supply of ESs, because of
the deep connection between the spatial distribution and temporal dynamics of ESs [59,60].
Hence, long-term monitoring of the supply of ESs is essential to identify the development
relationship between ESs in different regions, to avoid unnecessary trade-offs and ensure
the sustainable supply of ESs [61].

4.3. Response of ESs to Multiple Drivers

We found that the responses of PS, SS, and RS to multiple drivers were parallelism
because of their similarities [62], while the response of CS was opposite to other ESs.
Playing a pivotal role in ESs, vegetation was a positive driver for ESs. Social economy
played a positive driver for CS and a negative driver for other ESs in the southwest where
the Dongying District is located, a region with high economic development and population
concentrations. Landscape disturbance had a deep connection with the intensity of human



Remote Sens. 2023, 15, 1866 15 of 21

activities, so that it was positive driver for CS and a negative driver for the other ESs in
areas where human activities were more frequent, such as build-up lands and croplands.

Figure 9. Correlations of four categories of ecosystem services (** represents p < 0.01) in the Yellow
River Delta, 1980–2020. The lower left part of each panel shows the Spearman’s correlation coefficients.
The blue and red symbols represent negative and positive correlations, respectively.

The results suggest that there are three main aspects of sustainable supply about ESs,
which are limiting the expansion of artificial landscapes, improving agricultural techniques,
and promoting wetland conservation and restoration [63,64].

4.4. Spatial Planning and Management

Accurately identifying the social–ecological drivers of ESs will not only help to formulate
corresponding spatial management and planning strategies [65,66], but also provide insights
for improving the versatility of territorial space and regional sustainable development.

The structure of ESs in the YRD is shown in Figure 10. We integrated the above-mentioned
results to propose spatial planning and development strategies for each district in Dongying
City. Located in inland areas, Lijin County is largely consistent with Guangrao County, both
having few ES values and more croplands, which suggest that measures should be taken
to protect basic farmland and improve agricultural water facilities and soil quality. Hekou
District has large similarities with Kenli District, which are both in the coastal area, with few
croplands, more grasslands, and high ES values. Consequently, the industrial structure and
the treatment of saline land should be improved. Dongying District, which has large build-up
lands, is the central urban area and the location of Shengli Petroleum Administration organs,
whose treatment measures should be mainly focused on industrial development, oil–land
integration, innovation, and improvement of people’s livelihoods.
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Figure 10. Structure of ecosystem services (ESs) in the Yellow River Delta (YRD). (a) Average share of
land use/land cover in different administrative regions of the YRD, 1980–2020. (b) Sankey diagram
of ESs in different administrative regions of the YRD, 1980–2020. (c) Temporal changes of ESs in
different administrative regions of the YRD, 1980–2020.

4.5. Limitations and Prospects

While this study has provided insights into the interaction of ESs in the YRD and
the response of ESs to social–ecological drivers, it is necessary to pay attention to the
following limitations: (1) some ecological processes in the InVEST model are comparatively
simple [67], being an important question for future investigation, so that our next challenge
is to find more suitable ecological models to estimate ESs. (2) In the WY module, the water
quantity only takes into account two factors: precision and evapotranspiration [68], while
no consideration is given to groundwater [69,70], which will be our understudied and
important potential next frontier. (3) The seduction delivery ratio module mainly makes
use of USLE, whose effect is limited although widely used [70]. Only water erosion is taken
into account to estimate soil loss, while no consideration is given to the other types of soil
erosion [71]. Inevitably, more empirical studies are needed to obtain applicable data of
soil erosion to the study area in future research. (4) The carbon storage module assumes
that the only change of carbon storage is due to LULCs [69,70], without considering the
variability of carbon storage in specific LULCs and soil type [72]. Hence, more accurate
data will be important for future investigation.

5. Conclusions

Threatened by natural and human disturbances, coastal wetland ecosystems face
the risk of uncoordinated development. Accordingly, it is necessary to evaluate dynamic
changes of coastal wetland ESs scientifically, identify their coordinated development status,
and explore the spatial heterogeneity about response of ESs to social–ecological drivers, to
ensure the better sustainable use of coastal resources.

The key findings that emerged from this study were that: (1) from 1980 to 2020, the ESs
of YRD showed an overall upward trend, which were mainly affected by the GR, WY, and
WT of RS. (2) CS was disordered with other ESs, but, even so, various ESs could basically
develop in a coordinated manner in wetlands. The empirical results of this study provide
a new understanding about the role of wetlands in ESs, which showed that wetlands not
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only provide a variety of resources for human beings, but also have huge environmental
functions and benefits. We should protect wetlands better and use the prominent role of
wetlands in coordinating ESs. (3) Through PCA, 11 social–economic drivers were integrated
into 5 PCs, namely hydrologic conditions, vegetation influence, social economy, water–salt
balance, and landscape disturbance, which reduced the information redundancy and the
calculation workload for the subsequent analysis, increasing the accuracy and stability
of the results. (4) This study provides a deep insight into the response of wetland ESs
to social–economic drivers through the GTER model, which has spatial heterogeneity,
suggesting that ES management in different regions should have its own priority rather
than generalization.

The knowledge gained in this study can be of help to provide a basis for the sustainable
development of the regional ESs and the improvement of human well-being. Despite
the limitations, to a large extent, our results cast a new light on more comprehensive
management for ESs, to achieve more efficient and rational decision-making.
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