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Abstract: In the field of SAR-to-optical image synthesis, current methods based on conditional
generative adversarial networks (CGANs) have satisfying performance under simple scenarios, but
the performance drops severely under complicated scenarios. Considering that SAR images can
form a robust time series due to SAR’s all-weather imaging ability, we take advantage of this and
extract a temporal correlation from bi-temporal SAR images to guide the translation. To achieve
this, we introduce a co-attention mechanism into the CGAN that learns the correlation between
optically-available and optically-absent time points, selectively enhances the features of the former
time point, and eventually guides the model to a better optical image synthesis on the latter time
point. Additionally, we adopt a strategy to balance the weight of optical and SAR features to extract
better features from the SAR input. With these strategies, the quality of synthesized images is notably
improved in complicated scenarios. The synthesized images can increase the spatial and temporal
resolution of optical imagery, greatly improving the availability of data for the applications of crop
monitoring, change detection, and visual interpretation.

Keywords: attention mechanism; generative adversarial networks (GANs); image-to-image translation;
synthetic aperture radar (SAR)

1. Introduction

According to the report of the International Satellite Cloud Climate Program (ISCCP),
the annual average of global cloud coverage is as high as 66% [1]. Due to weather conditions
such as cloud, fog, and haze, optical sensors often fail to obtain local ground information,
resulting in particularly serious data losses, especially during the rainy season. In addition
to weather conditions, sensor failures can also lead to the loss of remote sensing data.
Therefore, the challenge of repairing the unattainable part of optical imagery has been a
thorny problem in remote sensing.

On the hardware side, the solution to the loss of remote sensing information is to
establish satellite groups and increase the observation frequency. However, increasing the
observation frequency brings little benefit when image acquisition areas are frequently
rainy. Sometimes there may be no available optical image for months. On the algorithm
side, the commonly used methods to repair and make up for the missing information are
filtering, interpolation, space spectrum fusion, and multi-temporal composition. These
methods can remove small areas of thin cloud coverage pretty well, and some of them
can even handle thick cloud coverage, but they are not capable of restoring large areas of
missing data for a long period of time.

Therefore, neither launching new satellites nor using some traditional image process-
ing methods can handle the problem that cloudless data cannot be obtained for a long time
during the rainy season in cloudy areas. It is still very difficult to continuously monitor
artificial and phenological changes in these areas.
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In recent years, deep learning has been increasingly integrated with a broad range
of applications of SAR imagery, including classification [2,3], target recognition [4,5], and
change detection [6,7]. With the development of adversarial learning, a new possibility for
integrating the spectral advantage of optical imagery and the all-weather advantage of SAR
imagery has emerged. Recent advances in restoring optical imagery were largely driven by
image synthesis from SAR images using GANs [8,9]. The first model that introduces the
CGAN to image-to-image (I2I) translation is Pix2Pix [10], which consists of a generator G
and a discriminator D. G is a U-Net architecture and D is a patch-based fully convolutional
architecture. G and D compete with each other to learn the mapping from source domain
items to target domain items. The objective of the generator G is to generate real items in
the target domain under certain conditions, while the discriminator aims to distinguish real
images from generated images. Therefore, every training sample is a pair of images (z, x),
where x is a real image from the target domain and z is a corresponding image from the
source domain. The image generated under the conditions of z is defined as G(z). Similarly,
the discrimination of image x under the conditions of z is defined as D(z, x). Pix2Pix aims
to model the conditional distribution of target domain images using the following minimax
objective function:

LGAN(G, D) = min
G

(
max

D

(
E(z,x)[log(D(z, x))] +E(z)[log(1− D(z, G(z)))]

))
(1)

Following the success of Pix2Pix, various methods have been proposed to further boost
I2I model performance, and some of them were introduced to the field of SAR-to-optical
image synthesis [11–18].

Researchers’ attention was first drawn to the unstable training process of GANs.
To alleviate the problem, Mao et al. [19] proposed least squares generative adversarial
networks (LSGANs), and Arjovsky et al. [20] proposed Wasserstein GANs (WGANs).
The former employed the loss function based on the least-squares method, and the latter
adapted Earth-Mover’s distance to replace the Jensen-Shannon divergence, which better
measured the distance between the generated and real data.

Subsequently, researchers found that as the image resolution increased, images syn-
thesized by GANs ran into an increasingly severe problem of lacking fine details and
realistic textures. This is a multi-scale problem. Different solutions have been devised
to try to solve this problem. Karras et al. [21] presented StyleGANs, which use interme-
diate hidden variables to identify the decoupling of different levels of features. Based
on StyleGANs, Richardson et al. [22] proposed an I2I translation method named PSP.
Wang et al. [23] presented another solution for multi-scale generation that used a set of
generators, each focusing on different levels of scale. Meanwhile, they proposed a set of
discriminators to perform discrimination on different levels of scale. Multi-scale generation
has become a commonly used technique since then, and it is usually combined with LSGAN
or WGAN loss.

In 2019, Zhang et al. [24] introduced the self-attention mechanism to GANs. After
that, a new research direction of boosting the performance of I2I translation models with
attention mechanisms has been gradually catching researchers’ attention. In the self-
attention module, the input is first embedded into three different embedding spaces,
named Q, K, and V. Then a function is applied to measure and normalize the correlation
between Q and K. Usually, the dot product function is used to measure the correlation and
softmax to normalize it. The correlation is regarded as a weight map, and the weighted sum
of V is the output of the module. In addition, it is also common practice to add a residual
connection from the input of the module to the output. Generally speaking, the attention
mechanism extracts the global dependencies of features. When the attention mechanism
is applied to the spatial dimension, it becomes spatial attention, which extracts spatial
dependencies similar to the one used by Gao et al. [25]. When the attention mechanism is
applied to the channel dimension, it becomes channel attention, which extracts channel-
wise dependencies similar to the one used by Tang et al. [26]. The attention mechanism
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can also be applied to the temporal dimension to infer global change information between
source time and target time. This change information can guide the generator to choose
different strategies for slightly and greatly changing regions and help to better learn the
mapping from source time to target time.

In 2018, Bermudez and Grohnfeldt et al. [11,12] first used an adversarial learning
approach to simulate optical images to compensate for information below the cloud-covered
region. Ebel et al. [13] used a CycleGAN for Sentinel-2 optical image de-clouding, which
reduced the requirement for data alignment. Gao et al. [14] used a GAN to generate optical
images based on the fusion of pre-synthesized optical images, SAR images, and clouded
optical images. They altered the input in terms of contrast and brightness to enhance the
robustness of the model and reduce the spectral distortion. Zou and Li [15] improved the
generated local details of Pix2Pix [10] models by adding a phase consistency constraint.

Despite many trying to adapt GAN-based I2I translation models to the field of SAR-to-
optical translation, most struggle to generate satisfying results under complicated scenarios.
Compared to simple scenarios, complicated scenarios contain more kinds of objects, ranging
from small to medium and large scales. Various kinds of small-scale objects impose a strong
challenge on modeling the transformation of the images. Taking the Pix2Pix model [10]
for instance, the model derives visually much worse outputs under complicated scenarios
than those under simple scenarios, as shown in Figure 1. Under the resolution of 10 m,
generating satisfying results for complicated scenarios, even for some regions, is beyond
the limit of Pix2Pix.
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Figure 1. SAR-to-optical image synthesis using Pix2Pix [10] under simple and complicated scenarios.
The real optical images and the images synthesized by Pix2Pix are presented in adjacent columns.
The first two columns show the performance of Pix2Pix under a simple scenario, and the next two
columns show its performance under a complicated scenario. The image resolution is 10 m.

To improve the generation under complicated scenarios, we intend to upgrade the
GAN-based SAR-to-optical model to better face the challenge of various kinds of small-
scale objects. The previous works, despite various kinds of upgrades to the model, train
the generator using the source time T0 (or source area) and apply it to the target time T1
(or target area). However, we do not have to follow this mode because bi-temporal SAR
images have good availability, and from them, the change information can be inferred to
facilitate better generation. If the optical features of T0 are also available, they can help
with the generation of T1 as well. These characteristics have not received enough attention.
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Therefore, we use a temporal co-attention guided generator to extract change features from
bi-temporal datasets that we have built. The change features are merged with polarization
features and optical features. Apart from these features, the features of different scales are
also extracted through multi-scale generation.

This paper is structured as follows: Section 2 provides detailed instructions for the
bi-temporal SAR-optical dataset that we built. Then the key techniques in our method
are illustrated in Section 3. Thereafter, settings of experiments and evaluation results are
presented in Section 4 with some discussion of the results. Finally, the conclusion and an
outlook on future work are presented in Section 5.

2. Dataset

The SEN1-2 dataset [27] is one of the best-known datasets for generating artificial
optical images from SAR inputs. It is composed of 282,384 paired image patches, collected
from a Sentinel-1 GRD product and a Sentinel-2 Level-1C product. Its top-level folders are
organized according to meteorological seasons. This dataset contributes a great deal to the
research regarding SAR-to-optical translation; however, samples from simple scenarios
and complicated scenarios are mixed up in this dataset. Additionally, current datasets only
provide single polarization or single time phase samples. In order to evaluate generative
models’ performance under different scenarios and incorporate polarization and change
features into the generation process, we produced two new bi-temporal datasets using
Sentinel-1 SLC products and Sentinel-2 Level-2A products, which include a simple scenario
dataset and a complicated scenario dataset. Figures 2 and 3 show some training samples
from our datasets.
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2.1. Dataset Procedure

We use SNAP software for Sentinel-1 and Sentinel-2 data processing. Since the Sentinel-
1 SAR uses side-view imaging, it has geometric features such as foreshortening, layover,
and shadowing. The geometric distortion caused by foreshortening is easily handled by
applying Precise Orbit Ephemerides files and terrain corrections. In order to minimize the
effect of layover and shadowing, we collect image samples in plain areas. In addition, SAR
images are susceptible to noise, so we apply multi-look and Refined-Lee filtering to reduce
the noise of radiation-calibrated backscatter coefficients. After all the processes mentioned
above, the linear-scaled backscatter coefficient σ0 is converted to the dB scale. Finally, all
SAR images are cropped by a pre-defined grid vector to obtain the training and testing sets.
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As for the Sentinel-2 L2A Bottom-of-Atmosphere products, they have already been
ortho-corrected, geometrically refined, and atmospherically corrected, so they are only
required to separate the RGB bands, and then the reflectance ranging from 0 to 1 can be
obtained by substituting the DN value of the L2A products into Equation (2).

pBOA =
DN − BOA_ADD_OFFSET

BOA_QUANTIFICATION_VALUE
(2)

The parameters BOA_ADD_OFFSET and BOA_QUANTIFICATION_VALUE in
Equation (2) can be found in the metadata of L2A products. Finally, all optical images are
also cropped into patches by a pre-defined grid vector.

2.2. Special Features of the Dataset

Unlike the SEN1-2 dataset, we gathered SAR-optical image pairs of the same scene
from two time phases in order to evaluate how the bi-temporal SAR input and the optical
input can influence the SAR-to-optical generation. So, the final training samples contain
six optical channels and four SAR channels coming from two time phases with a size of
256 × 256 (see Figures 2 and 3).

Another difference is the division of simple and complicated scenarios. The learning
difficulty of the generation varies for different scenarios. A scenario that contains more
small objects means more diversity in texture and a more complex mapping from the source
domain to the target domain. Therefore, we use a segmentation-based approach to evaluate
the level of scale for our datasets and the SEN1-2 dataset. The method is based on the
idea that, under the same scenario of acquisition time and segmentation strategy, the more
segments that are derived, the smaller the scale of objects in the scenario. In this case, a
commendable unsupervised segmentation method for RGB images named BASS [28] is
used. We performed segmentation on the optical channels of our datasets and the SEN1-2
dataset from the same season using the same settings, and the result is shown in Figure 4.
Under the same segmentation settings, the distribution of the segmented area derived
from the complicated scenario is located in a lower position, while the distribution derived
from the simple scenario is located in a higher position, indicating that the complicated
scenario contains more small-scale objects. In contrast, the SEN1-2 dataset mixes simple
and complicated scenarios, so its distribution is located in the middle with two peaks.



Remote Sens. 2023, 15, 1863 6 of 19

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 20 
 

 

Figure 4. Under the same segmentation settings, the distribution of the segmented area 

derived from the complicated scenario is located in a lower position, while the distribution 

derived from the simple scenario is located in a higher position, indicating that the com-

plicated scenario contains more small-scale objects. In contrast, the SEN1-2 dataset mixes 

simple and complicated scenarios, so its distribution is located in the middle with two 

peaks. 

 

Figure 4. Distribution of segmented area derived from (a) a complicated scenario, (b) a simple sce-

nario, and (c) the SEN1-2 dataset. 

3. Methodology 

As we have illustrated in Section 1, the commonly used I2I model Pix2Pix’s capability 

varies largely for different scales of content. The model learns to generate better results 

for simple scenarios than for complicated scenarios involving various kinds of small-scale 

objects. We explore two ways to solve the challenge of complicated scenarios: one is by 

increasing model complexity to learn and overcome the challenges of mapping small-scale 

objects, and another is by providing the model with more information to decrease the 

learning difficulty. On the one hand, we provide the model with additional optical im-

agery and bi-temporal SAR imagery. On the other hand, we propose a temporal co-atten-

tion guided generator to extract change features from bi-temporal SAR imagery and 

merge them with polarization features, optical features, and multi-scale features. The 

model learns to generate T1 optical images in a coarse-to-fine manner based on the merged 

features. These techniques improve the GAN’s ability to synthesize optical images while 

keeping the model complexity acceptable. Based on the bi-temporal dataset, the training 

and inference procedures of our upgraded model are summarized in Figure 5. First, the 

satellites’ data is processed into input patches and label patches. The input patches contain 

3 optical bands and 4 SAR bands. Then we split these patches into a training set and a 

testing set. The CGAN-based model with three key techniques is trained on the training 

set. Finally, the inference is performed on the testing set. These steps are the same for both 

simple and complicated scenarios. 

Figure 4. Distribution of segmented area derived from (a) a complicated scenario, (b) a simple
scenario, and (c) the SEN1-2 dataset.

3. Methodology

As we have illustrated in Section 1, the commonly used I2I model Pix2Pix’s capability
varies largely for different scales of content. The model learns to generate better results
for simple scenarios than for complicated scenarios involving various kinds of small-scale
objects. We explore two ways to solve the challenge of complicated scenarios: one is by
increasing model complexity to learn and overcome the challenges of mapping small-scale
objects, and another is by providing the model with more information to decrease the
learning difficulty. On the one hand, we provide the model with additional optical imagery
and bi-temporal SAR imagery. On the other hand, we propose a temporal co-attention
guided generator to extract change features from bi-temporal SAR imagery and merge
them with polarization features, optical features, and multi-scale features. The model learns
to generate T1 optical images in a coarse-to-fine manner based on the merged features.
These techniques improve the GAN’s ability to synthesize optical images while keeping the
model complexity acceptable. Based on the bi-temporal dataset, the training and inference
procedures of our upgraded model are summarized in Figure 5. First, the satellites’ data is
processed into input patches and label patches. The input patches contain 3 optical bands
and 4 SAR bands. Then we split these patches into a training set and a testing set. The
CGAN-based model with three key techniques is trained on the training set. Finally, the
inference is performed on the testing set. These steps are the same for both simple and
complicated scenarios.

3.1. Coarse-to-Fine Generation

In order to get better features for both large-scale and small-scale content, we utilize
the multi-scale generation and discrimination from Pix2PixHD.

3.1.1. Multi-Scale Generation

Multi-scale generation is frequently used in recent practice [23,29–35]. The main idea
is that information at different scales can be aggregated to derive better performance for the
image synthesis tasks. The multi-scale generator we use is composed of a global generator
G1 and one or more local enhancer generators {G2, · · · , Gm}. Every generator Gk has a
similar architecture: a convolutional front-end G(F)

k , a residual block G(R)
k , and a transposed

convolutional back-end G(B)
k . For a local enhancer generator Gk, its residual block takes

the sum of the last feature map of G(F)
k and that of G(B)

k−1 as the input. For instance, in

the two-scale generation architecture, the last feature map of G(F)
2 and G(B)

1 are added
together and fed to the residual block of G2, which is shown in Figure 6. This is helpful for
integrating larger-scale information into the local enhancer. We use two-scale generation in
our method, which is enough in most cases, but additional local enhancer generators can
be used to learn features on more levels of scale.
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3.1.2. Multi-Scale Discrimination

Using multiple GAN discriminators has been proven effective for better guiding the
generator’s training [23,36,37]. The multi-scale discrimination that we use is a combination
of three discriminators. As shown in Figure 7, the discriminators have an identical network
structure but operate with different receptive fields. Therefore, the discrimination is
performed at different levels of scale. This combination encourages the generator to yield
both globally consistent and locally detail-rich output. With the multi-scale discrimination,
the loss functions of the discriminators and generators are defined as Equation (4) and
Equation (3), respectively:

LGAN(G1, G2) =
1
2

3

∑
k=1

E(S)

[
Dk
(
S, G2

(
S, G1

(
S′
)))2

]
(3)

LGAN(D) = 1
2

3
∑

k=1

(
E(S,Xt)

[
(Dk(S, Xt)− 1)2

]
+E(S)

[
(Dk(S, G2(S, G1(S′))) + 1)2

])
(4)

These definitions are following LSGANs’ practice [19] for stable training, where Xt is
the target optical image, and S is the corresponding input of the generator that serves as
the condition.
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Figure 6. The architecture of the two-scale generation. It is composed of two generators: G1 and G2.
G2 takes the original input S, with the original height (H) and width (W). G1 takes S′ as input, which
is downsampled from S with a factor of 2 in both the height and width (H/2, W/2).
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Furthermore, the perceptual loss [38] can be added to the generator’s loss function
to produce a favorable result. The perceptual loss is computed by extracting the L1 loss
from a pretrained VGG19 network. The final loss function of the generator is defined by
Equation (5), where F(i) is the ith layer with Mi elements of the pretrained VGG19, and the
weight of perceptual loss is controlled by λ.

L(G) = LGAN(G1, G2) + λ
N

∑
i=1

1
Mi

(
‖F(i)(Xt)− F(i)(G2

(
S, G1

(
S′
)))
‖1

)
(5)

3.2. Temporal Co-Attention Guided Generator

Previous works on SAR-to-optical translation have not taken change features into
consideration. Generating optical images directly from SAR images faces the challenge
of great differences in sensing mechanisms and statistical distribution, so some works
have tried to input the model with additional data from other times or additional raster
bands [12–14,17,39], but none of them have designed a network structure to efficiently
extract the change features and mix them with the optical features. Inspired by the previous
success of attention mechanisms in GANs, we propose to use an attention mechanism
to extract temporal dependencies of SAR images and mix them with optical features
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and polarization features so as to further increase the performance of SAR-to-optical
translation models.

By feeding Pix2PixHD either SAR images from target time T1 or optical images from
source time T0, we found that generating from optical input gets visually better output
but lacks awareness of regional changes compared to generating from SAR images. The
reason for this is that, although the optical input is from another time, it is still more similar
to the optical output in terms of texture than the SAR input. However, it does not hold
any information about changes from T0 to T1, so the regional changes cannot be inferred.
That is where SAR input can be used to implement the optical input because SAR images
can form a reliable time series. By applying an elaborately designed temporal co-attention
header to a generator network, we were able to train the generator to mainly rely on T0
optical data while inferring regional changes with the help of the T0 and T1 SAR input.

In the temporal co-attention header (see Figure 8), the inputs X and Z are from source
time T0, while Y is from target time T1. Three 1 × 1 convolutional layers are applied to
transform X, Y, and Z into value tensor V, query tensor Q, and key tensor K, respectively.
To limit the use of compute resources in the experiment, V, Q, and K are downsampled by
applying average pooling layers. Then the attention map is computed by:

M = So f tmax
(

QTK√
C

)
(6)
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After that, following the practice of SAGAN [24], we multiply the attention output
by a scale parameter γ and add back the input X (Equation (7)). Then, Y, Z, and O are
concatenated to form the input of the next module.

O = Norm(γX + MV) (7)

Now, let us analyze this process more closely. The attention map M derived from
Equation (6) is a measurement of the correlation between Q and K, which are derived from
Y and Z. With Y and Z being set to SAR data from T1 and T0, respectively, the attention
map can indicate the correlation between the features of T0 and T1. Then we set the input X
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to optical data from T0 and perform the operation defined in Equation (7) with M. If there
is little change at a location (i,j) between T0 and T1, we can infer a high correlation and
that optical features are reliable at that location, so the optical features at (i,j) are enhanced
on the attention output; otherwise, the optical features are weakened and SAR features
are taking a dominant role at that spot. Therefore, appending this module to the front of
two-scale generators empowers the generators with the ability to extract and merge T0
optical features, T1 SAR features, change features, and multi-scale features, putting the
generators under the guidance of temporal co-attention.

3.3. Tackling Data Heterogeneity between Optical and SAR

The optical and SAR images are both the input of the networks, but the intensity
of these two kinds of data is measured very differently. To be specific, the backscatter
coefficient σ0 of SAR images can fluctuate, ranging from −30 to 10 dB, by just moving a
few meters from buildings to roads. Regarding Sentinel-2 L2A products, the data measures
bottom-of-atmosphere reflectance, which is quantified by integer values between 0 and
65,535 [40]. The integer values of BOA reflectance are converted to float values ranging
from 0 to 1, as demonstrated in Section 2.1. We found that this difference in dynamic range
did not cause any program breakdown, but if we do not account for it, the training process
will be led in an odd direction for two reasons. On the one hand, due to the architecture of
the generator, the output is restricted to the range of (−1,1). In order to meet that value
interval, we perform an instance normalization followed by a value clip described by
Equation (8) on each optical image, with the parameters being set to mt = 0 and σt = 0.5.
After the transformation, the optical data is normalized to fall within that interval. On the
other hand, normalization of optical data indicates normalization of SAR data. If we only
normalize optical data, the networks will be misled into giving preference to SAR data.
However, if we normalize SAR imagery to the same range as optical imagery, the output
will heavily rely on optical input because of its advantages over SAR input in terms of
output similarity and channel number. Therefore, we adopt a weight-balancing strategy,
normalizing SAR imagery with mt = 0 and σt = 1, to give a prior preference to SAR imagery.

xnorm = min

(
max

(
x− E[x]√
Var[x] + ε

σt,−2σt

)
, 2σt

)
+ mt (8)

4. Results and Discussion

In this section, we provide comparisons against two other methods using a simple
scenario dataset. Then we show comparisons against more leading methods using a
complicated scenario dataset. Finally, we report an ablation study. In all experiments, we
present visual inspections and apply a number of commonly used metrics to quantify the
quality of our results.

4.1. Experiment Settings

Our networks are implemented using Pytorch [41] and trained on GTX 3090Ti GPUs.
To optimize our networks, we alternate between one gradient descent step on D and then
one step on G. Some detailed parameter settings are shown in Table 1. To guarantee the
impartiality of the experiments, we train all of the evaluated models with an equal number
of epochs and use the official public code.

4.2. Baseline

We use a simple-setting Pix2PixHD as the baseline model for comparison, which
means that the multi-scale discrimination is kept in the baseline model but the local
enhancer network is removed. The generator of the baseline model is supplied with an
input that is a channel-wise concatenation of bi-temporal SAR imagery. This baseline model
provides us with a reference for performance when the generator is not improved to merge
additional optical features, change features, polarization features, and multi-scale features.
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The baseline model is compared with our model under simple and complicated scenarios,
along with other models. Particularly, we compare the generalization performance of the
baseline model with that of our model under a complicated scenario.

Table 1. Detailed configuration of the experiments.

Parameters Values

Optimizer Adam [42]
β1 0.9
β2 0.999

Learning Rate 2 × 10−4

λ (Equation (5)) 10
Training Batch Size 2
Testing Batch Size 1

In the ablation study, we use a slightly different baseline model in order to prove the
effectiveness of perceptual loss. The only difference is that the perceptual loss is disabled
at first and then enabled in the ablation study. Below, we show how this baseline model
evolves step by step to become our final model and what role each key technique plays in
our model.

4.3. Evaluation Schemes and Metrics

We perform quantitative analysis using the following performance indices:

• Fréchet Inception Distance (FID) [43]: It is a refinement of the inception score [44] and
compares the mean and covariance of an Inception-v3 [45] network’s (pre-trained on
ImageNet [46]) intermediate features for real and synthesized images. We employ FID
for both datasets. Lower FID values mean closer distances between synthetic and real
data distributions. The lower bound of FID is 0.

• Peak Signal to Noise Ratio (PSNR) [47]: This is a paired image quality assessment.
It is a commonly used pixel-by-pixel measurement. Greater PSNR values indicate
better quality.

• Structural Similarity Index Measures (SSIM) [48]: As another paired image qual-
ity assessment, the SSIM measurement is closer to human perception compared to
PSNR [49] because it considers the inter-dependencies between pixels within a window
of a specific size. We additionally adopt this metric as a measurement of the similarity
between a synthesized image and the corresponding target image. To calculate the
SSIM, we set the window’s size to 11. The upper bound of the SSIM is 1.0. A score
closer to 1.0 indicates better quality.

• Precision-Recall [50]: Precision and recall metrics are proposed as an alternative to FID
when assessing the performance of GANs [50,51]. Precision quantifies the similarity
of generated samples to the real ones, while recall denotes the capacity of a generator
to produce all instances present in the set of real images (Figure 9). These metrics aim
to explicitly quantify the trade-off between diversity (recall) and quality (precision).

4.4. Comparisons of Simple Scenario Datasets

We compare our method to Pix2Pix and the baseline model using the simple scenario
dataset. The corresponding results are presented in Figure 10. We show the generation
output and enlarged regional details for each method in adjacent rows. The first two
columns of Figure 10 show the real optical images of T0 and T1. As the remote sensing
images were acquired between summer and spring, we can see that the vegetation has
changed its color from T0 to T1. From the last three columns of Figure 10, we can see that
all three methods evaluated are capable of capturing this variety. Generally speaking, all
evaluated methods show adequate correspondence between real and generated images
under the simple scenario.
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Figure 9. Illustration of precision and recall for distributions, reprinted with permission from Ref. [50],
2019, Kynkäänniemi et al. (a) The distribution of real images (Pr) and the distribution of generated
images (Pg). (b) Precision is defined as the probability of a randomly selected image from Pg being
encompassed by the scope of Pr. (c) Recall is defined as the probability of a randomly selected image
from Pr being encompassed by the scope of Pg.
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Figure 10. Visual comparison under a simple scenario. Three samples are given in (a,c,e). Some
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When closely zoomed in, the images synthesized by our method can be hardly distin-
guished from the real ones. As shown in Figure 10b,f, the details, such as the contours of
small ponds and country paths, are better restored by our method than by other methods.
Additionally, Figure 10d shows that our method better restores the color of the fields. The
output of the baseline model presents fewer realistic details, but it still outperforms Pix2Pix.
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In addition to visual inspection, the quantitative analysis also proves better perfor-
mance by our model. Table 2 reports the evaluation metrics for these methods. Bold
indicates optimal performance. As can be seen, the proposed method outperforms the
other two methods on all metrics.

Table 2. Evaluation metrics comparison under a simple scenario.

Metrics Pix2Pix Baseline Ours

FID ↓ 221.1 99.9 69.46
PSNR ↑ 13.80 18.36 21.89
SSIM ↑ 0.23 0.62 0.78

Our method achieves the best score on all metrics, especially on FID, with more than 30% improvement compared
to the baseline model.

4.5. Comparisons of Complicated Scenario Datasets

Under a simple scenario, both the baseline model and our method have visually
acceptable results. Under a complicated scenario, however, the results of different methods
can vary greatly because the challenge of various kinds of small-scale objects is a tricky issue
faced by every method. So, it is necessary to carefully evaluate our method and compare
it with a wider range of other methods. We conducted a quantitative and qualitative
comparison with a number of advanced supervised methods, including the baseline model,
PSP [22], Selection-GAN [26], CHAN [25], and VQGAN transformer [52], the last three
of which are good competitors because they also leverage the power of an attention
mechanism. We input the last four methods with the same input bands as our method,
while the baseline model is still input with bi-temporal SAR imagery.

Figure 11 shows the optical images synthesized by different methods. The regions
where changes have occurred between T0 and T1 are marked with rectangles and enlarged
for detailed comparison. Visual inspection reveals that PSP even fails to generate globally
fine output, seriously affecting the interpretation of land types. VQGAN transformer
has insufficient learning ability for changes, resulting in the generated images being very
insensitive to regional changes and looking similar to T0 optical images. The other three
methods show some ability to alleviate these phenomena. However, they also show
some shortages in terms of preserving colors and detail learning ability. For example,
CHAN tends to have obvious color distortion with a very bright color in some areas,
especially changing areas. This phenomenon has also seriously affected the presentation of
details in these areas. The detail learning ability of the baseline model has totally failed
under a complicated scenario. Although its general performance is better than PSP’s, the
local details are seriously deformed, with clearly observable geometric errors in object
boundaries. As for Selection-GAN, it is a very competitive method and would yield the best
output if our method were not taken into consideration. However, it makes blur inferences
within changing areas, generating heavily smoothed objects. Sometimes it is acceptable to
make blur inferences on changes, e.g., vegetation’s natural decline; however, many artificial
changes, such as constructing buildings and opening new roads, require inferences of rich
texture and sharp contours.

In contrast, the optical features, change features, and multi-scale features are fully
extracted by the method we propose, so that the details and change information are well-
learned. As shown in the last column of Figure 11, the changes in vegetation decline
(Figure 11f) and building construction (Figure 11b,d) can all be recognized in the synthe-
sized images with rich details and clear boundaries. As shown in Figure 12, we randomly
selected some pixels from the generated images, finding that their values are in good corre-
spondence with those selected from the real images. The quality of synthesized images is
also presented with evaluation metrics in Table 3. It is notable that under a complicated
scenario, our model outperforms the baseline model by a large margin. Additionally,
it is also very inspiring to find that our method gets the best score on most evaluation
metrics. Among all the evaluated methods, the scores of Selection-GAN are as good as
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our method, even better on the SSIM, which is not beyond our expectation because the
model has yielded very competitive results in visual inspections. The success of Selection-
GAN and our method further proves the important role attention mechanisms can play in
generative models.
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Table 3. Evaluation metrics comparison under a complicated scenario.

Metrics Baseline PSP Selection-GAN CHAN VQGAN Transformer Ours

FID ↓ 121.35 148.10 82.02 112.36 108.14 80.60
PSNR ↑ 12.14 14.0 18.53 17.55 13.63 20.79
SSIM ↑ 0.17 0.19 0.66 0.60 0.25 0.62

Our method ranks first on FID and PSNR and second on SSIM, which is 6.06% lower than Selection-GAN.

We also compare the generalization performance of our model with that of the baseline
model by observing how the precision and recall metrics change when gradually adding
new samples. The precision and recall represent the models’ ability to generate effective
results and to generate diverse results, respectively. We first perform the inference with
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some learned samples, which results in a high precision and a rather low recall. Then
we gradually add unlearned samples from other locations and times to the testing set
and perform inference on these samples. Because these samples are pretty different from
those that have been learned by the models, generating effective results can be harder, but
the diversity of the results will increase. So even though higher values for both precision
and recall are preferred, there will be an inevitable trade-off between the two metrics.
Figure 13 presents the precision-recall (PR) curves for both methods. With recall increasing,
the precision of both methods is steady at first but then drops severely after some point.
However, compared to the baseline model, the precision drop of our method comes much
slower, which shows that our method is better at keeping a high level of both precision and
recall when generalizing to new datasets.
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4.6. Ablation Study

This study intends to assess every component of the proposed method. All experi-
ments have been conducted on our complicated scenario dataset to show how these key
techniques improve the model’s performance under a complicated scenario. We disable
the perceptual loss in the baseline model used in the comparison experiments to form a
different baseline model named B. Then we sequentially add multi-scale generation (+l),
perceptual loss (+pl), additional optical input (+opt), weight-balancing strategy (+wb),
and temporal co-attention (+at) to form the proposed model. The results are reported in
Figure 14 and Table 4. We can see significant improvements with additional optical input
in the first six columns of Figure 14, while the improvements with multi-scale generation,
weight-balancing strategy, and temporal co-attention are less notable through visual in-
spection. Nevertheless, the evaluation metrics in Table 4 show that all key techniques have
brought improvements in the evaluation indicators to some extent, some of which are
rather significant while others are milder. The technique with the greatest contribution to
performance is adding additional optical input. It brings at least 16% improvements in all
evaluation indicators. For the SSIM indicator, it even doubles the result of B + l + pl. The
second biggest contribution comes from the temporal co-attention mechanism, with about
a 2% improvement in FID and at least 23% improvements in other evaluation indicators.
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The third biggest contribution comes from perceptual loss, with about a 17% improvement
in FID and SSIM and a slight improvement in PSNR.
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Figure 14. Visual inspection of the ablation study. Columns three to eight show the results of B, B + l,
B + l + pl, B + l + pl + opt, B + l + pl + opt + wb, and B + l + pl + opt + wb + at, respectively. Three
samples are given in (a,c,e). Some regions in (a,c,e) are marked with rectangles and enlarged in (b,d,f)
respectively.

Table 4. Evaluation metrics results of the ablation study.

Metrics B B + l B + l + pl B + l + pl + opt B + l + pl + opt + wb B + l+pl + opt + wb + at

FID ↓ 149.03 133.80 108.25 84.43 83.53 80.60
(−10.22%) * (−27.36%) (−43.35%) (−43.95%) (−45.92%)

PSNR ↑ 11.97 12.34 13.33 16.45 17.96 20.79
(+3.09%) (+11.36%) (+37.43%) (+50.04%) (+73.68%)

SSIM ↑ 0.17 0.18 0.21 0.58 0.57 0.62
(+5.88%) (+23.53%) (+241.18%) (+235.29%) (+264.71%)

* The percentages in brackets are the improvement compared to the baseline model.

5. Conclusions

In this article, a new GAN-based SAR-to-optical image translation method is pro-
posed to improve the quality of synthesized optical images, especially in a complicated
scenario. The results in this paper suggest that using additional optical input and a tempo-
ral co-attention-guided generator can greatly boost the performance of a CGAN. We have
observed that incorporating multi-scale generation and a weight-balancing strategy can
also help yield better results.

Additionally, we qualitatively and quantitatively compared our method with a number
of advanced supervised methods on two new datasets that we built. The results demon-
strated the superiority of the proposed method in both simple and complicated scenarios.
We also found that, among all evaluated models, leveraging attention mechanisms helped
the models yield competitive results. This indicates a possibility for using various kinds
of attention mechanisms together to advance the further progression of SAR-to-optical
image translation. We will conduct such studies in the future. In addition, there are some
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factors that can affect the model’s performance that need further exploration. For instance,
considering that involving SAR-to-optical translation with multi-temporal methodology is
a little-studied direction, how the time interval of our bi-temporal dataset can affect the
results needs to be carefully studied in future works.
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GANs Generative adversarial networks
CGAN Conditional generative adversarial network
SAR Synthetic aperture radar
I2I Image-to-image
BOA Bottom-of-Atmosphere
LSGANs Least squares generative adversarial networks
PSNR Peak signal-to-noise Ratio
SSIM structural similarity index measure
FID Fréchet Inception Distance
PR precision-recall
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