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Abstract: This study evaluates the representativeness of two widely used next-generation global
satellite precipitation estimates data for short-term precipitation over China, namely the satellite
data from the Climate Prediction Center morphing (CMORPH) and the satellite data from the Global
Precipitation Measurement (GPM) mission. These two satellite precipitation data sets were compared
with the hourly liquid in-situ precipitation from China national surface stations from 2016 to 2020.
The results showed that the GPM precipitation data has better representativeness of surface short-
term precipitation than that of the CMORPH data, and these two quantitative precipitation estimate
(QPE) data sets underestimated extreme precipitation. Moreover, we analyzed the influence of the
error between two QPE data sets and the in-situ precipitation on the classification of short-term
precipitation intensity. China uses 8.1–16 mm/h as the definition of heavy precipitation, but the
accuracy of the satellite QPE product was different due to the different lowest threshold of heavy
rain (more than 8.1 mm/h or more than 16 mm/h). Increasing the threshold value of the QPE data
for short-term strong precipitation resulted in lower accuracy for detecting such events, but higher
accuracy for detecting moderate intensity rainfall. When studying short-term strong precipitation
over China using precipitation grade, selecting an appropriate threshold was important to ensure
accurate judgments. Additionally, it is important to account for errors caused by QPE data, which
can significantly affect the accuracy of precipitation grading.

Keywords: precipitation intensity; GPM; CMORPH; rain gauge

1. Introduction

Extreme precipitation events have a great influence on human life and property [1], so
high-resolution precipitation observations are essential for mitigating disasters [2]. Gener-
ally, timely and unbiased precipitation analysis builds the basis of hydro-meteorological
forecast and can help us further understand and manage agricultural and hydrologic
risks [3–6]. To meet the great demand for high-quality rain-gauge-based global precipita-
tion analysis data sets to serve as in-situ-based references, great efforts have been made
since 1989 at the Global Precipitation Climatology Centre (GPCC) of Deutscher Wetterdienst
mandated by the World Meteorological Organization World Climate Research Program.
Several upgraded editions of the land surface precipitation analysis have been continuously
published since the first one [7], expanding the spatial–temporal coverage and product
categories [8,9]. The National Centers for Environmental Prediction (NCEP) of the U.S.
National Oceanic and Atmospheric Administration (NOAA) [10] and the Climate Research
Unit of the University of East Anglia [11] have also produced related works.
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However, the density of ground-based stations is not even, and there are even no
measurements on some complex terrain areas [12], such as mountainous regions, oceans,
deserts and sparsely populated areas. Thereby, the absolute precision of the rain-gauge-
based analysis is mainly affected by both the density and configuration of the rain gauge
network, as well as the interpolation methods [13,14]. With the rapid development of
instruments on remote sensing satellites, such as microwave sensors onboard polar-orbiting
satellites and the infrared (IR) sensors onboard geostationary satellites [15,16], new global
and regional precipitation estimate data sets are now available [17–19]. As an efficient
and reliable way to retrieve high spatial–temporal resolution precipitation, the remote
sensing satellite precipitation products not only make up for the shortcomings of uneven
distribution and difficult maintenance of ground-based rain gauge network, but also avoid
the interference of ground-based radar signals (e.g., high mountains, towers, etc.) [20,21].

We utilized the Global Precipitation Measurement (GPM) satellites data and the NOAA
Climate Prediction Center (CPC) Morphing Technique (CMORPH) data, which are the
two most widely used quantitative precipitation estimate (QPE, unit: mm/h) data with a
spatial resolution of half an hour and good performance in previous studies on short-term
precipitation over China [22–24]. The NASA (National Aeronautics and Space Admin-
istration) GPM satellite mission as the successor of the Tropical Rainfall Measurement
Mission (TRMM) [25,26], not only inherits its basic ability in observing large- and medium-
sized tropical and subtropical precipitation, but can also detect frozen precipitation and
slight precipitation (<0.5 mm/h) with higher accuracy by carrying more advanced dual-
frequency precision radar (DPR) and the passive microwave sensor (GPM Microwave
Imager, GMI) [27]. Based on these satellite precipitation measurement missions, a merged
precipitation product with a time interval of 30 min and a horizontal spatial resolution of
0.1◦ × 0.1◦ is routinely generated as a typical level-3 gridded Integrated Multi-Satellite
Retrievals for GPM (GPM IMERG). This gridded product collocates, inter-calibrates, merges
and interpolates some satellite microwave and microwave-calibrated satellite IR-based
precipitation estimates, ground-based rain gauge data, and other precipitation estimates on
a global scale. Similarly, the CMORPH data also produces a global precipitation analysis
with the same temporal resolution as GPM (30 min temporal resolution) and higher spatial
resolution than GPM (0.07277◦ × 0.07277◦) [28]. These two QPE databases are widely used
in many different aspects because they can obtain the precipitation intensity and coverage
reasonably well.

Some former studies have assessed the applicability of these two QPE data sets. The
CMORPH and GPM data sets over China have also been used for hydro-meteorological
and climate studies in China [29–32]. When Tian et al. [33] evaluated some precipitation
products against ground-based rain gauge only and the Doppler radar measurement data
corrected by the rain gauge data, and they found that the CMORPH data set showed the
obvious season-dependent biases, with overestimation in summer and underestimation in
winter. Their study also demonstrated that the CMORPH data set had an insignificantly
lower uncertainty and a higher probability of detection of rain events at shorter time scales
than others. Yang et al. [34] appraised the reliability of four satellite estimate precipitation
data sets in the arid regions of Northwest China by comparing them with ground-based or
reported values on daily scale from 2003 to 2010. Yang et al. [34] also found that satellite
estimate precipitation products were more accurate in the warm season than in the cold
season, and that the CMORPH data set tended to overestimate precipitation. For the GPM,
Nan et al. [35] used eight independent statistical and detection indicators to assess the
performance of the GPM IMERG precipitation products in China. Their results showed
a good satellite precipitation-detection ability in southeastern China, with the related
root-mean-square error (RMSE) increasing from northwest to southeast. Fang et al. [36]
also evaluated the performances of the IMERG data in extreme precipitation estimation
over China, found that the quality of the GPM IMERG data with extreme rainfall rate
was restricted, and the data quality was affected by the underestimation of the extreme
precipitation.



Remote Sens. 2023, 15, 1856 3 of 19

Therefore, it is not difficult to see that these two QPE products have different degrees
of defects in describing surface precipitation. However, in many current studies (especially
in precipitation studies using machine learning), the estimated precipitation of the QPE
product is often graded, and the precipitation intensity grade is used as the label for
further research. This led us to think about the representativeness of the graded QPE
products on surface precipitation intensity. For this issue, by using high-quality ground-
based rain gauge data in China, it should comprehensively evaluate the qualities and
representativeness of two global gridded quantitative precipitation estimate data sets
mentioned above. In particular, another critical issue is that if these two independent
satellite QPE products can be used as the quantitative criteria or indicators for determining
the discrete intensity of heavy precipitation or not. At present, the existing research is more
inclined to analyze the error of satellite retrieval precipitation data over different places, and
more inclined to analyze the representativeness of daily precipitation rather than hourly
precipitation [23,37,38]. Furthermore, no research has focused on the representativeness
of QPE hourly precipitation data on precipitation intensity grade. For short-term strong
precipitation, it is obviously unable to meet the requirements if we only analyze the
representativeness of QPE daily precipitation in distinguishing precipitation intensity
grades. In this study, the matched precipitation samples were categorized into three
piecewise indicators according to the commonly used classification of precipitation intensity
in China: >0 mm/h and <2.5 mm/h for light rain, 2.5–16 mm/h for moderate rain and
heavy rain, and >16 mm/h for rainstorms (8 mm/h is often used as the boundary to
distinguish between heavy rain and rainstorms). Meanwhile, in the study of extreme
precipitation events, the minimum precipitation threshold that everyone pays attention
to is often different, and the judgment accuracy of the satellite estimate QPE data at
different minimum precipitation thresholds is also different. The primary purpose of
this exploration therefore is to assess both the quantitative characteristics of these two
independent gridded satellite QPE data and their applicability as a quantitative indicator
for estimating precipitation intensity (especially heavy rain) over China.

The rest of this paper is arranged as follows. Section 2 briefly introduces the two
satellite estimated QPE data sets and the ground-based rain gauge data in China, as
well as the intuitive error indicators for evaluating satellite QPE data. Section 3 presents
the primary results and discussions. Section 4 summarizes the major conclusions and
emphasizes the findings of this investigation.

2. Data and Methods

The data we used in this study contained the hourly in-situ precipitation data in
China and two satellite precipitation estimate data sets from the CMORPH and the GPM,
spanning the years 2016–2020. In order to make the accuracy of the evaluation of QPE data
in estimating the precipitation intensity grade more convincing, we will first analyze the
errors between these two gridded satellite QPE data sets and the in-situ precipitation over
China, and then analyze the accuracy of QPE data in estimating the precipitation intensity
grade based on the results of error analysis.

The China hourly in-situ precipitation data were derived from 2167 national ground-
based rain gauge stations, which are archived in the National Meteorological Information
Centre (NMIC), China Meteorological Administration (CMA). The geographical locations
of these stations are shown in Figure 1. The evaluation of the rain gauge measurements
indicates that the data availability was higher than 95% after undergoing the quality
control procedures, namely checking the national climatological thresholds, checking the
regional climatological thresholds, checking temporal consistency and checking spatial
consistency [39]. These ground measurements have already been employed to assess the
quality of some of the satellite estimate QPE data, such as the TRMM precipitation product
3B42 [40], and to further manifest the suitability of the GPCC Full Data Daily Analysis from
a climatic perspective [41].
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Figure 1. Locations (red solid circle) of the 2167 national rain gauge stations in China.

Taking the in-situ precipitation as the real value or truth, this study analyzed the
error of two widely used hourly satellite QPE data sets. Currently, CMORPH is the global
precipitation product with the finest spatial resolution. It relies exclusively on passive
microwave and geostationary infrared band radiance observations, with no ground-based
rain gauge information [28]. The data version used in this investigation is V1.0, within a 30
min temporal resolution and a horizontal spatial resolution of 0.07277◦ × 0.07277◦ (about 8
km × 8 km at the equator).

The GPM mission as an international network of satellites that can implement next-
generation global observations on liquid and solid precipitation (or snow), supported
by the U.S. NASA and the JAXA (Japan Aerospace Exploration Agency) [42]. The GPM
Core Observatory was successfully launched on February 27 of 2014. It is regarded as
an extension of the prior TRMM mission, which focused primarily on heavy to moderate
rain over tropical and subtropical ocean areas. It carries the world’s first space-borne
Ku/Ka-band DPR and a multi-channel GMI. The DPR instrument is able to measure
three-dimensional precipitation structures over 78 and 152 miles (125 and 245 km) swaths,
which consists of a Ka-band radar (KaPR at 35.5 GHz) and a Ku-band radar (KuPR at
13.6 GHz) [35]. The data used in this study is the GPM IMERG Final Precipitation Level-3
data (GPM-3IMERGHH), with a 30 min temporal resolution and a 0.1◦ × 0.1◦ horizontal
spatial resolution. As described on the GPM-3IMERGHH product release website, the input
precipitation estimates computed from the various satellite passive microwave sensors are
intercalibrated to the Combined Ku Radar-Radiometer Algorithm (CORRA) product, then
“forward/backward morphed” and combined with microwave precipitation-calibrated
geo-IR fields, and finally adjusted with seasonal Global Precipitation Climatology Project
(GPCP) Satellite Gauge (SG) surface precipitation data to provide GPM-3IMERGHH data.
The data type of the last step is not used when generating CMORPH data.

It is imperative to note that when matching QPE products and in-situ data, the satellite
estimate QPE product with the national surface stations as the center and 1◦ as the radius
is interpolated continuously in the north and south directions. In this way, the value
of satellite QPE data at the location of the national surface stations can be obtained by
matching the longitude and latitude.
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Figure 2 shows the comparisons of precipitation horizontal distribution between
gridded CMORPH and GPM data at 08:00 UTC on 8 August 2018 and at 18:00 UTC on 6
June 2019, over China and its surrounding areas. As can be seen, these two satellite QPE
data were relatively consistent in the location and intensity of heavy precipitation. However,
when comparing Figure 2a with Figure 2b (or comparing Figure 2c with Figure 2d), it is not
difficult to see that GPM was more sensitive to clouds with relatively light precipitation
(≤1 mm/h), which makes it perform better than the CMORPH data in the continuity of
precipitation area.
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Figure 2. Comparisons of precipitation horizontal distribution between the (a,c) CMORPH data and
(b,d) GPM data at 08:00 UTC on 8 August 2018 (top panel) and at 18:00 UTC on 6 June 2019 (bottom
panel) over China and its surrounding areas.

Note that when calculating the error indicators, we did not consider or screen out the
data if the national surface station had fewer than five samples. At the same time, in order
to highlight the distribution characteristics of errors, we only discuss the cases where the
satellite QPE data and the in-situ precipitation data were both greater than 0 mm/h. In
addition, this analysis only considered the issue of liquid precipitation, which excludes
QPE data influenced by ice and snow [43].

A few intuitive error indicators, namely mean absolute error (MAE), mean bias error
(MBE), root mean square error (RMSE) and correlation coefficient (R), were used to evaluate
the error between in-situ observed precipitation and the satellite QPE data. These indicators
are calculated by Equations (1)–(4), in which n is the sample size, yin-situ is the in-situ
precipitation and ysat is the satellite QPE data. The definitions of Cov(yin-situ, ysat) and Var
are shown in Equations (5) and (6).

MAE =
1
n

n

∑
i=1

∣∣∣∣∣ysat,i − yin−situ, i

∣∣∣∣∣ (1)

MBE =
1
n

n

∑
i=1

(
ysat,i − yin−situ, i

)
(2)
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RMSE =

√
1
n

n

∑
i=1

(
ysat,i − yin−situ, i

)2 (3)

R =
Cov

(
yin−situ, ysat

)√
Var

(
yin−situ

)
Var(ysat)

(4)

Cov
(
yin−situ, ysat

)
=

∑n
i=1
(
yin−situ, i − yin−situ

)
(ysat, i − ysat,i)

n − 1
(5)

Var (y) =
∑n

i=1(yi − y)
2

n − 1
(6)

MAE is the mean absolute difference value between the in-situ precipitation and the
satellite estimate QPE data. We also used RMSE, which is sensitive to outliers, while MAE
is the opposite. Different from MAE, MBE considers both the absolute value and the sign of
the error, which considers both positive and negative deviations. Moreover, the correlation
coefficient R can roughly determine the linear correlation between various variables. The
closer the absolute value of R is to 1, the higher the correlation between the QPE data and
in-situ data.

3. Results and Discussions
3.1. Overall Error Distribution

Figure 3 shows the distributions of MAE, MBE, RMSE and R for the two satellite
QPE products over China. As can be seen, the GPM data performed much better than
the CMORPH data over China in error analysis and correlation with in-situ data. For
CMORPH data, both the MAE and RMSE of CMORPH showed an increasing trend from
northwest China to southeast China, and reached their peaks in the coastal areas of Hainan
and Guangdong Province, which are in harmony with the results of Li et al. [44,45]. This
north–south increasing trend connects well with distribution of precipitation intensity. The
relatively heavy precipitation intensity over southeast China resulted in a large variation
range of precipitation, and finally induced relatively large errors. In contrast, the stations
with less precipitation all year round over northwest China produced relatively low errors.

Because the GPM data have been corrected by the seasonal GPCP SG surface precipi-
tation data, the errors between the GPM data and in-situ precipitation were much smaller
than that between the CMORPH data and in-situ precipitation. The MAE and MBE were all
closer to 0 than the relevant error indicators of the CMORPH data, which indicates that the
absolute error between the GPM data and in-situ data was smaller than the absolute error
between the CMORPH data and in-situ data, and that for precipitation of all intensities,
the QPE data often overestimates precipitation. As for the distribution of RMSE values, it
can be seen from Figure 3e,f that the RMSE of Guangdong Province and Hainan Province
was larger than that of other provinces in China (about 2 mm/h), but the overall RMSE
value was smaller than that of CMORPH. From the distribution of R, it can be seen that
the R value of the GPM data was higher than that of the CMORPH data as a whole, and
the highest R value was more than 0.8. This proves that the GPM data and in-situ data had
good correlation, which is more reliable at the site than the CMORPH data with the same
interpolation processing in the process of matching data done by our research.
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3.2. Error Seasonal Distribution

Figures 4–7 show the seasonal distributions of MAE, MBE, RMSE and R of the two
satellite QPE products. Following the division of seasons in China, we chose the following
criteria for the division of seasons: March to May are spring, June to August are summer,
September to November are autumn, and December, January and February are winter.
Similar to the overall distribution, the seasonal performance of the GPM data was still
better than that of the CMORPH data. However, both the CMORPH data and GPM data
showed certain seasonal distribution characteristics and variations. Due to the hot and
rainy weather in summer and the low temperature and drought in winter in China [46],
the errors (MAE and RMSE) reached their maximums in summer and minimums in winter.
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In spring, the high-value areas of MAE and RMSE of the GPM data and CMORPH data
were observed in southern China, particularly in Guangdong Province and Hainan Province.
The error between the GPM data and in-situ data was also more evenly distributed, and
was less than the error between the CMORPH and in-situ data.

The error high value area between the QPE data and in-situ data has obviously became
larger in summer. In addition to the high-error area that appeared in the spring, affected
by the East Asian summer monsoon, the precipitation in eastern China increased, and
the error between the CMORPH data and the in-situ data in these areas also increased.
After entering autumn, these high-error areas gradually weakened and finally disappeared.
Because we only calculated sites with valid data greater than 5, the data available for
calculating R was significantly reduced in winter. Benefitting from the seasonal GPCP SG
surface precipitation data correction, the R value of the GPM data and in-situ data were
maintained at a high level, which also means that the GPM data and in-situ data had good
correlation. However, in winter, there was a low-value area of R in northern China. Because
this low-value area only appears in winter, it may be affected by reduced precipitation.
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3.3. Quality of Satellite Precipitation Estimate Products under Three Precipitation Grades

The errors of satellite QPE products under different precipitation grades have been
studied in a previous study [44], but it focused on the daily precipitation estimated by the
GPM or other satellites rather than the hourly precipitation of the CMORPH. However, the
CMORPH and GPM data sets are extensively used in the study of convective precipitation,
so the accuracy of hourly precipitation classification is much more important than the daily
precipitation [47–50]. Moreover, although there is a certain error between the satellite QPE
data and the in-situ precipitation [51], the impact of the error may not be as great as we
think when we use precipitation to determine the convection intensity. When the criterion
for judging the convection intensity is the precipitation intensity grade, rather than the
absolute precipitation intensity, the influence of the error between the satellite QPE data
and the in-situ precipitation will change, which is closely associated with the classification
of the precipitation intensity grade. For example, when we divide the precipitation of
2.5–16 mm/h into the same intensity grade, no matter whether the actual precipitation is 8
mm/h or 10 mm/h, there will be no deviation in the judgment of intensity grade. Based on
early research [29], we divided the hourly precipitation into three piecewise grades: 0–2.5
mm/h (excluding 0 mm/h), 2.5–16 mm/h and more than 16 mm/h, denoted as Grade–0,
Grade–1 and Grade–2, respectively.
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Furthermore, the probability of detection (POD), false alarm ratio (FAR) and critical
success index (CSI) were used in this study to evaluate the performance of the satellite QPE
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Figures 8 and 9 show the POD, FAR and CSI of the three precipitation grades. The
results show that both the GPM data with excellent performance in error analysis and
the CMORPH data had similar performance in judging precipitation intensity grade. For
Grade-0, the POD values were very high and close to 1, and the corresponding FAR was
close to 0. With the increase in precipitation intensity, the POD and FAR values decreased
and increased, respectively. For Grade-2, the POD and FAR values were close to 0.2 and
0.8, respectively. Affected by the low POD, the CSI scores representing the combined
effect of POD and FAR were also very low. Because the definition of extreme precipitation
is precipitation >16 mm/h and we have already carried out data quality control and
eliminated the outliers, it can be inferred that the QPE data often seriously underestimate
extreme precipitation. The statistical results also proved this point. The statistical results
showed that, of the 71,931 extreme precipitation cases (in-situ precipitation intensity greater
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than 16 mm/h) at 2167 stations from 2016 to 2020, the CMORPH data overestimated 2729
precipitation cases and underestimated 69,201 precipitation cases (96.2%), while the GPM
data overestimated 3917 precipitation cases and underestimated 68,013 precipitation cases
(94.6%). In order to show QPE’s underestimation of extreme precipitation more intuitively,
we selected the stations located in four regions that showed obvious errors in the above
error analysis, and showed the extreme precipitation events that occurred at these four
stations from 2016 to 2020. Figure 10 shows the observed Grade-2 (>16 mm/h) precipitation
and the corresponding satellite QPE data at four different and typical ground-based stations,
namely Hainan station (19.217◦N, 110.481◦E), Guangdong station (23.15◦N, 113.017◦E),
Jiangsu station (31.4◦N, 121◦E) and Guizhou station (25.417◦N, 107.883◦E). It can be seen
from the figure that, compared with the CMORPH data, the GPM data was closer to ground
observation precipitation in some extreme precipitation cases, but there was still a big
difference between the two QPE data sets and the in-situ data when extreme precipitation
occurs. In general, the QPE data overestimated the light precipitation on the ground, but
seriously underestimated the heavy precipitation.
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Figure 8. Distributions of the POD, FAR and CSI for the three piecewise grades of precipitation
from CMORPH data. The first to third rows represent POD, FAR and CSI of different grades of
CMORPH data, respectively, and the first to third columns represent the indices of Grade-0, Grade-1
and Grade-2, respectively.
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In addition, we have also discussed the impact of modifying the classification thresh-
olds on the classification accuracy of satellite QPE data. Figures 11 and 12 show the three
indices of Grade-1 and Grade-2 under different classification thresholds. When the thresh-
old of Grade-2 was low, the classification accuracy of Grade-2 became higher, and the
classification accuracy of the corresponding Grade-1 became lower. When the threshold
of Grade-2 increased, the results were the opposite. This finding profoundly reflects the
serious underestimation of satellite QPE data on extreme precipitation.

In summary, QPE data (both GPM data with good performance in error analysis and
CMORPH data with poor performance in error analysis) can represent weak or moderate
precipitation on the ground well, but it cannot accurately represent the surface precipitation
intensity in short-term extreme precipitation. QPE data was prone to judge strong precipi-
tation as light precipitation, thus missing the cases of heavy precipitation. This incorrect
judgment will directly have a negative impact on the research that uses QPE data to label
precipitation intensity. When the threshold of defining extreme precipitation decreases,
the accuracy of QPE data to judge extreme precipitation will increase, but the accuracy of
judging moderate precipitation will decrease slightly. Research on extreme precipitation
intensity based on QPE data needs to consider the error of QPE data.
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Figure 10. Observed Grade-2 precipitation and the corresponding satellite precipitation estimates in
four different ground stations: Hainan station (first row: 19.217◦N, 110.481◦E), Guangdong station
(second row: 23.15◦N, 113.017◦E), Jiangsu station (third row: 31.4◦N, 121◦E) and Guizhou station
(fourth row: 25.417◦N, 107.883◦E).
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Figure 11. POD and FAR of the CMORPH data under different classification thresholds. The first
and second columns are POD and FAR of Grade-1 precipitation, and the third and fourth columns
are POD and FAR of Grade-2 precipitation. The standards corresponding to each line are displayed
on the left side of the line.
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4. Conclusions

In this study, the overall and seasonal average performances of two different global
satellite QPE data sets were compared and validated based on the in-situ precipitation
data obtained from 2167 rain gauge stations in China from 2016 to 2020. Furthermore,



Remote Sens. 2023, 15, 1856 16 of 19

the possible influences of the errors on determining the precipitation intensity grade were
also discussed. This study proposed that when using global gridded satellite QPE data
for climate or meteorological studies, especially when only the precipitation intensity
grade is used, we should carefully consider the accuracy of the data and even make some
corrections. The main conclusions are as follows.

Compared with the CMORPH data, the errors of the GPM data were relatively small.
Moreover, the errors of the two gridded satellite QPE data (GPM and CMORPH) showed
some seasonal variation characteristics. For these two QPE data sets, the high-error area
was the most widely distributed in summer, covering eastern and southern China, while
the high-error areas in spring and autumn were mainly in Guangdong Province and Hainan
Province. In addition to northern China in winter, a strong correlation was found between
the GPM data and in-situ data at other times and in other regions. However, the correlation
between the CMORPH data and in-situ data was poor, which may be because it is not
adjusted with seasonal GPCP SG surface precipitation data. In addition, the production
of the CMORPH data without the use of DPR data and algorithms that take into account
more factors (such as the vertical structure of the atmosphere and the type of precipitation)
also contributed to the poor performance of the CMORPH data compared to GPM data.

When discussing the influence of the error between satellite QPE data and the in-
situ precipitation data on the accuracy of classification, we were surprised to find that
with the increase in precipitation intensity, the related satellite QPE data often obviously
underestimated extreme precipitation (both the GPM data with good performance in error
analysis and CMORPH data with poor performance in error analysis), although they tended
to overestimate precipitation according to the statistics of all precipitation greater than 0
mm/h from 2016 to 2020 (possibly affected by a large number of weak precipitation cases).
This led to the lower accuracy of the satellite QPE data judgment for precipitation with a
higher intensity grade. When the threshold value of heavy precipitation was reduced, the
accuracy of the satellite QPE data division increased, but the accuracy of the satellite QPE
data of moderate precipitation decreased. Therefore, considering the different thresholds
used in this study (the definition of heavy rain in China was 8.1–16 mm/h, but the accuracy
of the satellite QPE data when using 8.1 mm/h as the threshold was very different from that
when using 16 mm/h), it is necessary to be aware of the great impact of the errors of these
gridded precipitation products on the experiments over China, particularly in determining
precipitation intensity grades. Using advanced scientific data matching methods and
incorporating more types of high-resolution QPE data can improve the credibility of the
conclusion regarding precipitation intensity classification. Further research can explore
these avenues to make the findings more robust and scientifically sound.

Author Contributions: Conceptualization, X.W. and Z.L.; methodology, X.W.; software, X.W; valida-
tion, Y.Y.; formal analysis, X.W.; investigation, X.W. and Y.Y.; resources, Y.Y. and B.L.; data curation,
Y.Y.; writing—original draft preparation, X.W.; writing—review and editing, Y.Y. and B.L.; visualiza-
tion, B.L.; supervision, B.L.; project administration, B.L.; funding acquisition, B.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No.
41975020).

Data Availability Statement: Publicly available data sets were analyzed in this study. These data
can be found here: (1) CMORPH data: https://www.ncei.noaa.gov/data/cmorph-high-resolution-
global-precipitation-estimates/access/30min/8km/ (accessed on 3 March 2019). (2) GPM data: https:
//gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGHH.06/ (accessed on 18 June 2019).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/30min/8km/
https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/30min/8km/
https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGHH.06/
https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGHH.06/


Remote Sens. 2023, 15, 1856 17 of 19

References
1. Dai, A.; Giorgi, F.; Trenberth, K.E. Observed and model-simulated diurnal cycles of precipitation over the contiguous United

States. J. Geophys. Res. Atmos. 1999, 104, 6377–6402. [CrossRef]
2. Hossain, F.; Anagnostou, E.N. Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for

flood prediction. J. Geophys. Res. Atmos. 2005, 110, D06115. [CrossRef]
3. Daly, C. Guidelines for assessing the suitability of spatial climate data sets. Int. J. Clim. 2006, 26, 707–721. [CrossRef]
4. Ebert, E.; Janowiak, J.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates From Satellite Observations. Bull. Am.

Meteorol. Soc. 2007, 88, 47–64. [CrossRef]
5. Funk, C.C.; Peterson, P.; Huffman, G.J.; Landsfeld, M.F.; Peters-Lidard, C.; Davenport, F.; Shukla, S.; Peterson, S.; Pedreros,

D.H.; Ruane, A.C.; et al. Introducing and Evaluating the Climate Hazards Center IMERG with Stations (CHIMES): Timely
Station-Enhanced Integrated Multisatellite Retrievals for Global Precipitation Measurement. Bull. Am. Meteorol. Soc. 2022, 103,
E429–E454. [CrossRef]

6. Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res.
Atmos. 2014, 119, 3063–3075. [CrossRef]

7. Rudolf, B.; Fuchs, T.; Schneider, U.; Meyer-Christoffer, A. Introduction of the Global Precipitation Climatology Centre (GPCC);
Deutscher Wetterdienst: Offenbach, Germany, 2003.

8. Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U.; Ziese, M. A description of the global land-
surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial
(trend) analysis from 1901–present. Earth Syst. Sci. Data 2013, 5, 71–99. [CrossRef]

9. Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s new land surface precipitation climatology
based on quality-controlled in-situ data and its role in quantifying the global water cycle. Theor. Appl. Clim. 2013, 115, 15–40.
[CrossRef]

10. Xie, P.; Rudolf, B.; Schneider, U.; Arkin, P.A. Gauge-based monthly analysis of global land precipitation from 1971 to 1994. J.
Geophys. Res. Atmos. 1996, 101, 19023–19034. [CrossRef]

11. New, M.; Hulme, M.; Jones, P. Representing Twentieth-Century Space–Time Climate Variability. Part II: Development of 1901–96
Monthly Grids of Terrestrial Surface Climate. J. Clim. 2000, 13, 2217–2238. [CrossRef]

12. Ciach, G.J. Local Random Errors in Tipping-Bucket Rain Gauge Measurements. J. Atmospheric Ocean. Technol. 2003, 20, 752–759.
[CrossRef]

13. Chen, Y.; Weng, F.; Han, Y.; Liu, Q. Validation of the Community Radiative Transfer Model by using CloudSat data. J. Geophys.
Res. Atmos. 2008, 113, D00A03. [CrossRef]

14. Hofstra, N.; Haylock, M.; New, M.; Jones, P.; Frei, C. Comparison of six methods for the interpolation of daily, European climate
data. J. Geophys. Res. Atmos. 2008, 113, D21110. [CrossRef]

15. Min, M.; Wu, C.; Li, C.; Liu, H.; Xu, N.; Wu, X.; Chen, L.; Wang, F.; Sun, F.; Qin, D.; et al. Developing the science product algorithm
testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteorol. Res. 2017, 31, 708–719.
[CrossRef]

16. Letu, H.; Nagao, T.M.; Nakajima, T.Y.; Riedi, J.; Ishimoto, H.; Baran, A.J.; Shang, H.; Sekiguchi, M.; Kikuchi, M. Ice Cloud
Properties From Himawari-8/AHI Next-Generation Geostationary Satellite: Capability of the AHI to Monitor the DC Cloud
Generation Process. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3229–3239. [CrossRef]

17. Spencer, R.W. Global Oceanic Precipitation from the MSU during 1979—91 and Comparisons to Other Climatologies. J. Clim.
1993, 6, 1301–1326. [CrossRef]

18. Ferraro, R.R. Special sensor microwave imager derived global rainfall estimates for climatological applications. J. Geophys. Res.
Atmos. 1997, 102, 16715–16735. [CrossRef]

19. Xie, P.; Arkin, P.A. Global Monthly Precipitation Estimates from Satellite-Observed Outgoing Longwave Radiation. J. Clim. 1998,
11, 137–164. [CrossRef]

20. Fu, Y.; Pan, X.; Liu, G.; Li, R.; Zhong, L. Characteristics of Precipitation Based on Cloud Brightness Temperatures and Storm Tops
in Summer Tibetan Plateau. Chin. J. Atmos. Sci. 2016, 40, 102–120. (In Chinese) [CrossRef]

21. Li, G.; Chen, H.; Xu, M.; Zhao, C.; Zhong, L.; Li, R.; Fu, Y.; Gao, Y. Impacts of Topographic Complexity on Modeling Moisture
Transport and Precipitation over the Tibetan Plateau in Summer. Adv. Atmospheric Sci. 2022, 39, 1151–1166. [CrossRef]

22. Ma, Q.; Li, Y.; Feng, H.; Yu, Q.; Zou, Y.; Liu, F.; Pulatov, B. Performance evaluation and correction of precipitation data using the
20-year IMERG and TMPA precipitation products in diverse subregions of China. Atmospheric Res. 2020, 249, 105304. [CrossRef]

23. Zhang, Y.; Wu, C.; Yeh, P.J.-F.; Li, J.; Hu, B.X.; Feng, P.; Lei, Y. Evaluation of multi-satellite precipitation products in estimating
precipitation extremes over mainland China at annual, seasonal and monthly scales. Atmospheric Res. 2022, 279, 106387. [CrossRef]

24. Ghaderpour, E.; Mazzanti, P.; Mugnozza, G.S.; Bozzano, F. Coherency and phase delay analyses between land cover and climate
across Italy via the least-squares wavelet software. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103241. [CrossRef]

25. Theon, J.S. The tropical rainfall measuring mission (TRMM). Adv. Space Res. 1994, 14, 159–165. [CrossRef]
26. Kazemzadeh, M.; Hashemi, H.; Jamali, S.; Uvo, C.B.; Berndtsson, R.; Huffman, G.J. Detecting the Greatest Changes in Global

Satellite-Based Precipitation Observations. Remote Sens. 2022, 14, 5433. [CrossRef]

http://doi.org/10.1029/98JD02720
http://doi.org/10.1029/2005JD005831
http://doi.org/10.1002/joc.1322
http://doi.org/10.1175/BAMS-88-1-47
http://doi.org/10.1175/BAMS-D-20-0245.1
http://doi.org/10.1002/2013JD020686
http://doi.org/10.5194/essd-5-71-2013
http://doi.org/10.1007/s00704-013-0860-x
http://doi.org/10.1029/96JD01553
http://doi.org/10.1175/1520-0442(2000)013&lt;2217:RTCSTC&gt;2.0.CO;2
http://doi.org/10.1175/1520-0426(2003)20&lt;752:LREITB&gt;2.0.CO;2
http://doi.org/10.1029/2007JD009561
http://doi.org/10.1029/2008JD010100
http://doi.org/10.1007/s13351-017-6161-z
http://doi.org/10.1109/TGRS.2018.2882803
http://doi.org/10.1175/1520-0442(1993)006&lt;1301:GOPFTM&gt;2.0.CO;2
http://doi.org/10.1029/97JD01210
http://doi.org/10.1175/1520-0442(1998)011&lt;0137:GMPEFS&gt;2.0.CO;2
http://doi.org/10.3878/j.issn.1006-9895.1507.15165
http://doi.org/10.1007/s00376-022-1409-7
http://doi.org/10.1016/j.atmosres.2020.105304
http://doi.org/10.1016/j.atmosres.2022.106387
http://doi.org/10.1016/j.jag.2023.103241
http://doi.org/10.1016/0273-1177(94)90210-0
http://doi.org/10.3390/rs14215433


Remote Sens. 2023, 15, 1856 18 of 19

27. Huffman, G.J.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Xie, P. NASA Global Precipitation Measurement (GPM)
Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc. 2015, Version 4.5, p. 26. Available
online: http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf (accessed on 16 November 2015).

28. Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive
Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [CrossRef]

29. Liu, Z.; Min, M.; Li, J.; Sun, F.; Di, D.; Ai, Y.; Li, Z.; Qin, D.; Li, G.; Lin, Y.; et al. Local Severe Storm Tracking and Warning
in Pre-Convection Stage from the New Generation Geostationary Weather Satellite Measurements. Remote Sens. 2019, 11, 383.
[CrossRef]

30. Chen, S.; Li, W.-B.; Du, Y.-D.; Mao, C.-Y.; Zhang, L. Urbanization effect on precipitation over the Pearl River Delta based on
CMORPH data. Adv. Clim. Chang. Res. 2015, 6, 16–22. [CrossRef]

31. Huang, A.; Zhao, Y.; Zhou, Y.; Yang, B.; Zhang, L.; Dong, X.; Fang, D.; Wu, Y. Evaluation of multisatellite precipitation products
by use of ground-based data over China. J. Geophys. Res. Atmos. 2016, 121, 10654–10675. [CrossRef]

32. Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A
comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697.
[CrossRef]

33. Tian, Y.; Peters-Lidard, C.D.; Choudhury, B.J.; Garcia, M. Multitemporal Analysis of TRMM-Based Satellite Precipitation Products
for Land Data Assimilation Applications. J. Hydrometeorol. 2007, 8, 1165–1183. [CrossRef]

34. Yang, Y.; Luo, Y. Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the
arid region of northwest China. Theor. Appl. Clim. 2014, 118, 429–445. [CrossRef]

35. Nan, L.; Yang, M.; Wang, H.; Xiang, Z.; Hao, S. Comprehensive Evaluation of Global Precipitation Measurement Mission (GPM)
IMERG Precipitation Products over Mainland China. Water 2021, 13, 3381. [CrossRef]

36. Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme
precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [CrossRef]

37. Lei, H.; Zhao, H.; Ao, T. Ground validation and error decomposition for six state-of-the-art satellite precipitation products over
mainland China. Atmospheric Res. 2022, 269, 106017. [CrossRef]

38. Shawky, M.; Moussa, A.; Hassan, Q.K.; El-Sheimy, N. Performance Assessment of Sub-Daily and Daily Precipitation Estimates
Derived from GPM and GSMaP Products over an Arid Environment. Remote Sens. 2019, 11, 2840. [CrossRef]

39. Ren, Z.; Zhao, P.; Zhang, Q.; Zhang, Z.; Cao, L.; Yang, Y.; Zou, F.; Zhao, Y.; Zhao, H.; Chen, Z. Quality control procedures for
hourly precipitation data from automatic weather stations in China. Meteorol. Mon. 2010, 36, 123–132. (In Chinese)

40. Shen, Y.; Xiong, A.; Wang, Y.; Xie, P. Performance of high-resolution satellite precipitation products over China. J. Geophys. Res.
Atmos. 2010, 115, D02114. [CrossRef]

41. Yu, Y.; Schneider, U.; Yang, S.; Becker, A.; Ren, Z. Evaluating the GPCC Full Data Daily Analysis Version 2018 through ETCCDI
indices and comparison with station observations over mainland of China. Theor. Appl. Clim. 2020, 142, 835–845. [CrossRef]

42. Smith, E.A.; Asrar, G.; Furuhama, Y.; Ginati, A.; Mugnai, A.; Nakamura, K.; Adler, R.F.; Chou, M.-D.; Desbois, M.;
Durning, J.F.; et al. International Global Precipitation Measurement (GPM) Program and Mission: An Overview. In Measuring
Precipitation From Space: EURAINSAT and the Future; Levizzani, V., Bauer, P., Turk, F.J., Eds.; Springer: Dordrecht, The Netherlands,
2007; pp. 611–653. [CrossRef]

43. Ehsani, M.R.; Behrangi, A.; Adhikari, A.; Song, Y.; Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. Assessment of the
Advanced Very High-Resolution Radiometer (AVHRR) for Snowfall Retrieval in High Latitudes Using CloudSat and Machine
Learning. J. Hydrometeorol. 2021, 22, 1591–1608. [CrossRef]

44. Li, Q.; Zhang, W.; Yi, L.; Liu, J.; Chen, H. Accuracy evaluation and comparison of GPM and TRMM precipitation product over
Mainland China. Shuikexue Jinzhan Adv. Water Sci. 2018, 29, 303–313. [CrossRef]

45. Hosseini-Moghari, S.-M.; Sun, S.; Tang, Q.; Groisman, P.Y. Scaling of precipitation extremes with temperature in China’s mainland:
Evaluation of satellite precipitation data. J. Hydrol. 2021, 606, 127391. [CrossRef]

46. Zeng, N.; Ding, Y.; Pan, J.; Wang, H.; Gregg, J. Climate Change–the Chinese Challenge. Science 2008, 319, 730–731. [CrossRef]
47. Huang, H.; Chen, F. Precipitation Microphysics of Tropical Cyclones Over the Western North Pacific Based on GPM DPR

Observations: A Preliminary Analysis. J. Geophys. Res. Atmos. 2019, 124, 3124–3142. [CrossRef]
48. Qi, W.; Yong, B.; Gourley, J.J. Monitoring the super typhoon lekima by GPM-based near-real-time satellite precipitation estimates.

J. Hydrol. 2021, 603, 126968. [CrossRef]
49. Filho, A.J.P.; Carbone, R.E.; Tuttle, J.D. Convective Rainfall Systems in the La Plata Basin. Atmos. Clim. Sci. 2014, 04, 757–778.

[CrossRef]

http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf
http://doi.org/10.1175/1525-7541(2004)005&lt;0487:CAMTPG&gt;2.0.CO;2
http://doi.org/10.3390/rs11040383
http://doi.org/10.1016/j.accre.2015.08.002
http://doi.org/10.1002/2016JD025456
http://doi.org/10.1016/j.rse.2020.111697
http://doi.org/10.1175/2007JHM859.1
http://doi.org/10.1007/s00704-013-1072-0
http://doi.org/10.3390/w13233381
http://doi.org/10.1016/j.atmosres.2019.03.001
http://doi.org/10.1016/j.atmosres.2022.106017
http://doi.org/10.3390/rs11232840
http://doi.org/10.1029/2009JD012097
http://doi.org/10.1007/s00704-020-03352-8
http://doi.org/10.1007/978-1-4020-5835-6_48
http://doi.org/10.1175/JHM-D-20-0240.1
http://doi.org/10.14042/j.cnki.32.1309.2018.03.001
http://doi.org/10.1016/j.jhydrol.2021.127391
http://doi.org/10.1126/science.1153368
http://doi.org/10.1029/2018JD029454
http://doi.org/10.1016/j.jhydrol.2021.126968
http://doi.org/10.4236/acs.2014.44068


Remote Sens. 2023, 15, 1856 19 of 19

50. Min, M.; Bai, C.; Guo, J.; Sun, F.; Liu, C.; Wang, F.; Xu, H.; Tang, S.; Li, B.; Di, D.; et al. Estimating Summertime Precipitation
from Himawari-8 and Global Forecast System Based on Machine Learning. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2557–2570.
[CrossRef]

51. Ehsani, M.R.; Behrangi, A. A comparison of correction factors for the systematic gauge-measurement errors to improve the global
land precipitation estimate. J. Hydrol. 2022, 610, 127884. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TGRS.2018.2874950
http://doi.org/10.1016/j.jhydrol.2022.127884

	Introduction 
	Data and Methods 
	Results and Discussions 
	Overall Error Distribution 
	Error Seasonal Distribution 
	Quality of Satellite Precipitation Estimate Products under Three Precipitation Grades 

	Conclusions 
	References

