
Citation: Ma, T.; Hu, Y.; Wang, J.;

Beckline, M.; Pang, D.; Chen, L.; Ni,

X.; Li, X. A Novel Vegetation Index

Approach Using Sentinel-2 Data and

Random Forest Algorithm for

Estimating Forest Stock Volume in

the Helan Mountains, Ningxia, China.

Remote Sens. 2023, 15, 1853.

https://doi.org/10.3390/rs15071853

Academic Editor: Jochem Verrelst

Received: 28 February 2023

Revised: 29 March 2023

Accepted: 29 March 2023

Published: 30 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Novel Vegetation Index Approach Using Sentinel-2 Data and
Random Forest Algorithm for Estimating Forest Stock Volume
in the Helan Mountains, Ningxia, China
Taiyong Ma 1 , Yang Hu 2,3,4,5,* , Jie Wang 6 , Mukete Beckline 7, Danbo Pang 2,3,4,5, Lin Chen 2,3,4,5,
Xilu Ni 2,3,4,5 and Xuebin Li 2,3,4,5

1 School of Agriculture, Ningxia University, Yinchuan 750021, China
2 Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern

China, Yinchuan 750021, China
3 Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of

Ministry of Education, Yinchuan 750021, China
4 School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
5 Ningxia Helan Mountain Forest Ecosystem Orientation Observation Research Station, Yinchuan 750021, China
6 College of Grassland Science and Technology, China Agricultural University, Beijing 100093, China
7 Research and Development Unit, Agrosystems Group, Tiko P.O. Box 76, Southwest Region, Cameroon
* Correspondence: huyang@nxu.edu.cn

Abstract: Forest stock volume (FSV) is a major indicator of forest ecosystem health and it also plays
an important part in understanding the worldwide carbon cycle. A precise comprehension of the
distribution patterns and variations of FSV is crucial in the assessment of the sequestration potential
of forest carbon and optimization of the management programs of the forest carbon sink. In this
study, a novel vegetation index based on Sentinel-2 data for modeling FSV with the random forest
(RF) algorithm in Helan Mountains, China has been developed. Among all the other variables and
with a correlation coefficient of r = 0.778, the novel vegetation index (NDVIRE) developed based
on the red-edge bands of the Sentinel-2 data was the most significant. Meanwhile, the model that
combined bands and vegetation indices (bands + VIs-based model, BVBM) performed best in the
training phase (R2 = 0.93, RMSE = 10.82 m3ha−1) and testing phase (R2 = 0.60, RMSE = 27.05 m3ha−1).
Using the best training model, the FSV of the Helan Mountains was first mapped and an accuracy
of 80.46% was obtained. The novel vegetation index developed based on the red-edge bands of the
Sentinel-2 data and RF algorithm is thus the most effective method to assess the FSV. In addition, this
method can provide a new method to estimate the FSV in other areas, especially in the management
of forest carbon sequestration.

Keywords: forest stock volume; NDVIRE; Sentinel-2; random forest; Helan mountains

1. Introduction

Forest stock volume (FSV) refers to the total volume of tree trunks growing within
a certain area of a forest, and it is thus an important indicator for measuring the total
forest resources within that area [1]. It is also an important parameter to measure forest
quality, forest carbon sequestration potentials, and an evaluation of the effectiveness of
forest management [2]. Around the globe and ever since the Chinese government formally
proposed a strategic plan for carbon peaking and carbon neutrality in 2020, global warming
has drawn widespread attention [3–5]. This is because the carbon sink capacity of forests
is an effective measure to mitigate global warming. Through the change in FSV [6], the
dynamic change in carbon storage can be understood and the carbon sink capacity of the
forest ecosystem can be obtained. Therefore, FSV studies are not only paramount in the
global carbon cycle, but also practically significant in the realization of China’s dual-carbon
objectives.
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The traditional FSV estimation method is mainly based on the manual measurement
of the diameter at breast height (DBH) and tree height on the ground [7]. For fine-scale
FSV estimation, it is indeed possible to obtain higher-precision estimation results [8].
However, if extended to a large-scale forest area, the small size and small number of
sample plots will make it hard to obtain results close to the actual level [9]. Furthermore,
forest ecosystems generally exhibit high spatial heterogeneity and inaccessibility [10,11].
Therefore, at this stage, it is not recommended to estimate FSV purely by manual field
surveys. The advent of remote sensing has provided a solution to the challenge of large-
scale FSV estimation [1,8,12]. By utilizing satellite images, it is now possible to obtain
information about forest structures and compositions across vast areas, without the need
for extensive ground measurements [13]. This technology has revolutionized the field of
forest inventory, allowing for a more efficient and accurate estimation of FSV at a large-scale.
Remote sensing images can be used in combination with a small number of ground samples
to obtain highly accurate estimates of FSV or biomass [10]. By calibrating remote sensing
data with ground-based measurements, it is possible to create statistical models that can
accurately predict FSV at a much larger scale [14]. This combined approach has significant
advantages over traditional manual field surveys, as it allows for a more efficient and
cost-effective estimation of FSV across large areas. Furthermore, the use of remote sensing
data can provide a more comprehensive understanding of forest ecosystems, allowing for
more informed management decisions.

However, as more and more optical remote sensing images are applied to FSV studies,
researchers have focused on the light saturation phenomenon that affects FSV estimation
results [15–17]. Using the band reflectance of optical remote sensing images, all kinds of
vegetation indices can be calculated. These traditional indices are usually used to estimate the
corresponding FSV or biomass [18–22]. However, as the forest ages, the traditional vegetation
indices will no longer respond accordingly to the decrease or increase in tree age [15,16]. This
is the phenomenon of overestimation of low values and underestimation of high values that
often occurs in FSV estimation studies. This is a result of the insensitivity of spectral variables
to changes in FSV, especially in forest areas with high vegetation coverage. Previous studies
have explored a variety of methods to decrease the influence of light saturation phenomena on
remote sensing estimation. These studies include the utilization of spatial regression models
and multi-source remote sensing image fusion [15,17]. Unfortunately, being an FSV study
solely on a specific region, it has generalized limitations and it does not apply to other regions.

The present study proposes a novel vegetation index aimed at improving the ability
to estimate FSV from remote sensing images. According to the literature, it is known
that the Sentinel-2 imagery covers 13 spectral bands [23–26], from visible light to short-
wave infrared, and each band has different spatial resolutions. Among all optical satellites,
Sentinel-2 is the only satellite that includes three spectral bands in the red-edge range [24,26].
These bands are very effective in monitoring vegetation change information. Such as to
estimate the FSV of the Helan Mountains, the vegetation reflectance of these three red-edge
bands was used to calculate the novel vegetation index [27]. Similarly, by setting the
step size, the optimal weighting coefficient of each red-edge band was determined. As
this study was carried out the a typical semi-arid montane forest ecosystem of the Helan
Mountains, this study may serve as a knowledge base for related research in similar areas
across the globe.

Furthermore, the present study aims at developing a novel vegetation index based
on Sentinel-2 multiple red-edge bands. It also combines the original band information
and traditional vegetation indices to estimate the FSV of the Helan Mountains under the
machine learning algorithm. The study will accomplish the following three goals: (1) to
explore the potentials of the novel vegetation index developed based on Sentinel-2 data
to estimate the FSV; (2) to compare the ability of the different variable combinations to
estimate FSV and determine the best model among the three models developed in this
study; (3) to map the FSV distribution of the study area by the best variable combination
obtained in objective (2).
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2. Materials and Methods
2.1. Study Area

This study focused on the forest resources in the Helan Mountains National Nature
Reserve (38◦19′–39◦22′ N, 105◦49′–106◦41′ E) in Ningxia Province (Figure 1). The Helan
Mountains belongs to the temperate arid climate zone with typical continental monsoon
climate characteristics. The lack of rain and snow all year round leads to a dry climate.
Although the average annual temperature is −0.7 ◦C, there is a wide seasonal variation
in precipitation. For instance, the average precipitation from June to September, which
accounts for over 62% of the annual precipitation, reaches 260.2 mm. Due to the steep moun-
tain and complex terrain, the Helan Mountains are an important dividing line between
climate and vegetation in western China. To the east is the grassland climate and grassland
vegetation, and to the west is the desert climate and desert vegetation. It is located at the
junction of the Qinghai-Tibetan Plateau, the Mongolian Plateau, and the North China Plain.
The special geographical environment has shaped the unique biological groups of the
Helan Mountains, making it the only biodiversity hotspot in northern China. Furthermore,
the Helan Mountains National Nature Reserve in Ningxia Province has played a major role
in studies on the virtuous cycle of vegetation development, succession, and restoration of
ecosystems in semi-arid areas.

Figure 1. The geographical location of the Helan Mountains.



Remote Sens. 2023, 15, 1853 4 of 17

2.2. Field Data Collection

The field data were obtained from the 2020 forest resources management “one map”
annual update data released by the Ningxia Forestry Survey and Planning Institute. Using
these data reduces the workload of field surveys, and it provides access to a large amount
of information on ground sample plots. Due to the wide distribution of national surface
survey plots, not all sample plots can be surveyed on the spot, and there is a certain degree
of uncertainty in these data. Therefore, based on previous studies, the NDVI obtained from
Sentinel-2 data was used to screen plots and remove outlier data (NDVI < 0.2) [28,29]. In
the end, 881 small class data were extracted for the modeling analysis, and took the hectare
stock volume of living trees as the unit area FSV of each sample plot.

Random grouping was used to divide the training data and the testing data. Among
the 881 sample plots, 530 (about 60%) were used as the training data and 351 (about 40%)
were used as the testing data. Table 1 counts the characteristics of the field FSV training
data and testing data, respectively.

Table 1. Descriptive statistics of the FSV training and testing data.

Statistical Category Training Data (m3ha−1) Testing Data (m3ha−1)

Minimum 3.30 6.40
Maximum 163.20 162.30

Median 45.15 48.80
Mean 56.66 63.84

Number of sample plots 530 351

2.3. The Acquiring and Processing of Sentinel-2 Data

Sentinel-2 covers spectral information in 13 bands, including visible light, near-
infrared, red-edge, and short-wave infrared. The Sentinel-2 images are directly extracted
from the processed surface reflectance product (COPERNICUS/S2_SR) through the Google
Earth Engine (GEE) platform. To match the date of field data and consider the influence of
cloud coverage of remote sensing images in the study area, the product date is selected from
1 July 2020 to 31 August 2020. The declouding process uses the method officially announced
by the GEE to directly mask out the pixels whose pixel_QA band pixel attributes are 3
and 5. Following cloud removal, the overlaid images were medianized using the median
function, followed by coordinate system matching and resampling to 30 m resolution.

2.3.1. Original Band Information

Then, the band information was extracted from the processed images using the vector
file of the ground sample. Eight bands (Table 2) of the Sentinel-2 data were selected for
this study [30–32], excluding bands 1, 9, 10, 11, and 12 because these bands are mainly
associated with the atmosphere or water vapor.

Table 2. Selected band information of Sentinel-2.

Sentinel-2
Bands Description

Central
Wavelength

(nm)

Bandwidth
(nm)

Resolution
(m)

Resampling
Resolution

(m)

B2 Blue 492.4 66 10 30
B3 Green 559.8 36 10 30
B4 Red 664.6 31 10 30
B5 Red Edge 1 704.1 15 20 30
B6 Red Edge 2 740.5 15 20 30
B7 Red Edge 3 782.8 20 20 30
B8 NIR 832.8 106 10 30

B8A Narrow NIR 864.7 21 20 30
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2.3.2. Traditional Vegetation Indices

The potential of six traditional vegetation indices for estimating FSV, calculated from
the band reflectance extracted from the Sentinel-2 data (Table 3) were initially tested.
Normalized Difference Vegetation Index (NDVI) reflects the background influence of plant
canopy and is concerned with vegetation coverage. It is a vegetation index frequently
utilized for detecting the growth status of plants. The difference vegetation index (DVI)
can also reflect changes in vegetation coverage very well, and within a certain range of
vegetation coverage, the DVI rises with the growth of biomass. The ratio vegetation Index
(RVI) is a highly sensitive indicator parameter for monitoring green plants, which can
be used to detect vegetation status and estimate the FSV. This index is the ratio of light
scattered in the near-infrared to light absorbed in the red band, which lessens the effect
of the atmosphere and terrain. The perpendicular vegetation index (PVI) represents the
vertical distance from the vegetation pixel to the soil brightness line in the two-dimensional
coordinate system of R—NIR and is less sensitive to the atmosphere than other vegetation
indices. The transformed vegetation index (TVI) is based on the NDVI and introduces a
constant of 0.5 to convert the negative value that the NDVI may take into a positive value.
The EVI not only inherits the advantages of the NDVI, but also improves the saturation of
high vegetation areas, incomplete correction of atmospheric effects, and soil background.
The enhanced vegetation index (EVI) can improve the sensitivity of vegetation in high
biomass areas and reduce the influence of soil background and atmosphere.

Table 3. Several traditional vegetation indices calculated based on Sentinel-2 data.

Original Vegetation Indices Formulas References

NDVI (ρNIR − ρRed)/(ρNIR + ρRed) [20]
DVI ρNIR − ρRed [33]
RVI ρNIR/ρRed [34]
PVI 0.939ρNIR − 0.344ρRed + 0.9 [34]
TVI

√
(ρNIR − ρRed)/(ρNIR + ρRed) + 0.5 [34]

EVI 2.5(ρNIR − ρRed)/(ρNIR + 6ρRed − 7.5ρBlue + 1) [20]

2.3.3. Novel Vegetation Index Based on Red-Edge Bands

The accuracy of traditional vegetation indices to estimate FSV is severely affected
by the light saturation phenomenon. While the three red-edge bands in the Sentinel-2
data have been proven to be an effective way to improve the estimation of the forest
parameters, unfortunately only one or two of the red-edge bands were used in existing
indices. Therefore, to maximize the ability to estimate FSV using the three red-edge bands
in the Sentinel-2 data, a novel vegetation index based on existing NDVI construction
principles, the 4-band red-edge NDVI (NDVIRE), such as Formula (1) was developed.
According to the novel index construction rules, as elaborated in previous studies, in the
NDVIRE formula, instead of using the NIR band, the reflectance values of RE3 and RE2 are
averaged using weights and are substituted. Similarly, the Red band is replaced with a
weighted average of the reflectance values of RE1 and RE2 [27]. The weighting coefficients
“α” and “β” are designed to define the optimal proportion of each band in the construction
of the novel index.

NDVIRE =
(α·RRE3 + (1− α)·RRE2)− (β·RRed + (1− β)·RRE1)

(α·RRE3 + (1− α)·RRE2) + (β·RRed + (1− β)·RRE1)
(1)

where RRE1, RRE2, RRE3, and RRed are the reflectance of B5, B6, B7, and B4, respectively. “α”
and “β” represent weighting coefficients. The value range of “α” and “β” is (0,1), and the
step size is 0.1.
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2.4. Acquisition of the Forest Distribution Pattern in the Helan Mountains

The Global PALSAR-2/PALSAR Forest/Non-Forest Map product utilizes synthetic
aperture radar (SAR) images obtained from the phased array type L-band synthetic aperture
radar (PALSAR) on the ALOS-2 satellite to generate a global map of forest and non-forest
areas. The classification accuracy of this map, in terms of forest and non-forest information,
can reach 90%. This product is widely used for monitoring forest changes, assessing
forest carbon storage, and providing information for forest management decisions. We
downloaded this product using the GEE and extracted the pixels defined as forest areas
within the Helan Mountains region, ultimately obtaining the forest distribution pattern of
the Helan Mountains.

2.5. Machine Learning Algorithm of Modeling FSV

The random forest (RF) is a machine learning algorithm that uses multiple decision
tree classifiers for classification and prediction. In recent years, studies on RF algorithms
have rapidly developed accompanied by large numbers of applied research carried out in
many fields. The RF algorithm is an efficient bagging-based integrated learning algorithm,
and numerous prior studies have shown that the RF algorithm performs well in regression
prediction [35–38]. Therefore, this study chooses the RF algorithm for modeling and
analysis. The RF algorithm operates by utilizing the bootstrap method, that involves
randomly sampling from the original population to create multiple samples. These samples
are then used to generate a set of decision trees (ntree). The RF algorithm achieves higher
accuracy and robustness by increasing the number of decision trees. At each splitting
node, the RF algorithm randomly selects a subset of predictors (mtry) to build each tree.
Additionally, there is no need to prune each tree. The RF algorithm employs the “out-of-
bag” (OOB) error procedure to independently build each tree based on the training data.
This procedure allows for the calculation of variable importance (VI) and OOB error for
each tree grown by the RF algorithm. An estimation of the OOB error can be obtained using
the following formula:

OOBerror =
1
n ∑n

i=1(yi − ŷi )
2 (2)

where yi is the measured FSV, ŷi is the predicted FSV, and n is the total number of OOB samples.
In this study, three RF-based models composed of bands and vegetation indices (VIs)

to estimate FSV, namely the bands-based model (BBM), VIs-based model (VBM), and bands
+ VIs-based model (BVBM) have been used.

2.6. Selecting Variables Using the VSURF Package

The VSURF package is a powerful tool for variable selection in regression problems
using the RF algorithm. It is a three-step process that involves eliminating irrelevant
variables, selecting relevant variables for interpretation, and improving prediction accuracy
by removing redundant variables. To begin, the first step of the process involves identifying
and eliminating irrelevant variables from the dataset. In the second step, all variables that
are associated with the response variable are selected for interpretation. Finally, in the third
step, redundant variables are removed to enhance the model’s prediction performance.
Once the relevant variables have been selected, the minimum mean square error (MSE)
is used to determine the optimal number of decision trees (ntree) and the number of
variables (mtry) to be used in the RF model. Initially, the ntree parameter is set to 500 and
mtry parameter is set to the total number of variables. Once the optimal parameters are
calculated, the RF regression model is established and tested.

2.7. Assessment of the Modeling Performance

This study utilized two metrics to assess the effectiveness of the RF model. The first
metric was the coefficient of determination (R2, Formula (3)), that indicates the extent to
which the independent variable can account for the variability in the dependent variable.
The second metric was the root mean square error (RMSE, Formula (4)), that represents the
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standard deviation of the difference between the observed data and the fitted model. A
higher R2 and a lower RMSE are indicative of a well-fitting model. The model is trained on
60% of the total samples, and the remaining 40% are used for testing. This approach allows
for accurate predictions while reducing the risk of over-fitting.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(4)

where yi is the measured FSV, ŷi is the predicted FSV, y is the mean measured FSV, i is the
same index, and n is the number of sample plots.

3. Results
3.1. Determination of the Optimal Novel Vegetation Index

According to the calculation formula of the novel vegetation index (NDVIRE), the
value range of the weighting coefficients “α” and “β” is (0,1), and the step size is 0.1, so
121 NDVIRE can be obtained. Python 3.10 software was used to calculate each NDVIRE
value of all small class data, and the Pearson correlation coefficient of each NDVIRE with
the FSV per unit area was also calculated. Results of the analysis are shown in Figure 2
(correlation is significant at the 0.01 level (two-tailed). In addition, the Pearson correlation
coefficient was also put between the traditional NDVI and unit area FSV in the figure for
comparison. Results showed the 47th NDVIRE to have the highest correlation coefficient
(r = 0.778), which is better than the traditional NDVI (r = 0.767), and its corresponding
values of “α” and “β” were 0.4 and 0.2, respectively. Therefore, the optimal NDVIRE was
determined and used for the subsequent modeling analysis.

Figure 2. Pearson correlation coefficients of the NDVI and NDVIRE with FSV per unit area.

3.2. Major Variables Selection and the Importance Related to the FSV Data

Two types of variables, the band (B2, B3, B4, B5, B6, B7, B8, and B8A) and vegeta-
tion index (NDVI, DVI, RVI, PVI, TVI, EVI, and NDVIRE) were selected to participate in
the modeling. Figures 3–5, represent the variable selection process of the three models
(BBM, VBM, and BVBM). Meanwhile, Table 4 shows the final variable selection results of
each model.
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Figure 3. The variables selection of BBM. (a,b) Removes the negatively important variables based on
the variable importance (VI) mean and standard deviation, respectively ((a), the threshold position is
represented by a solid red line that runs horizontally, and (b), the green segmented line represents
the predicted value given by the CART model, and the red line with dashes running horizontally
represents the minimum predicted value). (c) Gradually builds a random forest from only the most
important variables to all variables selected in the first step, and selects the corresponding variables
according to the average OOB error (the vertical solid red line indicates the minimum error position).
(d) Gives the number of variables meeting the requirements.

Figure 4. The variables selection of VBM. (a,b) Removes the negatively important variables based on
the VI mean and standard deviation, respectively ((a), the threshold position is represented by a solid
red line that runs horizontally, and (b), the green segmented line represents the predicted value given
by the CART model, and the red line with dashes running horizontally represents the minimum
predicted value). (c) Gradually builds a random forest from only the most important variables to all
variables selected in the first step, and selects the corresponding variables according to the average
OOB error (the vertical solid red line indicates the minimum error position). (d) Gives the number of
variables meeting the requirements.
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Figure 5. The variables selection of BVBM. (a,b) Removes the negatively important variables based
on the VI mean and standard deviation, respectively ((a), the threshold position is represented by
a solid red line that runs horizontally, and (b), the green segmented line represents the predicted
value given by the CART model, and the red line with dashes running horizontally represents the
minimum predicted value). (c) Gradually builds a random forest from only the most important
variables to all variables selected in the first step, and selects the corresponding variables according
to the average OOB error (the vertical solid red line indicates the minimum error position). (d) Gives
the number of variables meeting the requirements.

Table 4. The variables selection results using the VSURF package.

RF Models Variables Selected

BBM B4, B8, B2
VBM NDVIRE, TVI, EVI, DVI

BVBM NDVIRE, NDVI, EVI, DVI, B2

Furthermore, all predictor variables were ranked based on their ability to estimate
FSV using PercentIncMSE and IncNodePurity estimated from the OOB data. The greater
the value, the greater the significance of the variable (Figure 6). It is worth noting that the
novel vegetation index NDVIRE ranks first in importance under the two evaluation criteria.
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Figure 6. Importance ranking plot of all variables. Left, %IncMSE (percentage increase in the mean
square error, (a)), and right, IncNodePurity (increase in NodePurity, (b)).

3.3. Optimal Regression Model for the Three Models

To optimize the RF regression model, we need to find the optimal values for two
key parameters: “mtry”, which determines the number of variables randomly selected
as candidates for each split in the decision tree, and “ntree”, which determines the total
number of trees in the forest that have grown. To calculate the minimum error rate, an
iterative algorithm was used, known as an “error rate loop”, according to the number of
variables participating in the modeling in the three models. Figure 7 shows the determina-
tion process of the optimal mtry and ntree of the three models. The values of mtry, ntree,
and other performances of each model are summarized in Table 5.

3.4. Comparison of the Three Models Predicting FSV

In the training phase, BBM (Figure 8a) with an R2 = 0.92 is slightly better than VBM
(Figure 8c) with an R2 = 0.91. However, the RMSE = 11.90 m3ha−1 of the VBM is lower
than the RMSE = 12.23 m3ha−1 of the BBM. The BVBM (Figure 8e) has the highest R2 = 0.93
and the smallest RMSE = 10.82 m3ha−1. In the testing phase, the BBM (Figure 8b) with
an R2 = 0.59 and RMSE = 27.72 m3ha−1 performed almost the same as VBM (Figure 8d)
with an R2 = 0.59 and RMSE = 27.32 m3ha−1. Similarly, the BVBM (Figure 8f) had the best
performance with an R2 = 0.60 and RMSE = 27.05 m3ha−1. Obviously, the BVBM is the
optimal model in this study, and its predicted FSV is used as the final estimation result
to map the FSV. A summary of the data characteristics of FSV as predicted by the three
models is presented in Table 6.
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Figure 7. (a,c,e) are the distribution of error rate versus mtry; (b,d,f) are the distribution of the
error versus ntree; (a,b) are related to the BBM; (c,d) are related to the VBM; and (e,f) are related to
the BVBM.
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Table 5. The best mtry, ntree, and performance of the three models.

RF Models mtry ntree
Mean of
Squared

Residuals

% Var
Explained

BBM 1 468 636.68 56.77
VBM 1 494 612.33 58.42

BBVM 7 188 609.55 58.61

Figure 8. Comparison of the measured FSV and predicted FSV by the three models. (a), BBM in the
training phase. (b), BBM in the testing phase. (c), VBM in the training phase. (d), VBM in the testing
phase. (e), BVBM in the training phase. (f), BVBM in the testing phase.
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Table 6. Characterization of FSV predicted by the three models.

Statistical
Category

Training Phase (m3ha−1) Testing Phase (m3ha−1)

BBM VBM BVBM BBM VBM BVBM

Minimum 13.69 9.27 9.21 16.88 12.75 12.66
Maximum 143.83 145.66 144.76 127.55 143.64 142.48

Median 48.17 47.75 47.81 50.52 52.38 50.51
Mean 56.71 56.62 56.88 60.50 60.68 60.79

3.5. Mapping FSV Distribution of Helan Mountains

Based on the results shown in Figure 8, we have concluded that the BVBM is the
best-performing model in this study, and we calculated the FSV of the Helan Mountains
by the BVBM combined with the forest distribution pattern. Figure 9 is the final FSV map,
the minimum value of the unit area FSV of the Helan Mountains is 9.63 m3ha−1 and the
maximum value is 143.96 m3ha−1. The total amount of FSV in the Helan Mountains was
estimated to be 1,062,727.25 m3. According to the FSV data released by the Helan Mountains
National Nature Reserve in Ningxia Province (http://www.hlsbhq.com/, accessed on 22
January 2023), the total FSV of the Helan Mountains is 1,320,721.7 m3. Therefore, the
accuracy of the BVBM to predict the FSV in the Helan Mountains reached 80.46%.

Figure 9. Spatial distribution of the predicted FSV, and forest distribution of the Helan Mountains.

http://www.hlsbhq.com/
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4. Discussion

The carbon sequestration capacity of montane forest ecosystems is very significant
and of prime importance in the global carbon cycle. Due to their geographical location
and climatic characteristics, montane forests are an integral part of the entire terrestrial
forest ecosystem [35,39]. The Helan Mountains are highly representative of montane forest
ecosystems, their FSV estimation has a very high reference value for studies across similar
landscapes. However, as a result of the inaccessibility and complex spatial heterogeneity of
montane forest ecosystems, it is often a daunting task to obtain a sufficient number and
sufficiently representative ground samples to estimate FSV in large-scale areas. Although
remote sensing images have made it easier, issues related to low-value overestimation
and high-value underestimation still occur [15,17]. However, as more and more red-edge
bands in Sentinel-2 data are applied, the accurate estimation of vegetation parameters has
been greatly improved [1,2]. For example, based on the red-edge band of Sentinel-2, Liu
et al. [27] developed several new vegetation indices to estimate the photosynthetic and
non-photosynthetic fractional vegetation cover of alpine grasslands on the Qinghai-Tibetan
Plateau. Despite exhibiting a more sensitive response at low vegetation coverage, their
study found that compared with traditional vegetation indices, the novel vegetation indices
can effectively alleviate the high vegetation saturation problem at low vegetation coverage.
In a related study in Zhejiang Province, China, Fang et al. [2] used the optimal variable
selection method of different dominant tree species to estimate FSV. Their selected variables
included a variety of vegetation indices, such as SRre, MSRre, CIre, and NDI45 developed
based on the Sentinel-2 red-edge bands. Almost all of these variables appear in the final
variable selection results, which also prove the potential of the red-edge band in estimating
forest parameters.

In exploring the potential of NDVIRE to estimate FSV based on the Sentinel-2 red-edge
bands, in the variable importance results of the VBM and BVBM, the NDVIRE ranks first.
It is worth mentioning that the introduction of weighting coefficients “α” and “β” played
a key role in the successful construction of the NDVIRE. The results of this study also
indicate that the model’s estimation accuracy of FSV is significantly improved due to the
addition of the NDVIRE. First of all, an estimation accuracy of 80.46% is impressive in the
research on FSV estimation. Moreover, according to Table 6, we found that the minimum
and maximum values in the estimated results of the VBM and BVBM with the NDVIRE
involvement are superior to those in the BBM, indicating that the NDVIRE mitigates the
issue of light saturation to some extent. In addition, the mean values of FSV predicted by
the BVBM in the training phase (56.88 m3ha−1) and the testing phase (60.79 m3ha−1) are
also very close to the mean values of the training data (56.66 m3ha−1) and the testing data
(63.84 m3ha−1).

Despite the proven efficiency and robustness of the RF algorithm through numerous
studies [8,21,35–38], there is still a limitation observed in its ability to predict the minimum
and maximum values of FSV in both the training and testing phases when compared
to the actual training and testing data. This limitation results in overestimation of low
values and underestimation of high values. Therefore, it would be necessary for future
studies to incorporate more machine learning algorithms and innovative machine learning
algorithms. From another perspective, deep learning, as a kind of non-parametric machine
learning algorithm, is widely applied in forest monitoring. Numerous prior studies have
demonstrated the outstanding capability of deep learning algorithms when it comes to
target detection and vegetation classification [40–44].

Another paramount limitation of this study is the source of sample plot data which were
the most recent. Although “one map” contains a large amount of necessary forest information,
using these data to carry out research can no longer meet the current requirements for real-time
forest monitoring. In order to resolve this problem in future studies, it is necessary to use
unmanned aerial vehicles (UAVs) to obtain enough measured sample plots. Similarly, many
studies have proposed UAVs equipped with hyper-spectral and LiDAR sensors to obtain
the horizontal and vertical structure information of forests [45–51]. Its efficiency in obtaining
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forest parameters is unmatched by manual investigation. The accuracy of tree height, DBH,
and spectral information extracted using UAVs is very close to manual surveys. Therefore,
as an innovative research method, it is recommended to use UAVs to replace manual field
survey work to improve research efficiency where high-precision forest estimation results can
be obtained.

5. Conclusions

This study has effectively estimated and mapped the distribution of FSV in the Helan
Mountains, with a resolution of 30 m. Utilizing the RF algorithm in conjunction with
data from Sentinel-2, the study has affirmed the potential of NDVIRE in FSV estimation.
Among all modeled variables, the novel vegetation index NDVIRE, constructed based on
the three red-edge bands of Sentinel-2, contributed the most to predicting FSV. Furthermore,
the BVBM performed the best among the three models based on the two variables of the
band and vegetation index. Finally, this study would assist policymakers in designing
forest conservation and management paradigms that could potentially support the sus-
tainability and carbon sequestration dynamics in the Helan Mountains and other montane
forest ecosystems.
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