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Abstract: Deep learning-based algorithms have seen a massive popularity in different areas of remote
sensing image analysis over the past decade. Recently, transformer-based architectures, originally
introduced in natural language processing, have pervaded computer vision field where the self-
attention mechanism has been utilized as a replacement to the popular convolution operator for
capturing long-range dependencies. Inspired by recent advances in computer vision, the remote
sensing community has also witnessed an increased exploration of vision transformers for a diverse
set of tasks. Although a number of surveys have focused on transformers in computer vision in
general, to the best of our knowledge we are the first to present a systematic review of recent advances
based on transformers in remote sensing. Our survey covers more than 60 recent transformer-based
methods for different remote sensing problems in sub-areas of remote sensing: very high-resolution
(VHR), hyperspectral (HSI) and synthetic aperture radar (SAR) imagery. We conclude the survey by
discussing different challenges and open issues of transformers in remote sensing.

Keywords: remote sensing; transformers; survey

1. Introduction

Remote sensing imaging technology has significantly advanced in the last decades.
Modern airborne sensors provide a large coverage of the Earth’s surface with improved
spatial, spectral and temporal resolutions, thereby playing a crucial role in numerous
research areas, including ecology, environmental science, soil science, water contamination,
glaciology, land surveying and analysis of the crust of the Earth. Automatic analysis
of remote sensing imaging brings unique challenges, such as data are generally multi-
modal (e.g., optical or synthetic aperture radar sensors), located in the geographical space
(geo-located) and typically on a global scale with ever growing data volumes.

Deep learning, especially convolutional neural networks (CNNs), has dominated many
areas of computer vision, including object recognition, detection and segmentation. These
networks typically take an RGB image as an input and perform a series of convolution, local
normalization and pooling operations. CNNs typically rely on a large amount of training
data, and the resulting pre-trained models are then utilized as generic feature extractors for
a variety of downstream applications. The success of deep learning-based techniques in
computer vision has also inspired the remote sensing community with significant advances
being made in many remote sensing tasks, including hyperspectral image classification,
change detection and very high-resolution satellite instance segmentation.

One of the main building blocks in CNNs is the convolution operation, which captures
local interactions between elements (e.g., contour and edge information) in the input image.
CNNs encode biases, such as spatial connectivity and translation equivariance. These char-
actertistics aid in constructing generalizable and efficient architectures. However, the local
receptive field in CNNs limits modeling long-range dependencies in an image (e.g., distant
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part relationships). Moreover, convolutions are content-independent as the convolutional
filter weights are stationary with same weights applied to all inputs regardless of their
nature. Recently, vision transformers (ViTs) [1] have demonstrated impressive performance
across a variety of tasks in computer vision. ViTs are based on the self-attention mechanism
that effectively captures global interactions by learning the relationships between the ele-
ments of a sequence. Recent works [2,3] have shown that ViTs possess content-dependent
long-range interaction modeling capabilities and can flexibly adjust their receptive fields to
counter nuisances in data and learn effective feature representations. As a result, ViTs and
their variants have been successfully utilized for many computer vision tasks, including
classification, detection and segmentation.

Following the success of ViTs in computer vision, the remote sensing community
has also witnessed a significant growth (see Figure 1) in the employment of transformer-
based frameworks in many tasks, such as very high-resolution image classification, change
detection, pan sharpening, building detection and image captioning. This has started a new
wave of promising research in remote sensing with different approaches utilizing either
ImageNet pre-training [4–6] or performing remote sensing pre-training [7] with vision
transformers. Similarly, there exist approaches in the literature that are based on pure
transformer design [8,9] or utilize a hybrid approach [10–12] based on both transformers
and CNNs. It is, therefore, becoming increasingly challenging to keep pace with the
recent progress due to the rapid influx of transformer-based methods for different remote
sensing problems. In this work, we these advances and present an account of recent
transformer-based approaches in the popular field of remote sensing. To summarize, our
main contributions are the following:

• We present a holistic overview of applications of transformer-based models in remote
sensing imaging. To the best of our knowledge, we are the first to present a survey on
transformers in remote sensing, thereby bridging the gap between recent advances in
computer vision and remote sensing in this rapidly growing and popular area.

• We present an overview of both CNNs and transformers, discussing their respective
strengths and weaknesses.

• We present a review of more than 60 transformer-based research works in the literature
to discuss the recent progress in the field of remote sensing.

• Based on the presented review, we discuss different challenges and research directions
on transformers in remote sensing.

Figure 1. Recent transformer-based techniques in the remote sensing imaging. On the left and middle:
pie-charts are representing statistics of the articles covered in this survey in terms of different remote
sensing imaging problems and data type representations. On the right: we show a plot illustrating
the consistent increase in the number of papers recently.

The rest of the paper is organized as follows: Section 2 discusses other related surveys
on remote sensing imaging. In Section 3, we present an overview of different imaging
modalities in remote sensing, whereas Section 4 provides a brief overview of CNNs and
vision transformers. Afterwards, we review advances with respect to transformer-based
approaches in very high-resolution (VHR) imaging (Section 5), hyperspectral image analysis
(Section 6) and synthetic aperture radar (SAR) in Section 7. In Section 8, we conclude our
survey and discuss potential future research directions.
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2. Related Work

In the literature, several works have performed a review of machine learning tech-
niques for remote sensing imaging in the past decade. Tuia et al. [13] compare and evaluate
different active learning algorithms for the supervised remote sensing image classification
task. The work of [14] focuses on the problem of hyperspectral image classification and re-
views recent advances in relation to machine learning and vision techniques. Zhu et al. [15]
present a comprehensive review of utilizing deep learning techniques for remote sensing im-
age analysis. Their work provides a comprehensive review of the existing approaches along
with describing a list of resources about deep learning in remote sensing. Ma et al. [16]
review major deep learning concepts in remote sensing with respect to image resolution
and study area. To this end, their work studies different remote sensing tasks, such as
image registration, fusion, scene classification and object segmentation.

Recently, transformer-based approaches have witnessed a significant surge within
the computer vision community, following the breakthrough from transformer-based
models [17] in natural language processing (NLP). Khan et al. [18] present an overview
of the transformer models in vision with emphasis on recognition, generative modeling,
multi-modal, video processing and low-level vision tasks. Shamshad et al. [19] survey
the use of transformer models in medical imaging, focusing on different medical imaging
tasks, such as segmentation, detection, reconstruction, registration and clinical medical
report generation. The work of [20] presents an overview of the growing trend of using
transformers to model video data. Their work also compares the performance of vision
transformers on different video tasks, such as action recognition.

Different from the aforementioned surveys, our work presents a review of recent
advances of transformer-based approaches in the popular area of remote sensing. To the
best of our knowledge, this is the first survey presenting a comprehensive account of
transformers in remote sensing, particularly dedicated to progress in very high-resolution,
hyperspectral and synthetic aperture radar image analysis.

3. Remote Sensing Imaging Data

Remote sensing imagery is generally acquired from a range of sources, as well as data
collection techniques. Remote sensing image data can be typically characterized by their
spatial, spectral, radiometric, and temporal resolutions. Spatial resolution refers to each
pixel size within an image along with the area of the surface of the Earth represented by that
corresponding pixel. Spatial resolution characterizes the small and fine-detailed features
in an imaging scene that can be separated. Spectral resolution refers to the capability of
the sensor to collect information about the scene by discerning finer wavelengths with
narrower bands (e.g., 10 nm). On the other hand, radiometric resolution characterizes the
extent of the information in each pixel, where a larger dynamic range for a sensor implies
more details are to be discerned in the image. The temporal resolution refers to the time it
takes between consecutive images of the same location on ground acquired by the sensor.
Here, we briefly discuss commonly utilized remote sensing imaging types with examples
shown in Figure 2.

Very High-resolution Imagery: In recent years, the emergence of very high-resolution
(VHR) satellite sensors has paved the way towards yielding the higher spatial resolution
imagery beneficial for land use change detection, object-based image analysis (object detec-
tion and instance segmentation), precision agriculture farming (e.g., management of crops,
soil and pests) and emergency responses. Furthermore, these recent advances in sensor
technology, along with new deep learning-based techniques, allow the use of VHR remote
sensing imagery to analyze the biophysical and biogeochemical processes both in coastal
and inland waters. Nowadays, optical sensors produce panchromatic and multispectral
imagery of the Earth’s surface at a much finer spatial resolutions (e.g., 10 to 100 cm/pixel).
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Figure 2. Example hyperspectral images from Pavia, Indian Pines and Kennedy Space Center datasets
(a), example VHR images (b) and SAR images of the L band E-SAR dataset (c).

Hyperspectral Imagery: Here, each pixel in the scene is captured using a continuous
spectrum of light with fine wavelength resolutions. The continuous spectrum extends wave-
lengths beyond the visible spectrum and includes wavelengths from ultraviolet (UV) to
infrared (IR). Generally, the spectral resolution of hyperspectral images are expressed using
the wave number along with the nanometers (nm). The most popular continuous spectrum
used for measuring the pixels is mid-infrared, which is near infrared and visible wave-
length bands. In order to acquire hyperspectral imagery, there are different electromagnetic
measurements, such as Raman spectroscopy, X-ray spectroscopy, Terahertz spectroscopy,
3D ultrasonic imaging, magnetic resonance and confocal laser microscopy scanners, that
can measure the entire emission spectrum for each pixel at a specific excitation wavelength.
The hyperspectral images have high dimensionality and strong resolving power for fine
spectra. The imagery offers a wide range of applications, including in environmental
science [21] and mining [22]. Different from regular images that contain only the primary
colors (red, green and blue) within the visible spectrum, hyperspectral images are rich in
spectral information that can reflect the physical structure and chemical composition of the
item of interest. In remote sensing, automatically analyzing hyperspectral imagery is an
active research topic.

Synthetic Aperture Radar Imagery: A large amount of synthetic aperture radar (SAR)
images are produced by Earth observation satellites every day through emission and recep-
tion of electromagnetic signals. In the past decades, SAR images have gained popularity
due to their higher spatial resolution, all-weather capability, de-speckling tools, such as
CAESAR, along with recent advances in the SAR specific image processing. SAR imagery
can be used for numerous applications, including geographical localization, object detec-
tion, functionalities of basic radars and geophysical feature estimation of complex settings,
such as roughness, moisture content and density. Furthermore, SAR imagery can be used
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for disaster management (oil slick detection and ice tracking), forestry and hydrology.

4. From CNNs to Vision Transformers

In this section, we first present a brief overview of CNNs and then provide a brief
description of vision transformers recently utilized for different vision tasks.

4.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) have dominated a variety of computer vision
tasks, including image classification [23] and object detection [24]. CNNs are typically
made up of series of two main parts: convolutional and pooling layers. The convolutional
layer produces feature maps by convolving the local region in the input with a set of kernels.
These features are subjected to a non-linear function with the same process repeated for
each convolutional layer. In CNNs, the pooling layer carries out a downsampling operation
(typically utilizing the max or mean operation) to feature maps. In different existing
CNN architectures, the convolutional and pooling layers are followed by a set of fully
connected layers, where the last fully connected layer is the softmax computing each object
category score.

Popular CNN Backbones: Here, we briefly discuss different popular CNN backbone
architectures in the literature.

AlexNet: Krizhevsky et al. [23] propose a CNN architecture, named AlexNet, for
the image classification task. AlexNet comprises five convolutional layers followed by
three fully-connected layers. The proposed network architecture utilizes Rectified Linear
Units (ReLU) for training efficiency. The network contains 60 million parameters and
500,000 neurons with network training performed on the large-scale ImageNet dataset [25].
Different data augmentation techniques are employed to increase the training set. In the
ImageNet 2012 competition, AlexNet achieved a competitive performance with top-1 and
top-5 error rates of 39.7% and 18.9%, respectively.

VGGNet: Different from AlexNet, Simonyan and Zisserman [26] introduced an ar-
chitecture named VGGNet that comprises 16 layers in total. The network takes an input
image of 224 × 224 size and has around 138 million parameters. It uses different data
augmentation techniques, including scale jittering, during network training. The VGGNet
architecture comprises convolution layers of 3 × 3 filter, where the receptive fields are
convolved at each pixel with a stride of one pixel. The VGGNet contains multiple pooling
layers, performing spatial pooling over 2 × 2 windows with a stride of two pixels. Fur-
thermore, VGGNet contains two fully connected layers followed by a softmax for yielding
output predictions. The VGG architecture achieved top classification accuracy on the 2014
ImageNet classification challenge.

ResNet: Different from AlexNet and VGGNet, He et al. [27] introduced residual neural
networks (ResNet) that stacks residual blocks to build a network. ResNet provides a resid-
ual learning approach for training networks that are much deeper than their previously
utilised counterparts. Instead of learning unreferenced functions, it explicitly reformulates
the layers as learning residual functions with reference to the layer inputs. Extensive em-
pirical evidence demonstrates that residual networks are easier to optimize with improved
accuracy from higher depth.

The development of CNN-based architectures has led to the rise of novel techniques,
improved hardware (e.g., GPUs and TPUs), better optimization methods and many open-
source libraries. Interested readers can go through the survey papers related to CNN
methods for remote sensing [15,16]. Previous works have analyzed that CNNs are able to
capture image-specific inductive bias, which increases their effectiveness in learning better
feature representations. However, CNNs do not capture long-range dependencies that aid
enhanced expressivity of the representations. Next, we briefly present vision transformers
that are capable of modelling long-range dependencies in the images.
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4.2. Vision Transformers

Recently, transformer-based models have achieved promising results across many
computer vision and natural language processing (NLP) tasks. Vaswani et al. [17] first
introduced transformers as an attention-driven model for machine translation applications.
To capture the long-range dependencies, transformers use self-attention layers instead
of the traditional recurrent neural network that struggles to encode such dependencies
between the elements of a sequence.

To effectively capture the long-range dependencies within an input image, the work
of [1] introduces vision transformers (ViTs) for the image recognition task, as shown
in Figure 3. ViTs [1] interpret an image as a sequence of patches and process it via a
conventional transformer encoder similar to those used in NLP tasks. The success of ViTs
in generic visual data have sparked the interest not only in different areas of computer
vision, but also in the remote sensing community, where a number of ViT-based techniques
have been explored in recent years for various tasks.

Figure 3. The vision transformer’s architecture is shown on the left and the encoder block’s spec-
ifications are shown on the right. The input image is first divided into patches. These are then
projected (after flattening) into a feature space, where a transformer encoder analyzes them to create
the classification output. * indicates to Extra learnable [class] embedding. Adapted with permission
from [1,19].

Next, we briefly describe the key component of self-attention within transformers.
Self-Attention: The self-attention mechanism has been an integral component of

transformers as it captures the long-range dependencies and encodes the interaction be-
tween all of the sequences tokens (patch embedding). The key idea of self-attention is to
learn self-alignment, that is, to update the token by aggregating global knowledge from
all the other tokens in the sequence [28]. Given a 2D image x ∈ RH×W×C, the process
starts with flattening the image into a series of 2D patches xpat ∈ RM×(P2C), where C
represents number of channels, H and W represent the height and width of the image,
respectively, P× P is the dimension of each individual patch and M = HW/P2 represents
the total number of patches. A learnable linear projection layer of E dimension is used
to project these flattened patches and can be showed as a matrix X ∈ RN×E. The aim of
the self-attention is to apprehend the interaction among all the M embeddings, which is
achieved by introducing the three learnable weight matrices to modify input X into queries
(as WQ ∈ RE×Eq ), keys (as WK ∈ RE×Ek ) and values (as WV ∈ RE×Ev ), where Eq = Ek. The
sequence X is first projected onto these weight matrices to obtain K = XWK, V = XWV

and Q = XWQ. The relative attention matrix A ∈ RM×M is

Z = so f tmax(
QKT√

Eq
)V (1)

Masked Self-Attention: All entities are attended to the usual self-attention layer.
These self-attention blocks used in the decoder for the transformer model [17], which is
trained to anticipate the next entity in the sequence, are masked to prevent attending to the
subsequent entities. This task is performed by an element-wise multiplication operation



Remote Sens. 2023, 15, 1860 7 of 31

with a mask M ∈ Rn×n, where M is an upper-triangular matrix. Here, masked self-attention
is represent by

so f tmax(
QKT√

dq
◦M) (2)

where ◦ represents the Hadamard product. In masked self-attention, the attention ratings
of future entities are set to zero when predicting an entity in the sequence.

Multi-Head Attention: Multi-head attention (MHA) comprises multiple self-attention
blocks concatenated simultaneously channel-wise in order to capture different complex
interactions between different sequences of embeddings. Each of the head of the multi-
head self-attention has its own learnable weight matrices represented as WQi , WKi and
WVi , where i = 0 · · · · · ·(h− 1) and h denotes the number head in multi-head self-attention.
Hence, we can express

MHA(Q, K, V) = [Z0, ..., Zh−1]WO (3)

where the output of each head is concatenated to form single matrix B ∈ RM×h·Ev , whereas
WO ×Rh.Ev×M computes the linear transformation of the heads.

Popular Transformers Backbones: Here, we briefly discuss some recent transformer-
based backbones.

ViT: The work of [1] introduces an architecture, where a pure transformer is utilized
directly to a sequence of image patches for the task of image classification. The ViT
architecture design does not employ image-specific inductive biases (e.g., translation
equivariance and locality), and the pre-training is performed on large-scale ImageNet-21k
or JFT-300M dataset.

Swin: Liu et al. [29] improved the ViT design by introducing an architecture that
produces hierarchical feature representation. The Swin transformer has linear computa-
tional complexity with respect to input image size, where the efficiency is achieved by
restricting the self-attention computation to non-overlapping local windows while enabling
cross-window connection.

PVT: The work of [30] introduces a pyramid vision transformer (PVT) architecture to
perform pixel-level dense prediction tasks. The PVT architecture utilizes a progressively
shrinking pyramid and a spatial-reduction attention layer for producing high-resolution
multi-scale feature maps. The PVT backbone has shown to achieve impressive performance
on object detection and segmentation tasks compared to its CNN counterpart with a similar
number of parameters.

Transformers offer unique characteristics that are useful for different vision tasks.
Compared to the convolution operation in CNNs, where static filters are computed, filters
in self-attention are dynamically calculated. Furthermore, permutations and changes in the
number of input points have little effect on self-attention. Recent studies [2,3] have explored
different interesting properties of vision transformers and compare them with CNNs. For
instance, the recent work of [2] shows that vision transformers are more robust to severe
occlusions, domain shifts and perturbations. Next, we present a review of transformers in
remote sensing based on the taxonomy shown in Figure 4.

Transformers in Remote Sensing

VHR Imagery  Hyperspectral Imagery SAR Imagery

 Classification Detection Change

Detection Segmentation Others  Classification Pan


sharpening  Classification Detection Despeckling Registration Change
Detection

SAR Image

Interpretation
 Others


Figure 4. The taxonomy of transformers in VHR, hyperspectral and SAR imagery with a variety of
tasks, such as classification, detection, segmentation, pan sharpening and change detection.
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5. Transformers in VHR Imagery

Here, we review transformer-based approaches utilized to address different problems
in very-high resolution (VHR) imagery.

5.1. Scene Classification

Remote sensing scene classification is a challenging problem, where the task is to auto-
matically associate a semantic category label to a given high-resolution image comprising
ground objects and different land cover types. Among the existing vision transformer-based
VHR scene classification approaches, Bazi et al. [4] explore the impact of the standard
vision transformer architecture of [1] (ViT) and investigate different data augmentation
strategies for generating addition data. In addition, their work also evaluates the impact
of compressing the network by pruning the layers while maintaining the classification
accuracy. The work of [31] introduces a joint CNN-transformer framework, where there
is one CNN stream and another ViT stream, as shown in Figure 5. The features from the
two streams are concatenated and the entire framework is trained using a joint loss func-
tion, comprising cross-entropy and center losses, to optimize the two-stream architecture.
Zhang et al. [32] introduce a framework, called Remote Sensing Transformer (TRS), that
strives to combine the merits of CNNs and transformers by replacing the spatial convo-
lutions with multi-head self-attention. The resulting multi-head self attention bottleneck
has fewer parameters and is shown to be effective compared to other bottlenecks. The
work of [5] introduces a two-stream Swin transformer network (TSTNet) that comprises
two streams: original and edge. The original stream extracts standard image features,
whereas the edge stream contains a differentiable edge Sobel operator module and provides
edge information. Further, a weighted feature fusion module is introduced to effectively
fuse the features from the two streams for boosting the classification performance. The
work of [6] introduces a transformer-based framework with a patch generation module
designed to generate homogeneous and heterogeneous patches. The patch generation
module generates the heterogeneous patches directly, whereas the homogeneous patches
are obtained using a superpixel segmentation method.

Figure 5. The CTNet architecture comprising two modules: the ViT stream (T-stream) and the CNNs
stream (C-stream). The T-stream and C-stream are designed to capture semantic features and the
local structural information. Figure is from [31]. Best viewed zoomed in.

Remote Sensing Pre-training: Different from the aforementioned approaches that ei-
ther use only transformers or hybrid CNN-transformer designs with backbone networks
pretrained on ImageNet datasets, the recent work of [7] investigates training vision trans-
former backbones, such as Swin, from scratch on the large-scale MillionAID remote sensing
dataset [33]. The resulting trained backbone models are then fine-tuned for different tasks,
including scene classification. Figure 6 shows the response maps, obtained using Grad-
CAM++ [34], of different ImageNet (IMP) and remote sensing pre-trained (RSP) models.
It can be observed that RSP models learn better semantic representations by paying more
attention to the important targets compared to their IMP counterparts . Furthermore, the
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transformer-based backbones, such as Swin-T, better capture the contextual information
due to the self-attention mechanism. Moreover, backbones, such as ViTAEv2-S, that com-
bine the merits of CNNs and transformers along with RSP can achieve better recognition
performance.

School-2

School-1

Dense 

residental

Medium 

residental

Sparse 

residental

Thermal Power

Station

Airport

Stadium

Airplane

Church

Bridge

River

Mountain

Terrace

(a) (b) (c) (d) (e) (f) (g) (h)

Residential

Residential

Residential

Figure 6. Comparison in terms of response maps obtained using different models on example VHR
images. The original images are shown in (a), whereas the evaluated models are: (b) IMP-ResNet-50,
(c) SeCo-ResNet-50, (d) RSP-ResNet-50, (e) IMP-Swin-T, (f) RSP-Swin-T, (g) IMP-ViTAEv2-S and
(h) RSP-ViTAEv2-S. Here, IMP denotes ImageNet pre-training and RSP refers to remote sensing
pre-training. In the response map, the warmer color indicates a higher response. Figure is from [7].

Table 1 shows a comparison of the aforementioned classification approaches on one
of the most commonly used VHR classification benchmarks: AID [35]. The AID dataset
contains images acquired from multi-source sensors. The dataset possesses a high degree of
intra-class variation since the images are collected from different countries under different
times and seasons with variable imaging conditions. There are in total 10,000 images in
the dataset and 30 categories. The performance is measured in terms of mean classification
accuracy over all the categories. For more details on AID, we refer to [35]. Other than RSP
that performs an initial pre-training on the Million-AID dataset, all approaches here utilize
models pre-trained on the ImageNet benchmark.
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Table 1. Performance, in terms of classification accuracy, of different transformer-based methods on
the popular AID dataset with 20:80 train-test ratio.

Method Venue Backbone AID (20%)

V16-21K [4] Remote Sensing ViT 94.97
CTNet [31] GRSL ResNet34 + ViT 96.35
TRS [32] Remote Sensing TRS 95.54
TSTNet [5] Remote Sensing Swin-T 97.20
RSP [7] TGRS RSP-Swin-T-E300 96.83

5.2. Object Detection

Localizing objects in VHR imaging is a challenging problem due to extreme scale
variations and the diversity of different object classes. Here, the task is to simultaneously
recognize and localize (either rectangle or oriented bounding-boxes) all instances belonging
to different object categories in an image. Most existing approaches employ a hybrid
strategy by combining the merits of CNNs and transformers within existing two-stage
and single-stage detectors. Other than the hybrid strategy, few recent works explore the
DETR-based transformers object detection paradigm [36].

Hybrid CNN-Transformers based Methods: The work of [37] introduces a local perception
Swin transformer (LPSW) backbone to improve the standard transformers for detecting
small-sized objects in VHR imagery. The proposed LPSW strives to combine the merits of
transformers and CNNs to improve the local perception capabilities for better detection
performance. The proposed approach is evaluated with different detectors, such as Mask
RCNN [38]. The work of [39] introduces a transformer-based detection architecture, where
a pre-trained CNN is used to extract features and a transformer is adapted to process
a feature pyramid of a remote sensing image. Zhang et al. [40] introduce a detection
framework where an efficient transformer is utilized as a branch network to improve
CNN’s ability to encode global features. Additionally, a generative model is employed
to expand the input remote sensing aerial images ahead of the backbone network. The
work of [41] proposes a detection framework based on RetinaNet, where a feature pyramid
transformer (FPT) is utilized between the backbone network and the post-processing
network to generate semantically meaningful features. The FPT enables the interaction
among features at different levels across the scale. The work of [42] introduces a framework
where transformers are adopted to model the relationship of sampled features in order to
group them appropriately. Consequently, better grouping and bounding box predictions
are obtained without any post-processing operations. The proposed approach effectively
eliminates the background information, which helps in achieving improved detection
performance.

Zhang et al. [43] introduce a hybrid architecture that combines the local characteristics
of depth separable convolutions with the global (channel) characteristics of MLP. The work
of [44] introduces a two-stage angle-free detector, where both the RPN and regression are
angle-free. Their work also evaluates the proposed detector with a transformer-based
backbone (Swin-Tiny). Liu et al. [45] propose a hybrid network architecture, called
TransConvNet, that aims at combining the advantages of CNNs and transformers by
aggregating both global and local information to address the rotation invariability of CNNs
with a better contextual attention. Furthermore, an adaptive feature fusion network is
designed to capture information from multiple resolutions. The work of [46] introduces
a detection framework, called Oriented Rep-Points, that utilizes flexible adaptive points
as a representation. The proposed anchor-free approach learns to select the point samples
from classification, localization and orientation. Specifically, to learn geometric features for
arbitrarily-oriented aerial objects, a quality assessment and sample assignment scheme is
introduced that measures and identifies high-quality sample points for training, as shown
in Figure 7. Furthermore, their approach utilizes a spatial constraint for penalizing the
sample points that are outside the oriented box for robust learning of the points.
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Figure 7. Overview of the anchor-free Oriented RepPoints detection architecture [46] that strives to
learn selecting points samples for classification, regression and orientation. RepPoints utilizes the
same structure of the shared head as in [46], except a quality assessment and sample assignment
strategy (APAA) are employed for selecting high-quality sample points for training. Figure is adapted
with permission from [46]. Best viewed zoomed in.

DETR-based Detection Methods: Few recent approaches have investigated adapting the
transformer-based DETR detection framework [36] for oriented object detection in VHR
imaging. The work of [47] adapts the standard DETR for oriented object detection. In
their approach, an efficient encoder is designed for transformers by replacing the standard
attention mechanism with a depthwise separable convolution. Dai et al. [48] propose
a transformer-based detector, called AO2-DETR, where an oriented proposal generation
scheme is employed to explicitly produce oriented object proposals. Furthermore, their
approach comprises an adaptive oriented proposal refinement module that is designed
to compute rotation-invariant features by eliminating the misalignment between region
features and objects. Furthermore, a rotation-aware matching loss is utilized to perform a
matching process for direct set prediction without the duplicated predictions.

Table 2 shows a comparison of the aforementioned detection approaches on the most
commonly used VHR detection benchmark, DOTA [49]. The dataset comprises 2806 large
aerial images of 15 different object categories: plane, baseball diamond, basketball court,
soccer-ball field, bridge, ground track field, small vehicle, ship, large vehicle, tennis court,
roundabout, swimming pool, harbor, storage tank and helicopter. The detection perfor-
mance accuracy is measured in terms of mean average precision (mAP). For more details
on DOTA, we refer to [49]. The results show that most of these recent methods obtain
similar detection accuracy with a slight improvement in performance obtained when using
the Swin-T backbone.

Table 2. Comparison in terms of detection accuracy (mAP) of different detectors utilizing a hybrid
CNN-transformer design, transformers pre-trained backbone or a DETR-based transformer architec-
ture on DOTA benchmark. The results are presented on the orientated bounding-boxes task of the
DOTA benchmark.

Method Venue Backbone DOTA

ADT-Det [41] Remote Sensing ResNet50 76.89
RBox [42] CVPR ResNet50 79.59
Rodformer [43] Sensors ResNet50 63.89
Rodformer [43] Sensors ViT-B4 75.60
PointRCNN [44] Remote Sensing Swin-T 80.14
Hybrid Network [45] Remote Sensing TransC-T 78.41
Oriented RepPoints [46] Arxiv ResNet50 75.97
Oriented RepPoints [46] Arxiv Swin-T 77.63
O2DETR [47] Arxiv ResNet50 79.66
AO2-DETR [48] Arxiv ResNet50 79.22
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5.3. Image Change Detection

In remote sensing, image change detection is an important task for detecting changes
on the surface of the Earth with numerous applications in agriculture [50,51], urban plan-
ning [52] and map revision [53]. Here, the task is to generate change maps obtained by
comparing the multi-temporal or bi-temporal images with each pixel in the resulting binary
change map having a value of either zero or one depending on whether the correspond-
ing position has changed or not. Among the recent transformer-based change detection
approaches, Chen et al. [54] propose a bi-temporal image transformer encapsulated in a
deep feature differencing-based framework that is designed to model the spatio-temporal
contextual information. Within the proposed framework, the encoder is employed to
capture context in token-based space-time. The resulting contextualized tokens are then
fed to the decoder where the features are refined in the pixel-space. Guo et al. [55] pro-
pose a deep multi-scale Siamese architecture, called MSPSNet, that utilizes a parallel
convolutional structure (PCS) and self-attention. The proposed MSPSNet performs feature
integration of different temporal images via PCS and then features refinement based on
self-attention to further enhance the multi-scale features. The work of [56] introduces a
Swin transformer-based network with a Siamese U-shaped structure, called SwinSUNet,
for change detection. The proposed SwinSUNet comprises three modules: encoder, fu-
sion and decoder. The encoder transforms the input image into tokens and produces
multi-scale features by employing a hierarchical Swin transformer. The resulting features
are concatenated in the fusion having linear projection and Swin transformer blocks. The
decoder contains upsampling and merging within Swin transformer blocks to progressively
generate change predictions.

Wang et al. [57] introduce an architecture, called UVACD, that combines CNNs and
transformers for change detection. Within UVACD, the high-level semantic features are
extracted via a CNN backbone, whereas transformers are utilized to generate better change
features by capturing the temporal information interaction. The work of [58] introduces
a hybrid architecture, TransUNetCD, that strives to combine the merits of transformers
and UNet. Here, the encoder takes features extracted from CNNs and enriches them
with global contextual information. The corresponding features are then unsampled and
combined with multi-scale features to obtain global-local features for localization. The
work of [59] introduces a hybrid multi-scale transformer, called Hybrid-TransCD, that
captures both fine-grained and large object features by utilizing heterogeneous tokens via
multiple receptive fields.

Table 3 shows a comparison of aforementioned change detection approaches on
the most commonly used benchmarks: WHU [60] and LEVIR [61]. The WHU dataset
comprises a single pair of high-resolution (0.075m) images. Here, the images are of size
32,507 × 15,354. The LEVIR dataset comprises 637 pairs of high-resolution (0.5 m) images.
The images are of size 1024 × 1024. The performance is measured in terms of the F1 score
with respect to the change category. Figure 8 presents a qualitative comparison of different
methods with SwinSUNet on example images from the WHU-CD dataset.

Table 3. Comparison, in terms of F1 score, of different transformer-based change detection methods
on the two popular benchmarks: WHU and LEVIR.

Method Venue WHU LEVIR

CD-Trans [54] TGRS 83.98 89.31
MSPSNet [55] TGRS - 89.18
UVACD [57] Remote Sensing 92.84 91.30
SwinSUNet [56] TGRS 93.8 -
TransUNetCD [58] TGRS 93.59 91.1
HybridTransCD [59] IJGI - 90.06
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Figure 8. Results of different CD methods visualized, such as FC-EF [62], FC-Siam-Conc [62], FC-
Siam-Diff [62], CDNet [63], DASNet [64], STANet [61] and SwinSUNet [56], compared to (a–d)
sample imagery sets, such as the WHU-CD [60] test set. Various colors were utilised to convey
different denotations; white represents true positive, black represents true negative, red represents
false positive and green represents false negative. Figure is from [56].

5.4. Image Segmentation

In remote sensing, automatically segmenting an image into semantic categories by
performing pixel-level classification is a challenging problem with a wide range of applica-
tions, including geological surveys, urban resources management, disaster management
and monitoring. Most existing transformer-based remote sensing image segmentation
approaches typically employ a hybrid design with an aim to combine the merits of CNNs
and transformers. The work of [65] introduces a light-weight transformer-based frame-
work, Efficient-T, that comprises an implicit edge enhancement technique. The proposed
Efficient-T employs hierarchical Swin transformers along with the MLP head. A coupled
CNN-transformer framework, called CCTNet, is introduced in [66], which is aimed at
combining the local details, such as edges and texture, captured by the CNNs along with
the global contextual information obtained via transformers for crop segmentation in re-
mote sensing images. Furthermore, different modules, such as test time augmentation and
post-processing steps, are introduced in order to remove holes and small objects at the
inference for restoring the complete segmented images. A CNN-transformer framework,
named STransFuse, is introduced in [67], where both coarse-grained and fine-grained
feature representations at multiple scales are extracted and later combined adaptively by
utilizing a self-attentive mechanism. The work of [68] proposes a hybrid architecture,
where the Swin transformer backbone that captures long-range dependencies is combined
with a U-shaped decoder, which employs an atrous spatial pyramid pooling block based
on depth-wise separable convolution along with an SE block to better preserve local details
in an image. The work of [69] utilizes a pre-trained Swin Transformer backbone along with
three decoder designs, namely U-Net, feature pyramid network and pyramid scene parsing
network, for semantic segmentation in aerial images.

We present in Table 4 a quantitative comparison of aforementioned approaches on
the two most commonly used semantic segmentation datasets: Potsdam [70] and Vaihin-
gen [71]. The Potsdam dataset comprises 38 patches, where each patch has a resolution
of 6000 × 6000 pixels collected over the Potsdam City with a ground sampling distance
of 5 cm. The dataset has six categories. The Vaihingen dataset comprises 33 samples,
where each sample has a resolution from 1996 × 1995 to 3816 × 2550 pixels. Here, the
ground sampling distance is 9 cm. This dataset contains the same categories as Potsdam.
The performance is measured in terms of overall accuracy (OA) computed using true
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positives, false positives, false negatives and true negatives. Figure 9 presents a qualitative
comparison between Trans-CNN and other approaches on the Potsdam dataset.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(f) (g) (h) (i) (j)

Figure 9. A qualitative comparison between the hybrid Trans-CNN with other existing segmentation
approaches. The examples are from the Potsdam dataset. Every two rows present the results as a
group. Here, from left to right and top to bottom are: (a) the corresponding ground-truth, (b) results
obtained from AFNet + TTA, (c) results of ResUNet, (d) results of CASIA2, (e) results achieved using
Trans-CNN and (f) the RGB image. The inccorect classification results from AFNet + TTA, ResUNet,
CASIA2 and Trans-CNN are presented in (g–j), respectively. Figure is from [68].



Remote Sens. 2023, 15, 1860 15 of 31

Table 4. Performance comparison, in terms of overall accuracy (OA), of different transformer-based
semantic segmentation methods on two popular benchmarks: Potsdam and Vaihingen.

Method Venue Potsdam Vaihingen

Efficient-T [65] Remote Sensing 90.08 88.41
STransFuse [67] JSTAR 86.71 86.07
Trans-CNN [68] TGRS 91.0 90.40
SwinTF [69] Remote Sensing - 90.97

Building Extraction: transformer-based techniques have also been recently explored
for the problem of building extraction, where the task is to automatically identify building
and non-building pixels in a remote sensing image. A dual-pathway transformer frame-
work is introduced in [72] that strives to learn long-range dependencies both in spatial
and channel directions. The work of [73] proposes a transformers framework, STEB-UNet,
comprising a Swin transformer-based encoding booster that captures semantic information
from multi-level features generated from different scales. The encoder booster is further
integrated in a U-shaped network design that fuses local and large-scale semantic features.
A transformer-based architecture, called BuildFormer, comprising a window-based linear
attention, a convolutional MLP and a batch normalization, is introduced in [74]. The work
of [75] explores the problem of generalizability of building extraction models to different
areas and proposes a transfer learning approach to fine-tune models from one area to a
subset of another unseen area.

Other than semantic image segmentation and building extraction with transformers,
a recent study by [37] explores the problem of instance segmentation, where the task
is to automatically classify each pixel into an object class within an image while also
differentiating multiple object instances. Their approach aims at combining the advantages
of CNNs and transformers by designing a local perception Swin transformer backbone to
enhance both local and global feature information.

5.5. Others

Apart from the problems discussed above, transformer-based techniques are also ex-
plored for other VHR remote sensing tasks, such as image captioning and super-resolution
(Table 5).

Table 5. Overview of transformer-based approaches in VHR remote sensing imaging. Here, we
highlight transformer-based methods for different VHR remote sensing tasks.

Transformers in Very-High Resolution (VHR) Satellite Imagery
Method Task Datasets Metrics Highlights

V16-21K [4] Classification
Merced [76],

AID [35],
Optimal31 [77],

NWPU [78]

Overall classification accuracy Explores vision transformers along with
combination of data augmentation techniques for

boosting accuracy.

TRS [32] Classification

Merced [76],
AID [35],

Optimal31 [77],
NWPU [78]

Overall classification accuracy
Integrates transformers into CNNs by replacing the
last three ResNet bottlenecks with encoders having

multi-head self-attention bottleneck.

TSTNet [5] Classification
Merced [76],

AID [35],
NWPU [78]

Overall classification accuracy A Swin transformer-based two-stream architecture
that uses both deep features from the image and

edge features from edge stream.

CTNet [31] Classification AID [35],
NWPU [78] Overall classification accuracy Comprises a ViT stream that mines semantic

features and the CNN stream, which captures local
structural features.

HHTL [6] Classification

Merced [76],
AID [35],

RSSDIVCS [79],
NWPU [78]

Overall classification accuracy
Explores integrating heterogenous

non-overlapping patches and homogenous patches
obtained using superpixel segmentation.

RSP [7] Classification, Segmentation, Detection

MillionAID [33],
Potsdam [70],

iSAID [80],
HRSC2016 [81],

DOTA [49],
CCD [82],

LEVIR [61]

Overall classification accuracy,
mAP,

F1 score

Investigates pre-training transformers on a
large-scale remote sensing dataset.
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Table 5. Cont.

Transformers in Very-High Resolution (VHR) Satellite Imagery
Method Task Datasets Metrics Highlights

SAIEC [37] Detection, Segmentation
DIOR [83],

HRRSD [84],
NWPU VHR-10 [85]

mAP Introduces a local perception Swin transformer
backbone that aims to combine the merits of

transformers and CNNs for improving the local
perception capabilities.

T-TRD-DA [39] Detection DIOR [83],
NWPU VHR-10 [85] mAP Proposes a transformer-based detector utilizing a

pre-trained CNN for feature extraction and
multiple-layer transformers for multi-scale feature

aggregation at global spatial positions.

GANsformer [40] Detection DIOR [83],
NWPU VHR-10 [85] mAP Introduces an efficient transformer, with reduced

parameters, as a branch network to capture global
features along with a generative model to expand

the input image ahead of backbone.

ADT-Det [41] Detection DIOR [83],
HRSC2016 [81] mAP Introduces a RetineNet-based framework with a

feature pyramid transformer integrated between
the backbone and post-processing network for

generating multi-scale semantic features.

PointRCNN [44] Detection DOTA [49],
HRSC2016 [81] mAP Introduces a two-stage angle-free dectection

framework, which is also evaluated using the
transformer-based Swin backbone.

HybridNetwork22 [45] Detection
DOTA [49],

UCAS-AOD [86],
VEDAI [87]

mAP Integrates multi-scale global and local information
from transformers and CNNs through an adaptive

feature fusion network.

Oriented RepPoints [46] Detection
DOTA [49],

UCAS-AOD [86],
HRSC2016 [81]

mAP Proposes an anchor-free detector and learns flexible
adaptive points as representations through a

quality assessment and sample assignment scheme.

O2DETR [47] Detection
DOTA [49],

SKU110K-R [88],
HRSC2016 [81]

mAP Extends the standard DETR for oriented detection
by introducing an encoder employing depthwise

separable convolution.
AO2DETR [48] Detection DOTA [49] mAP Introduces a DETR-based detector with oriented

proposal generation scheme, a refine module to
compute rotation-invariant features and a

rotation-aware matching loss for performing the
matching process for direct set predictions.

RBox [42] Detection

SynthText [89],
ICDAR 2015 (IC15) [90],
MLT-2017 (MLT17) [91],

MSRA-TD500 [92],
MTWI [93],

Total-Text [94],
CTW1500 [95]

mAP Proposes a framework employing transformers to
model the relationship of sampled features for

better grouping and box prediction without
requiring post-processing operation.

Rodformer [43] Detection DOTA [49] mAP A hybrid detection architecture integrating the
local characteristics of depth-separable

convolutions with the global characteristics of MLP.

CD-Trans [54] Change Detection
WHU [60],
LEVIR [61],
DSIFN [96]

F1 score Introduces a bi-temporal image transformer
designed to model the spatio-temporal contextual

information. The encoder captures context in
token-based space-time, which is then fed to a

decoder where feature refinement is performed in
the pixel-space.

Image Captioning: Image captioning in remote sensing images is a challenging prob-
lem, where the task is to generate a semantically natural description of a given image. Few
recent works have explored using transformers for image captioning. The work of [97]
introduces a framework where standard transformers are adapted for remote sensing image
caption generation by integrating residual connections, dropout layers and fusing features
adaptively. Moreover, a reinforcement learning technique is utilized to further improve the
caption generation process. An encoder–decoder architecture is introduced in [98], where
the multi-scale features are first extracted from different layers of CNNs in the encoder
and then a multi-layer aggregated transformer is utilized in the decoder to effectively
exploit the multi-scale features for generating sentences. The work of [99] introduces a
topic token-based mask transformers framework, where a topic token is integrated into
the encoder and serves as a prior in the decoder for capturing improved global semantic
relationships.

Image Super Resolution: Remote sensing image super-resolution is the task of re-
covering high-resolution images from their low-resolution counterparts. A few recent
works have explored transformers for this task. A transformer-based multi-stage enhance-
ment structure is introduced in [100] that leverages features from different stages. The
proposed multi-stage structure can be combined with conventional super-resolution tech-
niques in order to fuse multi-resolution low- and high-dimension features. Ref. [101]
proposes a CNN-transformer hybrid architecture to integrate both local and global feature
information for super-resolution. The work of [102] explores the problem of multi-image
super-resolution, where the task is to merge multiple low-resolution remote sensing images
of the same scene into a high-resolution one. Here, a transformer-based approach is intro-
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duced comprising an encoder having residual blocks, a fusion module and a super-pixel
convolution-based decoder.

To summarize the review of transformers in VHR imagery, we present a holistic
overview of different techniques in the literature in Table 6.

Table 6. Overview of transformer-based approaches in VHR remote sensing imaging. Here, we
highlight transformer-based methods for different VHR remote sensing tasks.

Transformers in Very-High Resolution (VHR) Satellite Imagery
Method Task Datasets Metrics Highlights

MSPSNet [55] Change Detection SYSU-CD [103],
LEVIR [61] F1 score Introduces a multi-scale Siamese framework employing a

parallel convolutional structure for feature integration of
different temporal images and self-attention for feature

refinement.

SwinSUNet [56] Change Detection

CCD [82],
WHU [60],

OSCD [104],
HRSCD [105]

F1 score Introduces a Swin transformer-based network with a Siamese
U-shaped structure having encoder, fusion and decoder

modules.

TransUNetCD [58] Change Detection

WHU [60],
LEVIR [61],
CCD [82],

DSIFN [96],
OSCD [104],

S2Looking [106]

F1 score Introduces a framework integrating merits of transformers and
UNet through capturing enriched contextualized features which
are upsampled and fused with multi-scale features to generate

global-local features.

Hybrid-TransCD [59] Change Detection LEVIR [61],
SYSU-CD [103] F1 score Introduces a multi-scale transformer that encodes both

fine-grained and large object features through heterogeneous
tokens via multiple receptive fields.

CCTNet [66] Segmentation Barley Remote Sensing Dataset [107] F1 score,
overall accuracy Proposes a hybrid CNN-transformer framework to combine

local details and global conextual information for crop
segmentation.

STransFuse [67] Segmentation Potsdam [70],
Vaihingen [71]

F1 score,
overall accuracy Introduces a framework that encodes both coarse-grained as

well as fine-grained features at multiple scales which are fused
using self-attentive mechanism.

Trans-CNN [68] Segmentation Potsdam [70],
Vaihingen [71]

F1 score,
overall accuracy Introduces a framework with a Swin transformer backbone to

capture long-range dependencies and a U-shaped decoder with
depth-wise separable convolution to encode local details.

SwinTF [69] Segmentation
Vaihingen [71],

Thailand North Landsat-8 corpus (private),
Thailand Isan Landsat-8 corpus (private)

F1 score,
overall accuracy Introduces a framework with pre-trained Swin backbone along

with a U-Net, feature pyramid network and a pyramid scene
parsing network for segmentation.

Efficient-T [65] Segmentation Potsdam [70],
Vaihingen [71]

F1 score,
overall accuracy Proposes a light-weight framework consisting of an implicit

edge enhancement scheme along with a Swin transformers.

STT [72] Building Extraction WHU [60],
INRIA [108]

IoU,
overall accuracy,

F1 score
Introduces a transformers framework to learn long-range
dependencies both in the spatial and channel direction.

STEB-UNet [73] Building Extraction WHU [60],
Massachusetts [108]

IoU,
F1 score Introduces a transformer framework capturing semantic

information from multi-scale features which are further fused to
local features.

BuildFormer [74] Building Extraction
WHU [60],

Massachusetts [108],
INRIA [108]

IoU,
F1 score Introduces an architecture consisitng of a window-based linear

attention and a convolutional MLP.

T-Trans [75] Building Extraction Massachusetts [108]
,INRIA [108]

IoU,
F1 score Explores the task of generalizability of building extraction

models to different areas and introduces a transfer learning
method to fine-tune models from one area to a subset of another

unseen area.

TRL [97] Image Captioning
RSICD [109],

UCM-captions [110],
Sydney-Caption [111]

BLEU,
ROUGE,
METEOR

and CIDEr

Proposes an approach adapting transformers by integrating
residual connections, dropout and adatpive feature fusion for

remote sensing image caption generation.

MLAT [98] Image Captioning
RSICD [109],

UCM-captions [110],
Sydney-Caption [111]]

BLEU,
ROUGE,
METEOR

and CIDEr

Introduces an architecture where multi-scale features from CNN
layers are extracted in encoder and a multi-layer aggregated
transformer in the decoder uses those features for sentence

generation.

Ren et al. [99] Image Captioning
RSICD [109],

UCM-captions [110],
Sydney-Caption [111]

BLEU,
ROUGE,
METEOR

and CIDEr

Proposes a topic token-based mask transformers with the topic
token being integrated into encoder while serving as prior in

decoder for capturing global semantic relationships.

TR-MISR [102] Image Super Resolution
RSICD [109],

UCM-captions [110],
PROBA-V [112]

cPSNR,
cSSIM Introduces a transformer-based architecture with an encoder

having residual blocks, a fusion module along with a
super-pixel convolution-based decoder for multi-image

super-resolution.

MSE-Net [100] Image Super Resolution UCMerced [113],
AID [35]

cPSNR,
cSSIM Proposes a multi-stage enchancement framework to utilize

features from different stages and further integrating them with
standard super-resolution technique for combining

multi-resolution low as well as high-dimension feature
representations.

SRT [101] Image Super Resolution UCMerced [113] cPSNR,
cSSIM Introduces a hybrid framework that integrates local features

from CNNs and global features from transformers.
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6. Transformers in Hyperspectral Imaging

As discussed earlier, hyperspectral images are represented by several spectral brands
and analyzing hyperspectral data is crucial in a wide range of problems. Here, we present
a review of recent transformer-based approaches for different hyperspectral imaging
(HSI) tasks.

6.1. Image Classification

Here, the task is to automatically classify and assign a category label to each pixel
in an image acquired through hyperspectral sensors. We first review recent works that
are either based on the pure transformer design or utilize a hybrid CNN-transformer
approach. Afterwards, we discuss few recent transformer-based approaches fusing different
modalities for hyperspectral image classification.

Pure transformer-based Methods: Among existing works, the approach of [114] intro-
duces a bi-directional encoder representation from transformers, called HSI-BERT, that
strives to capture global dependencies. The proposed architecture is flexible and can be
generalized from different regions with the need to perform pre-training. A transformer-
based backbone, called SpectralFormer, is introduced in [8], which can take pixel-wise or
patch-wise inputs and is designed to capture spectrally local sequence knowledge from
nearby hyperspectral bands. SpectralFormer utilizes cross-layer skip connection to cir-
culate information from shallow to deep layers by learning soft residuals across layers,
thereby producing group-wise spectral embeddings. To circumvent the problem of the
fixed geometric structure of convolution kernels, a spectral—spatial transformer network is
proposed in [115], comprising a spatial attention and a spectral association module. While
the spatial attention aims at connecting the local regions through aggregation of all input
feature channels with spatial kernel weights, the spectral association is achieved through
the integration of all spatial locations of the corresponding masked feature maps. Trans-
formers are also explored in the spatial and spectral dimensions in [9]. Here, a framework
is introduced comprising spectral self-attention that learns to capture interactions along the
spectral dimension, and a spatial self-attention designed to pay attention to features along
the spatial dimension. The resulting features from both spectral and spatial self-attention
are then combined and input to the classifier.

Hybrid CNN-Transformers based Methods: Several works recently have explored com-
bining the merits of CNNs and transformers to better capture both the local information
as well as long-range dependencies for hyperspectral image classification. To this end,
a convolutional transformer network, named CTN, is introduced in [10], which utilizes
center position encoding to generate spatial position features by combining pixel positions
with spectral features as well as a convolutional transformer to further obtain local-global
features, as shown in Figure 10. A hyperspectral image transformer (HiT) classification ap-
proach is proposed in [11], where convolutions are embedded into transformer architecture
to further integrate local spatial contextual information. The proposed approach comprises
two main modules, where one module, called spectral-adaptive 3D convolution projection,
is designed to generate spatial–spectral local information via spectral adaptive 3D con-
volution layers from hyperspectral images. The other module, named Conv-Permutator,
employs depthwise convolutions to capture spatial–spectral representations separately
along the spectral, height and width dimensions. The work of [12] introduces a multi-scale
convolutional transformer that effectively captures spatial–spectral information, which can
be integrated with the transformer network. Furthermore, a self-supervised pre-task is
defined that masks the token of the central pixel in the encoder, whereas remaining tokens
are input to the decoder in order to reconstruct the spectral information corresponding to
the central pixel. In [116], a spectral–spatial feature tokenization transformer, called SSFTT,
is proposed that generates spectral–spatial and semantic features. The SSFTT comprises a
feature extraction module that produces low-level spectral and spatial features by employ-
ing a 3D and a 2D convolution layer. Furthermore, a Gaussian weighted feature tokenizer
is utilized in SSFTT for feature transformation, which are then input to a transformer
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encoder for feature representation. Consequently, a linear layer is employed to generate
the sample label. Zhao et al. [10] proposes a convolutional transformer network (CTN) that
employs center position encoding to combine spectral features with pixel positions. The
proposed architecture introduces convolutional transformer blocks that effectively integrate
local and global features from hyperspectral image patches. Yang et al. [11] introduces
a hyperspectral image transformer (HiT) framework where convolution operations are
embedded within the transformer design for also integrating local spatial contextual infor-
mation. The HiT framework comprises of a spectral-adaptive 3D convolution projection
to capture local spatial–spectral information. Additionally, the HiT framework employs
a conv-permutator module that uses the depthwise convolution for explicitly capturing
the spatial–spectral information along different dimensions: height, width and spectral.
The work of [116] introduces a spectral–spatial feature tokenization transformer, named
SSFTT, that consists of a spectral–spatial feature extraction scheme for encoding shallow
spectral–spatial features, a feature transformation module which produces transformed
features used as input in the encoder.

Figure 10. Overview of the CTN framework [10] for hyperspectral image classification. Given the
HSI data patches, CTN processes them to center position encoding (CPE), convolutional transformer
and classification modules. Here, the output represents the category label. Figure is from [10]. Best
viewed zoomed in.

Multi-modal Fusion Transformers based Methods: Few recent transformer-based works
also explore fusing different modalities, such as hyperspectral, SAR and LiDAR, for hy-
perspectral image classification. A multi-modal fusion transformer, MFT, is introduced
in [117] and comprises a data fusion scheme to derive class tokens in the transformers
from multi-modal data (e.g., LiDAR and SAR) along with the standard hyperspectral patch
tokens. Furthermore, the attention mechanism within MFT fuses information from tokens
of hyperspectral and other modalities into a new token of integrated features. The work
of [118] introduces an approach where a spectral sequence transformer is utilized to extract
features from hyperspectral images along the spectral dimension and a spatial hierarchical
transformer to generate spatial features in a hierarchical manner from both hyperspectral
and LiDAR data.

Table 7 shows a comparison of some representative CNN-based approaches with both
pure transformers and hybrid CNN-transformers-based methods on two popular hyper-
spectral image classification benchmarks: Indian Pines and Pavia. The Indian Pines dataset
is acquired through airborne visible/infrared imaging spectrometer (AVIRIS) sensors in
Northwestern Indiana, USA. Here, the images comprise 145 × 145 pixels in the spatial
dimension at a ground sampling distance (GSD) of 20m with 220 spectral bands that cover
the wavelength range of 400–2500 nm. After the removal of noisy bands, 200 spectral
brands are retained. The original dataset contains 16 class, where several methods dis-
card the small classes. For the remaining categories, the number of training samples are
200 per class. The Pavia dataset comprises images acquired through the reflective optics
system imaging spectrometer (ROSIS) sensor over Pavia, Italy. Here, the images consist of
610 × 340 pixels in the spatial dimension at a GSD of 1.3m with 103 spectral bands covering



Remote Sens. 2023, 15, 1860 20 of 31

from 430 to 860 nm. The dataset contains nine categories, where the number of training
samples are 200 per class. Generally, three metrics are used to evaluate the performance
of methods quantitatively: overall accuracy, average accuracy and kappa coefficient. The
overall accuracy (OA) denotes to the proportion of correctly classified test samples, whereas
average accuracy (AA) reflects the average recognition accuracy for each category. The
kappa coefficient refers to the consistency between the generated classification maps from
the model and the available ground truth. Figure 11 presents a qualitative comparison
between HSI-Bert [114] and other existing CNN-based methods on the Pavia dataset.

(a) CNN (b) CNN-PPF (c)  CDCNN (d) DRCNN (e) HSI-BERT

Figure 11. A qualitative comparison, in terms of visualization of classification maps between HSI-
BERT and several CNN-based methods on the Pavia dataset. Here, (a) CNN, (b) CNN-PPF, (c) CD-
CNN, (d) DRCNN and (e) HSI-BERT. Figure is from [114].

Table 7. Comparison in terms of overall accuracy (OA) of some representative CNN-based meth-
ods with pure transformers and hybrid CNN-transformer-based hyperspectral image classification
methods on two popular benchmarks: Indian Pines and Pavia. Here, the results are reported using
200 samples for training for each category.

Method Venue Type Indian Pines Pavia

CNN [119] Sensors CNNs 87.01 92.27
CNN-PPF [120] TGRS CNNs 93.90 96.48

HSI-BERT [114] TGRS Pure 99.56 99.75
DSS-TRM [9] EJRS Pure 99.43 98.50
CTN [10] GRSL Hybrid 99.11 97.48

6.2. Hyperspectral Pansharpening

In the hyperspectral pansharpening problem, the task is to enhance low-resolution hy-
perspectral image spatially using the spatial information from registered panchromatic im-
age, while preserving the spectral information of the low-resolution image. Pansharpening
plays an important role in a variety of tasks in remote sensing, including classification and
change detection. Previously, CNN-based approaches have shown promising results for
this task. Recently, transformer-based methods have performed favorably for this problem
by also utilizing the useful global contextual information. A multi-scale spatial–spectral in-
teraction transformer, MSIT, is proposed by [121] that comprises a convolution–transformer
encoder to extract multi-scale local and global features from low-resolution and panchro-
matic images. The work of [122] introduces an architecture where global features are
constructed using transformers and local features are computed using a shallow CNN.
These multi-scale features extracted in a pyramidal fashion are learned simultaneously.
The proposed approach further introduces a loss formulation with spatial and spectral
loss simultaneously used for training using the real data. Liang et al. [123] propose a
framework, named PMACNet, where both the region-of-interest from the low-resolution
image and the residuals for regression to high-resolution image are learned in a parallel
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CNN structure. Afterwards, a pixel-wise attention module is utilized to adapt the residuals
based on the learned region-of-interest.

A transformer-based regression network is introduced by [124], where the feature
extraction of spatial and spectral information is performed by utilizing a Swin transformer
model. The work of [125] introduces a transformer-based approach, where multi-spectral
and panchromatic features are formulated as keys and queries for enabling joint learning
of features across the modalities. Furthermore, this work employs an invertible neural
module to perform effective fusion of the features for generating the pansharpened im-
ages. Bandara et al. [126] propose a framework comprising separate feature extractors for
panchromatic and hyperspectral images, a soft attention mechanism and a spectral-spatial
fusion module. The pansharpened image quality is improved by learning cross-feature
space dependencies of the different features.

To summarize the review of transformers in hyperspectral imaging, we provide a
holistic overview of the existing techniques in literature in Table 8.

Table 8. Overview of transformer-based approaches in hyperspectral and multispectral imaging.
Here, we highlight methods for different hyperspectral remote sensing tasks.

Transformers in Hyperspectral Imagery
Method Task Datasets Metrics Highlights

SpectralFormer [8] Classification
Indian Pines [127],

Pavia University [128],
Houston 2013 [129]

Overall classification accuracy,
kappa Introduces a transformer-based backbone to capture spectrally local information from

nearby hyperspectral bands by generating group-wise spectral embeddings.

MCT [12] Classification Salinas [130],
Yellow River Estuary

Overall classification accuracy,
kappa Proposes a multi-scale convolutional transformer to encode spatial-spectral information

that is integrated with transformers network.

MFT [117] Classification

University of Houston [129],
Trento,

MUUFL Gulfport [131],
Augsburg scenes

Overall classification accuracy,
kappa Proposes a multi-modal transfomers that derives class tokens from multi-modal data

along with the standard hyperspectral patch tokens.

CTN [10] Classification Indian Pines [127],
Pavia University [128]

Overall classification accuracy,
kappa Introduces a convolutional transformer network with dedicated blocks that integrates

local and global features from hyspectral image patches.

DHViT [118] Classification
Trento,

Houston 2013 [129],
Houston 2018 [132]

Overall classification accuracy,
kappa Introduces an approach comprising a spectral sequence transformer to encode features

along the spectral dimension and a spatial hierarchical transformer to produce
hierarchical spatial features for hyperspectral and LiDAR data.

DSS-TRM [9] Classification
Pavia University [128],

Salinas [130],
Indian Pines [127]

Overall classification accuracy,
kappa Introduces a transformer-based approach consisting of spectral self-attention and spatial

self-attention to capture interactions along spectral and spatial dimension, respectively.

HiT [11] Classification

Indian Pines [127],
Pavia University [128],

Houston2013 [129],
Xiongan

Overall classification accuracy,
kappa Proposes a hyperspectral image transformer consisting of a 3D convolution projection

module to encode local spatial-spectral details and a conv-permutator modue to capture
the information along height, width and spectral dimensions.

HSI-BERT [114] Classification
Indian Pines [127],

Pavia University [128],
Salinas [130]

Overall classification accuracy Proposes a transformer-based method that captures capture global dependencies using a
bi-direction encoder representation.

SSFTT [116] Classification
Indian Pines [127],

Pavia University [128],
Houston 2013 [129]

Overall classification accuracy,
kappa Proposes a spectral–spatial feature tokenization transformer that utilizes both

spectral-spatial shallow and semantic features for representation and learning.

SSTN [115] Classification

Pavia University [128],
Kennedy Space Center,

Indian Pines [127],
University of Houston [129],

Pavia Center [133]

Overall classification accuracy,
kappa Introduces a spectral–spatial transformer with a spatial attention and a spectral

association module. The two modules perform spectral and spatial association through
the integration of spectral and spatial locations, respectively.

CTIN [134] Pan-Sharpening
worldview II [135],
worldview III [136],

GaoFen-2

IQA,
ERGAS,
PSNR,
SAM

A transformer-based approach is introduced, where multi-spectral and panchromatic
features are captured for joint feature learning across modalities. Further, an invertible

neural module performs feature fusion to generate pansharpened images.

HyperTransformer [126] Pan-Sharpening
Pavia Center [133],

Botswana [137],
Chikusei [138]

Cross-correlation(CC),
spectral Angle Mapping (SAM),

RSNR,
ERGAS,
PSNR

Introduces a transformer-based framework with separate feature extractors for
panchromatic and hyperspectral images and a spectral-spatial fusion module to learn

cross-feature space dependencies of features.

PMACNet [123] Pan-Sharpening worldview II [135],
worldview III [136]

Spatial correlation coefficient(SCC),
spectral angle mapper (SAM) Introduces a framework with a parallel CNN structure to learn ROIs from low-resolution

image and residuals from high-resolution image. It also contains a a pixel-wise attention
module to adapt residuals on the learned ROIs.

CPT-noRef [122] Pan-Sharpening
Gaofen-1,

worldview II [135],
Pleiades [139]

IQA,
ERGAS,

SAM,
correlation coefficient(CC)

A CNN-transformers framework where global features are generated using transformers
and local features are constructed using a shallow CNNs. The features are combined and

a loss formulation having spatial and spectral losses are utilized for training.

MSIT [121] Pan-Sharpening GeoEye-1,
QuickBird [140]

ERGAS,
SAM,

Q4
Introduces a multi-scale spatial–spectral interaction transformer with a

convolution-transformer encoder for generating multi-scale global and local features
from both low-resolution and panchromatic images.

Su et al. [124] Pan-Sharpening worldview II [135], QuickBird [140], GaoFen-2

spatial correlation coefficient(SCC),
ESGAS,
RMSE,
SAM,

Q4

A transformer-based approach with spatial and spectral feature extraction performed
using a Swin model.
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7. Transformers in SAR Imagery

As discussed earlier, SAR images are constructed from the signals of the electromag-
netic waves through a sensor platform transmitted to the surface of Earth. SAR possesses
unique characteristics due to being unaffected with different environmental conditions,
such as day, night and fog. Here, we review recent transformer-based approaches for SAR
imaging tasks.

7.1. SAR Image Interpretation

Classification: Accurately classifying the target categories within SAR images is a
challenging problem with numerous real-world applications. Recently, transformers have
been explored for automatic interpretation and target recognition in SAR imagery. The work
of [141] explores vision transformers for polarimetric SAR (PolSAR) image classification.
In this framework, the pixel values of the image patches are considered as tokens and the
self-attention mechanism is employed to capture long-range dependencies followed by
multi-layer perceptron (MLP) and learnable class tokens to integrate features. A contrastive
learning technique is utilized within the framework to reduce the redundancies and perform
the classification task. Figure 12 shows the overview of the framework and a qualitative
comparison in terms of supervised classification is presented in Figure 13.

Other than the aforementioned pure transformer-based approach, hybrid methods
utilizing both CNNs and transformers also exist in the literature. The work of [142]
introduces a globa–local network structure (GLNS) framework that combines the merits
of CNNs and transformers for SAR image classification. The proposed GLNS employs
a lightweight CNN along with an efficient vision transformer to capture both local and
global features, which are later fused to perform the classification task. Other than standard
fully-supervised learning, transformers are also explored in the limited supervision regime,
such as few-shot SAR image classification. Cai et al. [143] introduces a few-shot SAR
classification approach, named ST-PN, where a spatial transformer network is utilized for
performing spatial alignment on CNN-based features.

Segmentation and Detection: Detection and segmentation in SAR imagery is vital for
different applications, such as crop identification, target detection and terrain mapping. In
SAR imagery, segmentation can be challenging due to the appearance of speckles, which
is a type of multiplicative noise that increases with the back-scattering radar magnitude.
Among recent transformer-based approaches, the work of [144] introduces a framework,
named GCBANet, for SAR ship instance segmentation. Within the GCBANet framework,
a global contextual block is employed to encode spatial holistic long-range dependen-
cies. Furthermore, a boundary-aware box prediction technique is introduced to predict
the boundaries of the ship. Xia et al. [145] introduce an approach, named CRTransSar,
that combines the benefits of CNNs and transformers to capture both local and global
information for SAR object detection. The proposed CRTransSar works by constructing a
backbone with attention and convolutional blocks. A geospatial transformer framework is
introduced in [146], comprising the steps of image decomposition, multi-scale geo-spatial
contextual attention and recomposition for detecting aircrafts in SAR imagery. A feature
relation enhancement framework is proposed in [147] for aircraft detection in SAR imagery.
The proposed framework adopts a fusion pyramid structure to combine features of differ-
ent levels and scales. Further, a context attention enhancement technique is employed to
improve the positioning accuracy in complex backgrounds.

Other than ship and aircraft detection, the recent work of [148] introduces a transformer-
based framework for 3D detection of oil tank targets in SAR imagery. In this framework, the
incidence angle is input to the transformer as a prior token followed by a feature description
operator that utilizes scattering centers for refining the predictions.
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Figure 12. Overview of the ViT-PolSAR framework [141] for supervised polarimetric SAR image
classification. Here, the pixel values of the SAR image patches are considered as tokens and then the
self-attention mechanism is utilized to encode longe-range dependencies followed by MLP. Figure is
from [141]. Best viewed zoomed in.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. A visual comparison in terms of supervised classification of the entire map on the ALOS2
San Francisco dataset. Here, (a–h) shows the results obtained from Wishart, RBF-SVM, CV-CNN,
3D-CNN, PSENet, SF-CNN and ViT-PolSAR, respectively. Figure is from [141].

7.2. Others

Apart from SAR image classification, detection and segmentation, few works exist
exploring transformers for other SAR imaging problems, such as image despeckling.

SAR Image Despeckling: The aforementioned interpretation of SAR imaging is made
challenging due to the degradation of images caused by a multiplicative noise known
as speckle. Recently, transformers have been explored for SAR image despeckling. The
work of [149] introduces a transformer-based framework comprising an encoder that learns
global dependencies among various SAR image regions. The transformer-based network is
trained in an end-to-end fashion with synthetic speckled data by utilizing a composite loss
function.

Change Detection in SAR Images: SAR images can be affected by imaging noise,
which presents challenges when detecting changes in high-resolution (HR) SAR data. Re-
cently, a self-supervised contrastive representation learning technique has been proposed
by [150], where hierarchical representations are constructed using a convolution-enhanced
transformer to distinguish the changes from HR SAR images. A convolution-based mod-
ule is introduced to enable interactions across windows when performing self-attention
computations within local windows.

SAR Image Registration: Several applications, such as change detection, involves
joint analysis and processing of multiple SAR images that are likely acquired in different
imaging conditions. Thus, accurate SAR image registration is desired where the reference
and the sensed images are registered. The recent work of [151] explores transformers for
large-size SAR dense-matching registration. Here, a hybrid CNN-transformer is employed
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to register images under weak texture condition. First, coarse registration is performed
via the down-sampled original SAR image. Then, cluster centers of registration points are
selected from the previous coarse registration step. Afterwards, the registration of image
pairs are performed using a CNN-transformer module. Lastly, the resulting point pair
subsets are integrated to achieve the final global transformation through RANSAC.

In summary, we present a holistic overview of the existing transformers techniques in
SAR imagery in Table 9.

Table 9. Overview of transformer-based approaches in SAR imaging. Here, we highlight methods
for different SAR remote sensing tasks.

Transformers in Hyperspectral Imagery
Method Task Datasets Metrics Highlights

ViT-PolSAR [141] Classification

AIRSAR Flevoland [152],
ESAR Oberpfaffenhofen [153],
AIRSAR San Francisco [154],
ALOS2 San Francisco [155]

AA,
OA,

kappa
Explores transformers, where

self-attention is used to capture
long-range dependencies followed by

MLP for polarimetric SAR image
classification.

GLNS [142] Classification Gaofen-3 SAR [156],
F-SAR [157]

AA,
OA,

kappa
Introduces a global–local network
structure to exploit the merits of

CNNs and transformers with local
and global features that are fused to

perform classification.

ST-PN [143] Classification MSTAR [158] Accuracy Proposes a spatial transformer
network for spatial alignment of
features extracted from CNNs for

few-shot SAR classification.

GCBANet [144] Segmentation SSDD [159],
HRSID [160] AP Introduces a transformer-based

approach with a global contextual
block for capturing spatial holistic

long-range dependencies and a
boundary-aware prediction scheme

for estimating the boundaries of ship.

CRTransSar [145] Detection SMCDD [145],
SSDD [159]

Accuracy,
recall,
mAP,

F1

Proposes a backbone based on
convolutional and attention blocks for

capturing both local and global
features.

Geospatial Transformers [146] Detection Gaofen-3 [156] DR,
FAR Introduces a framework with

multi-scale geo-spatial attention for
aircraft detection in SAR imaging.

SFRE-Net [147] Detection Gaofen-3 [156]
Precision,

recall,
F1

Introduces a feature relation
enhancement architecture consisting
of a fusion pyramid structure and a

context attention enhancement
technique.

3DET-ViT [148] Detection L1B SAR [161]
AP,
AR,

mean Offset
Proposes a transformer-based

framework that takes incidence angle
as a prior token with a feature

description operator employing
scattering centers for prediction

refinement.

ID-ViT [149] Despeckling Berkeley Segmentation Dataset [162] PSNR,
SSIM Proposes a framework comprising an

encoder to learn global dependencies
among SAR image regions, where the

network is trained using synthetic
speckled data.

CLT [150] Change Detection Brazil and Namibia datasets [163],
simulation data [150] KC Introduces a self-supervised

contrastive representation learning
method with a convolution-enhanced
transformer to generate hierarchical
representations for distinguishing

changes from HR SAR images.

CF-ViT [151] Image Registration MegaDepth [164] KC A CNN-transformers framework that
first performs coarse registration on
the down-sampled image, followed
by registration of image pairs via a
CNN-transformer module with the

resulting point pair subsets integrated
to obtain final global registration.

8. Conclusions

In this work, we presented a broad overview of transformers in remote sensing
imaging: very-high resolution (VHR), hyperspectral and synthetic aperture radar (SAR).
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Within these different remote sensory imagery, we further discuss transformer-based
approaches on a variety of tasks, such as classification, detection and segmentation. Our
survey covers more than 60 transformer-based remote sensing research works in the
literature. We observed transformers to obtain favorable performance on different remote
sensing tasks likely due to their capabilities to capture long-range dependencies along
with their representation flexibility. Further, the public availability of several standard
transformer architectures and backbones make it easier to explore their applicability in
remote sensing imaging problems.

Open Research Directions: As discussed earlier, most existing transformer-based
recognition approaches employ backbones pre-trained on the ImageNet dataset. One
exception is the work of [7], which explores pre-training vision transformers on a large-
scale remote sensing dataset. However, in both cases the pre-training is performed in
a supervised fashion. An open direction is to explore large-scale pre-training in a self-
supervised fashion by taking into account an abundant amount of unlabeled remote sensing
imaging data.

Our survey also shows that most existing approaches typically utilize a hybrid archi-
tecture where the aim is to combine the merits of convolutions and self-attention. How-
ever, transformers are typically known to have a higher computational cost to compute
global self-attention. Several recent works have explored different improvements in the
transformers design, such as, reduced computational overhead [165], efficient hybrid
CNN-transformers backbones [166] and unified architectures for image and video classifi-
cation [167]. Moreover, due to the utilization of more training data by transformers, there
is a need to construct larger-scale datasets in remote sensing imaging. For most problems
discussed in this work and especially in case of object detection, heavy backbones are typi-
cally utilized to achieve better detection accuracy. However, this significantly slows down
the speed of the aerial detector. An interesting open direction is to design light-weight
transformer-based backbones to classify detect oriented targets in remote sensing imagery.
Another open research direction is to explore the adaptability of the transformer-based
models to a heterogeneous source of images, such as SAR and UAV (e.g., change detection).

In this survey, we also observe several existing approaches to utilize transformers
in a plug-and-play fashion for remote sensing. This leads to the need of designing ef-
fective domain-specific architectural components and loss formulations to further boost
the performance. Moreover, it is intriguing to study the adversarial feature space of vi-
sion transformer models that are pre-trained on remote sensing benchmarks and their
transferability.

In the future, it is expected that more sophisticated pure transformer architectures
with specifically designed self-attention mechanisms for remote sensing problems will be
explored. Another potential future research direction is to investigate new hybrid CNN-
transformer architectures that leverage the capabilities of convolutions and self-attention in
the context of remote sensing tasks.

Additionally, we intend to frequently update and maintain the latest transformers
in remote sensing papers with their respective code at https://github.com/VIROBO-15
/Transformer-in-Remote-Sensing, accessed on 6 February 2023.
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