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Abstract: The surface-to-borehole transient electromagnetic (SBTEM) method can provide images
at higher resolution for deep earth because its receivers are close to targets. However, as usually
the boreholes distribute sparsely, the limited EM data can result in an “equivalent trap” in SBTEM
inversions, i.e., the data are well-fitted, but the model is not properly recovered. To overcome this
non-unique problem, we propose a dual-mesh three-dimensional (3D) SBTEM inversion scheme.
We first use a coarse mesh to obtain a rough resistivity distribution near the borehole, and then we
map the coarse mesh attribute into a fine one and capture details from the fine mesh inversion. We
test our method on both synthetic data and survey data acquired in Daye, Hubei Province, China.
Numerical experiments show that our dual-mesh inversion strategy can better recover the location
and resistivity of targets.

Keywords: surface-to-borehole transient EM; 3D inversion; dual mesh; non-uniqueness

1. Introduction

The surface-to-borehole transient electromagnetic (SBTEM) method uses a grounded
wire as transmitter, while the receivers are laid in the borehole to measure EM fields [1].
Since the borehole receivers are close to the targets, the anomaly signal is much stronger
than that in the conventional ground EM, so the deep targets concealed around the borehole
or at the shaft bottom can be detected [2]. In past decades, the SBTEM method has been
widely used in mineral explorations. It has played an important role in the detection of
massive sulfide, pyrite-pyrrhotite ore, and gold deposits and in the exploration of deep
targets like volcanic veins [2–7].

Although the SBTEM equipment has now been well-developed, the interpretation of
SBTEM data is still underdeveloped, usually assuming a simple half-space or layered-earth
model. The mainstream imaging methods simply transform TEM data into some inter-
mediate parameters to predict the rough structures in the underground [8], which cannot
guarantee that the recovered model can fit the observed data. Zhang and Xiao [9] pro-
posed a method that runs joint inversions of surface and borehole data to one-dimensional
(1D) models and found that they can well-detect both the shallow and deep structures.
Chen et al. [10,11] successfully conducted the joint inversions and 1D Occam’s inversions
of SBTEM data. However, all these imaging and 1D inversions have difficulty in recover-
ing the complex underground structures, so the development of three-dimensional (3D)
inversions for SBTEM data is necessary.

Since, until now, little has been reported on 3D SBTEM inversions, we review the main-
stream 3D forward modeling and inversions of conventional TEM methods. At present,
the mainstream numerical simulations for TEM methods include the integral equation
(IE) [12,13] the finite-difference (FD) [14], and the finite-element (FE) methods [15,16]. As for
the TEM inversions, most conventional 3D algorithms are based on structured grids [17,18].
For accurate modeling and inversions, one needs very small grids to fit the undulating to-
pography or complex underground structures. This can result in heavy computational cost.
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To solve this problem, we take in this study the locally refined tetrahedral grids to discretize
the computational domain and use the vector FE method to calculate EM responses and
sensitivity information. For the time discretization, we choose the unconditionally stable
backward Euler method [16,19–21]. Furthermore, we apply the L-BFGS (limited-memory
BFGS) method for model updates at two inversion stages. In the SBTEM method, we
usually have only sparsely distributed borehole data. To obtain the fine structures close to
the borehole, however, the grids around the borehole receivers are generally refined; thus,
we actually deal with an inverse problem with sparse data for the fine model. In this case,
the borehole data can be easily fitted by a combination of resistivities of fine grids close to
the receivers as they usually have large sensitivities. This can bring serious non-uniqueness
to 3D EM inversions. To deal with this problem, we propose an inversion strategy for
SBTEM that adds the surface EM data to the inversion and applies a dual-mesh scheme.
Different from other multi-mesh inversion methods [22,23], we use a coarse mesh to do the
first round of inversion to invert the distribution of the background structures, and then,
we keep the model and switch to a fine mesh to recover model details and to fit the data.

In the sequence, we first introduce the SBTEM inversion algorithm and then present
in detail the dual-mesh inversion strategy. We test our 3D SBTEM inversion scheme via
both synthetic and field survey data.

2. Methods

As shown in Figure 1, in the SBTEM method, the transmitter placed at the earth surface
transmits the EM waves into the earth and creates the eddy currents in the underground.
The eddy currents will be distorted when they travel to the targets with anomalous con-
ductivities, so that anomalies will be observed by the sensors placed at the borehole. From
these anomalies, we can infer the anomalous bodies. Since the receivers are generally laid
close to the anomalous bodies, one can observe large anomalous responses and, thus, can
easily detect the targets.
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Figure 1. SBTEM survey configuration.

2.1. Regularized Inversion

Since 3D SBTEM inversion is nonlinear and underdetermined, we use regularization to
solve the problem and construct the objective function based on an L2 norm measure, i.e.,:

ϕ
(
m, dpre

)
= ‖Wd

(
dobs − dpre

)
‖2

2 + λ‖Wm(m−m0)‖2
2, (1)

where dobs denotes the observed data of the Nd × nchannel dimension, while dpre denotes the
predicted data from the inversion model. Nd and nchannel denote the number of receivers
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and time channels. Here, we use the forward modeling code from Wang et al. [24] to
calculate EM responses for the vector dpre. To better introduce the inversion scheme, in
Appendix A, we give a simple introduction to the forward modeling algorithm based on
the FE method using tetrahedral grids. λ is a regularization factor, Wd is the data variance
matrix with its elements being the reciprocal of the standard noise deviation, Wm is the
model roughness operator, while m0 and m are the M-dimensional vectors, respectively,
for the reference model and the solution.

To obtain the solution mn of nth, we differentiate both sides of Equation (1) with respect
to the model parameters mn−1 and obtain the gradient of the objective function, i.e.,:

gn = −2JTWT
dWdrn−1 + 2λWT

mWm(mn−1 −m0), (2)

where J denotes the sensitivity matrix, and rn−1 = dobs − dn−1
pre .

The sensitivity matrix in above equation is calculated by the adjoint forward modeling
for fast calculation and reduction in memory consumption [25,26]. We assume that the
predicted data satisfy d = Le, where L denotes a spatial interpolation operator. For the for-
ward modeling in time-domain, L can be written as L = LtLd, where Ld is the interpolation
operator that interpolates the solution of the electric field to the receiver locations, while Lt
is the interpolation operator that interpolates the solution of the calculated time channels
to the observation ones. From the forward modeling scheme and d = Le, the sensitivity of
EM responses with respect to the conductivity of the kth tetrahedral element, namely the
element of the kth column in the overall sensitivity matrix, can be written as:

jk =
∂d

∂mk
=

∂Le
∂mk

= LK−1
(

∂sTEM

∂mk
− ∂K

∂mk
e
)

, k = 1, 2, . . . , M. (3)

Define a matrix G of the dimension N ×M (N = Nedge × nchannel) as:

G =

{
∂sTEM

∂m1
− ∂K

∂m1
e,

∂sTEM

∂m2
− ∂K

∂m2
e, . . . ,

∂sTEM

∂mM
− ∂K

∂mM
e
}

, (4)

and substitute Equation (4) into (3); we obtain:

JT = GT
(

K−1
)T

LT. (5)

Equation (2) shows that to obtain the gradient of the objective function, we need to
calculate the product of the transpose of the sensitivity matrix and a vector. Assuming
that the multiplication vector is v, then multiplying both sides of Equation (5) with v
and defining u =

(
K−1)TLTv, we obtain the following equations for the adjoint forward

modeling, i.e.,:
KTu = LTv, (6)

where the vector v is the term after the sensitivity matrix J in Equation (2). After solving
the adjoint forward equation, we obtain the vector u. Then, the product of the transpose of
the sensitivity matrix J and the vector v can be calculated by:

JTv = GTu. (7)

When calculating the matrix G in Equation (4), the term of ∂K
∂mk

e is analytical. As for

the term of ∂sTEM
∂mk

, the derivative of the source ∂si
∂mk

is zero; the rest term can be written as:

∂Ae0

∂mk
= A

∂e0

∂mk
+

∂A
∂mk

e0, (8)

where ∂A
∂mk

e0 can also be analytically calculated, while the term A ∂e0
∂mk

can be calculated by
adjoint method when executing the forward modeling for the DC field [25].
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Since we use the unstructured tetrahedral mesh to discretize the calculation domain,
the conventional model roughness operators for structured girds are not suitable. Thus,
we modify the model roughness operator proposed by Key [27] for 2D problems to our 3D
case [28] and obtain:

‖Wm(m−m0)‖2 =
M

∑
i=1

Vi

N(i)

∑
j=1

ωj

(
∆mij

∆rij

)2, (9)

where
∆mij = mi −mj, (10)

∆rij =
√(

xi − xj
)2

+
(
yi − yj

)2
+
(
zi − zj

)2, (11)

ωj =
Vj

N(i)
∑

k=1
Vk

(12)

In the above equations, Vi denotes the volume of the ith tetrahedron, while N(i)
denotes the number of the tetrahedrons that share vertices with the ith tetrahedron. The
distance ∆rij between tetrahedrons is calculated from the centroid of each element.

2.2. Dual-Mesh Inversion Strategy

In the practical SBTEM survey, the boreholes are sparsely distributed in the working
area. In most cases, only one borehole can be used. On the other hand, in 3D EM inversions,
the areas close to the borehole receivers are generally refined to achieve accurate results. The
sparse data combined with fine meshes can easily result in underdetermined 3D inversions.
In this situation, an “equivalent trap” can frequently occur, namely the borehole data are
well-fitted, but the model is not properly recovered. Under the condition of limited data,
we can alternatively reduce the number of unknowns in the inversion by optimizing the
mesh. In this paper, we propose a dual-mesh inversion strategy. First, we use a coarse
mesh in the inversion to obtain rough structures in the underground. After that, we map
the attributes in the coarse mesh to a fine one and continue the inversion. In this way, the
inversion results from the coarse mesh can be taken as a good initial model, so that we can
finally recover the underground structures in more detail. This can also help improve the
data fitting in the inversions.

Referring to Figure 2, to do the mapping between the coarse and fine meshes, we take
four basic situations into account: (1) the centroid of a fine mesh is inside a coarse one; (2)
the centroid of a fine mesh is on the surface shared by two coarse meshes; (3) the centroid
of a fine mesh is on the edge shared by several coarse meshes; and (4) the centroid of a fine
mesh is at the vertex shared by several coarse meshes. For the first case, the attribute of
the fine mesh is set to be equal to that of the coarse mesh that contains its centroid, while
for all other cases we choose the coarse meshes related to the centroid of the fine mesh for
calculating the attribute via volume-weighted average. Then, the attribute of the fine grid
is calculated by:

(σe
i )fine =

m
∑

j=1

(
σe

ij

)
coarse

m
∑

j=1

(
σe

ij ·Ve
ij

)
coarse

, i = 1, 2, . . . , n, (13)

where σe
ij denotes the attribute of ith mesh. m is the number of coarse meshes related to

the centroid of the fine mesh, n is the total number of fine meshes, and σe
ij and Ve

ij are the
conductivity and volume, respectively, of the jth coarse mesh related to the centroid of ith
fine mesh.
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Figure 2. Schematic diagram of attribute mapping. The coarse mesh is in black, while the fine mesh
is in blue. The centroid of the fine mesh is (a) within a coarse mesh, (b) on the surface shared by
two coarse meshes, (c) at the edge shared by several coarse meshes, and (d) at the vertex shared by
several coarse meshes.

3. Numerical Experiments

In this section, we will test our 3D SBTEM inversion scheme via both synthetic and
field survey data. To remain consistent with the survey data, for all models in this section
we adopt long wires as transmitting sources and assume the range of the calculation to be
between 2.5 × 10−4 s and 1 × 10−2 s.

3.1. Flat Model Inversion

To validate our inversion algorithm, we first design a simple model with a block body
buried in a uniform half-space (Figure 3). The two transmitting sources with the same
length of 700 m are laid on the surface. Tx 1 is the transmitter corresponding to the ground
receivers, while Tx 2 is the transmitter for the receivers in the borehole. The borehole
receivers are located from 0 m to 600 m with an interval of 10 m. The borehole in the
model is an open-hole well, which is hollow and full of air. The Ez data in the borehole are
measured by letting the electrodes touch the rock formation. To overcome the influence of
limited data on our 3D inversion, we also put 31 × 31 = 961 survey stations at the earth
surface with an interval of 20 m. The abnormal body’s resistivity is 1 Ω·m, while the
surrounding rock and the air is 100 Ω·m and 1.0 × 108 Ω·m, respectively. The forward
model is discretized into 663,443 grids.

We perform 3D forward modeling to calculate Ex on the surface and Ez in the borehole
and then added 3% Gaussian random noise to simulate the real situation. In the inversions,
the model is first discretized into 562,888 grids as the coarse mesh, without refining elements
close to the borehole and receivers. We use this mesh to do the inversion to the surface
data, the borehole data, and the joint surface and borehole data, respectively. Figure 4
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shows that the RMS for the surface data inversion is reduced to 0.998, but the other two
inversions have difficulty achieving good data fittings. Next, we refine the elements close
to the receivers and the borehole and discretize the model into 659,955 grids, and then we
map the preliminary inversion results of the borehole data from the coarse mesh to the
fine one. This operation will cause an RMS rising, but it does not obviously affect the final
convergence. The final RMSs for the inversions of both the borehole data and the joint
surface and borehole data reduce to the target level of 1.
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Figure 5 shows the inversion results using different strategies for different data.
Figure 5a shows that the inversion only with the surface data roughly recover the model,
but it has difficulty in recovering the boundaries of abnormal body, the recovered resistivity
of the abnormal body is much larger than the true value. When we only invert the borehole
data with fine mesh, since the sizes of the meshes near the receivers are very small, it is
difficult to observe small meshes with drastic changes in attributes in plots of relatively
large inversion areas. Figure 5b shows that the anomalous body is hardly to be observed
as the inversion is too ill-posed. In this case, the borehole data can be easily fitted by a
combination of resistivities of fine grids close to the receivers as they usually have large
sensitivities. In contrast, when we use dual mesh for borehole data inversion, the anoma-
lous body close to the borehole is well-inverted, especially its resistivity is well-recovered
(Figure 5c). This succeeds because the coarse grids near the borehole cannot fit the data
well, and thus, the inversion tries to find a model to fit the data by seeking the solution in a
larger space of fine mesh. Figure 5d shows the joint inversion of surface and borehole data
using fine mesh. The abnormal body is roughly recovered; however, the inverted body has
a long tail in all sections. Finally, when we use the dual-mesh strategy to invert the joint
surface and borehole data, from Figure 5e we can see that the best results are obtained; the
boundaries and the resistivity of the abnormal body are well-recovered.

Summarizing the above discussion, we conclude that, by adding the surface data to
SBTEM inversions, we can improve the resolution to the target around the borehole. Using
a dual-mesh inversion strategy, we can improve the resolvability not only to the location
but also to the resistivity of the target body.
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3.2. Topographic Model Inversion

In this section, we further designed a synthetic model with real topography from a
field dataset that will be illustrated in the next section. The locations of two grounded wire
transmitters and data collection points at the surface are both taken from the field dataset.
Referring to Figure 6, transmitting source 1 has a length of 2964 m, while transmitting
source 2 has a length of 2791 m. The borehole is located at (−600 m, 0 m) with a depth of
600 m. The borehole receivers are laid at depths from 20 m to 600 m at an interval of 10 m.
To remedy the limited data amount, we also take data acquired at the earth surface for our
3D inversion.
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Referring to Figure 7, three conductive abnormal bodies with the resistivity of 1 Ω·m
are embedded in the underground. The surrounding rock and the air have resistivities of
100 Ω·m and 1.0 × 108 Ω·m, respectively. The model is first discretized into 472,151 coarse
grids and, then, into 664,173 fine grids. We perform 3D forward modeling on this synthetic
model and compare the responses with those for a uniform half-space. From Figure 8, one
sees that the conductive bodies cause obvious anomalies. Considering that the electric
fields in the x- and y-directions are not easy to measure in the borehole, we use only the Ez
component as the data and add 10% Gaussian random noise to simulate the real situation.
In our inversion process, we use a cooling schedule to determine regularization factor
λ, namely when the data fitting decreases very slowly, the regularization factor becomes
0.1 times the previous value and remains unchanged after reaching a threshold.
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To undertake our dual-mesh inversions, we first use the coarse mesh in Figure 7a to
recover the preliminary model. After 25 iterations, we interpolate the inversion results to
the fine grids in Figure 7b using the mapping scheme in Figure 2 and continue the inversion
with the fine grids until the stop condition is satisfied (i.e., RMS ≤ 0.98). The inversion
runs 6 h and 25 min on the coarse mesh with the RMS reduced to 5.05. After mapping
to the fine mesh, the inversion runs again 16 h and 28 min on the fine mesh, the RMS is
finally reduced to 0.98. In addition, we also run 3D inversions using the conventional
single-mesh scheme with the fine mesh. The inversion takes 26 h and 37 min, with the RMS
finally reduced to 0.97. Figure 9 compares the inversion parameters between our dual-mesh
scheme and the conventional one. For both methods, the RMS and the objective function
decrease rapidly at the early time and then get stabilized. Although the parameters for
our dual-mesh inversions jump when mapping between two meshes, the overall RMS and
objective function attenuate, and the inversion converges.
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Figure 10 shows the comparison of inversion results from the two methods. The
conventional inversion has difficulty in recovering the conductive anomalous bodies, while
our dual-mesh inversion can well-recover the target bodies. The reason for this difference
is that when we do the conventional inversion, we invert all underground structures
simultaneously. For very limited data, the inversion is heavily dependent on the initial
model and can easily be trapped in local minima. At this time, although the data are well-
fitted, the recovered model may be far away from the true one (the so-called “equivalent
trap”). In contrast, using our dual-mesh scheme, we invert the data first for rough but main
underground structures, and then, we map them to the fine mesh as the starting model.
Considering that our inversion on the fine mesh keeps the main underground structures
unchanged while modifying the local ones, our method cannot be easily trapped in local
minima. This inversion scheme follows the basic concept of multiscale inversions. From
the data fitting for the two inversions shown in Figure 11, one sees that for the dual-mesh
inversion, the data fitting of the inversion with coarse mesh is not good. After the inversion
with fine mesh, however, the data fitting becomes as good as the single-mesh inversion.
From the data fitting at the earth surface shown in Figure 12, we can also see that the data
at the ground surface are well-fitted in both inversions.
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3.3. Field Data Inversion

In this section, we take a dataset acquired from the Western Tonglu Mountain copper
mine in Daye, China to test the effectiveness of our dual-mesh method. The lithology in the
survey area are as follows. From 0 to 727.16 m, it is mainly quartz monzodiorite porphyrite;
from 727.16 to 1031.80 m, it is marble with an embedded layer of copper and an iron ore
body at the depth of 763.16–778.86 m. This ore body is controlled by the upper contact zone
of low resistivity. From 1031.8 to 1036.3 m, it is skarn, while from 1036.3 to 1107.2 m, it is
quartz monzodiorite. The copper-bearing hematite and magnetite located at the depth of
1040.4–1046.95 m are controlled by the lower contact zone. Compared to the upper contact
zone, the contents of chalcopyrite and magnetite in the lower contact zone are significantly
reduced, so that we can see the low-resistivity characteristics in this area.

Referring to Figure 6, the borehole ZK409 was drilled for SBTEM exploration. The
depth of ZK409 is 1107.2 m. The positions of transmitting source and survey points are
also shown in Figure 6. The geodetic coordinates of the starting and ending points for
Source 1 are (3,332,207.8, 385,87,811.2) and (3,329,244.3, 38,587,804.4), while for Source 2
they are (3,332,207.8, 38,587,811.2) and (3,329,845.9, 38,589,298.8). The borehole ZK409 has
coordinates of (3,329,616.93, 38,589,691.10).

Figure 13 shows the dual meshes used in our inversions. As we only observe the
borehole data within the depth range of 600–900 m, we discretize this section into fine
grids. We take the ground Ex and the borehole Ez as the inversion data and assume 5% of
amplitudes as the noise floor. The air resistivity is set to 1× 108 Ω·m, while the background
resistivity is assumed to be 500 Ω·m. The regularization factor is selected following the
same strategy as in the synthetic examples. The inversion for the coarse mesh runs 12 h
and 51 min, and the RMS decreases to 11.8. After mapping to the fine mesh, the inversion
runs again 52 h and 28 min, and the RMS decreases to 4.43. Figures 14 and 15 show the
data fitting at the earth surface and in the borehole. The surface data are well-fitted, while
for the borehole data, the electric field Ez is overall well-fitted, except for the depth range
of 620–720 m at early time channels. The good data fitting implies that the inversion using
our dual-mesh scheme converges.
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Figure 16 shows the inversion results of the survey data from the Western Tonglu
Mountain copper mine. The low-resistivity anomalous body at 650–770 m is clearly revealed
with a minimum resistivity of about 5 Ω·m that is consistent with the resistivity of the
rock sample in Table 1 (mainly the copper, iron ore body). The recovered resistivity of the
surrounding rock is from 300 to 1000 Ω·m, which is consistent with the high-resistivity
quartz monzodiorite porphyrite with copper mineralization or middle-resistivity dolomitic
marble and marble with copper mineralization. The logging data show that there exist two
low-resistivity zones, respectively located at the depth ranges 70–340 m and 660–800 m,
corresponding well to the locations of the conductive anomalies revealed in Figure 16. It
should be pointed out that since, from the borehole survey, we only obtain the data at
the depth range of 600–900 m, we are not able to clearly characterize the low-resistivity
anomalies outside this range.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 16. Dual-mesh inversions of the survey data from the Western Tonglu Mountain copper mine 
in Daye, China. (a) 3D resistivity distribution; (b) slice at x = 0 m; (c) slice at y = 0 m; (d) ore body in 
borehole at x = 0 m; (e) ore body in borehole at y = 0 m; (f–i) x,y slices at rock sample positions. 

In Figure 16f–i, we plot four slices corresponding to the location of rock sampling. 
The rock sampling and the inversion results show relatively high-resistivity characteris-
tics at z = 596.74 m and z = 802.43 m, while the rock sampling and the inversion results at 
z = 764.84 m and z = 879.74 m show relatively low-resistivity characteristics. The low-re-
sistivity anomaly at z = 764.84 m is our target. 

4. Discussion 
The advantage of the SBTEM method is that the receivers are located in the under-

ground near the abnormal body, so it can provide much higher resolution for a deep target 
than the conventional method. However, due to limited boreholes, when we use tradi-
tional dense local meshes (near the borehole) for inversion, the ambiguity is very strong, 
as can be seen from Figure 6b,c. In contrast, our dual-mesh inversion has distinctive ad-
vantages: (1) we use the coarse mesh to invert the data that can outline the main structures 
in the underground; (2) then, we use the fine mesh to invert the fine structure and obtain 
good data fitting. In this way, we can get good recovery to the underground structure and 
the good data fitting, and the uniqueness of the inversion can be improved. 

Although the dual-mesh strategy overcomes ambiguity for the SBTEM data inversion 
to some extent, the limited resolution of the borehole data still cannot be solved. Only the 

Figure 16. Dual-mesh inversions of the survey data from the Western Tonglu Mountain copper mine
in Daye, China. (a) 3D resistivity distribution; (b) slice at x = 0 m; (c) slice at y = 0 m; (d) ore body in
borehole at x = 0 m; (e) ore body in borehole at y = 0 m; (f–i) x,y slices at rock sample positions.
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Table 1. Resistivities of rock samples from borehole ZK409.

No. Borehole Depth (m) Core Properties ρ0 (Ω·m)

wx-1 596.74–596.84 porphyritic quartz monzodiorite 7178
wx-2 764.84–764.94 copper-bearing hematite magnetite ore 8.7
wx-3 802.43–802.54 marble rock 1125
wx-4 879.75–879.85 marble rock 374

In Figure 16f–i, we plot four slices corresponding to the location of rock sampling.
The rock sampling and the inversion results show relatively high-resistivity characteristics
at z = 596.74 m and z = 802.43 m, while the rock sampling and the inversion results at
z = 764.84 m and z = 879.74 m show relatively low-resistivity characteristics. The low-
resistivity anomaly at z = 764.84 m is our target.

4. Discussion

The advantage of the SBTEM method is that the receivers are located in the under-
ground near the abnormal body, so it can provide much higher resolution for a deep target
than the conventional method. However, due to limited boreholes, when we use traditional
dense local meshes (near the borehole) for inversion, the ambiguity is very strong, as can
be seen from Figure 16b,c. In contrast, our dual-mesh inversion has distinctive advantages:
(1) we use the coarse mesh to invert the data that can outline the main structures in the
underground; (2) then, we use the fine mesh to invert the fine structure and obtain good
data fitting. In this way, we can get good recovery to the underground structure and the
good data fitting, and the uniqueness of the inversion can be improved.

Although the dual-mesh strategy overcomes ambiguity for the SBTEM data inversion
to some extent, the limited resolution of the borehole data still cannot be solved. Only the
targets close to the borehole receivers can be recovered, while the others cannot be restored.
By jointly inverting the borehole and surface data, as can be seen from Figure 16c,e, the
inversion result can be improved for the targets close to the borehole, but it does not work
for the targets far away from the borehole.

It needs to be pointed out that the induced polarization (IP) effect is often observed
when TEM with grounded lines is applied in the field, especially for massive sulfide or
graphite exploration. However, from the rock-physics experiments on the samples collected
from the borehole in our survey area, we did not see an obvious large IP effect; thus, we did
not consider it in our 3D inversions. Considering that an IP effect can seriously affect the
inversion results of TEM data, special attention needs to be paid in areas with an obviously
strong IP effect.

5. Conclusions

Based on the unstructured finite-element method and back Euler discretization, we
successfully developed a dual-mesh scheme for SBTEM data inversions. Numerical experi-
ments for synthetic models showed that by adding the surface data to SBTEM inversions,
we can get better results than when only the borehole data are used in the inversion. By
taking the dual-mesh strategy, we can further improve the resolutions of both the target
location and the resistivity. More inversions of synthetic data with multiple bodies under
topographic earth showed that in contrast to the conventional methods that invert the data
once, our dual-mesh method inverts the data in a multiscale way that can suppress the
non-uniqueness of the SBTEM inversions to some extent. The inversion of the field dataset
from the Western Tonglu Mountain copper mine also demonstrated that our dual-mesh
method can deliver good results. The inversions are in good agreement with the resistivity
measurements of the borehole rock samples and well logging data.
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Appendix A

In the appendix, we will introduce how to calculate the SBTEM responses using the
finite-element method. The governing equation for SBTEM forward modeling can be
obtained from the following curl–curl equations, i.e.,:

∇×
[

1
µ0
∇× E(r, t)

]
+ σ

∂E(r, t)
∂t

+
∂js(r, t)

∂t
= 0, (A1)

where E(r,t) is the electric field, µ0 is the permeability of the vacuum, σ is the conductivity,
and js(r,t) is the source current.

We first use the open-source code TetGen [29] to discretize the model domain into
unstructured tetrahedral elements. Referring to Jin [30], for our forward modeling based
on the finite-element method, we write the electric field at time t and location r in an

interpolation format as Ee(r, t) =
6
∑

j=1
ee

j (t)n
e
j (r), where ej

e(t) denotes the electric field at

the jth edge, while nj
e denotes the vector interpolation basis functions. Inserting this

interpolation into Equation (A1) and multiplying both sides by a weighting function (it
usually takes the basis function) and integrating over the element, we get:

Ae dee(t)
dt

+ Beee(t) + se = 0, (A2)

where ee =
[
ee

1, ee
2, . . . , ee

n
]

are the electric fields at the element edges. The mass matrix Ae,
the stiffness matrix Be, and the source term se can be written as:

Ae
ij =

y

Ve

σene
i (r) · n

e
j (r)dV, (A3)

Be
ij =

y

Ve

∇× ne
i (r) · ∇ × ne

j (r)dV, (A4)

se
i =

y

Ve

ne
i (r) ·

∂js(r, t)
∂t

dV. (A5)

To solve Equation (A2), we adopt the implicit backward Euler scheme for time dis-
cretization, which is unconditionally stable [19,31]. For that purpose, we divide the time
channels into several ranges and assume a small step for the early time but a large step for
the later time. The initial time step is chosen to be 1/100 of the first time channel, and the
rest time step is twice the previous time step.

Assembling the element matrix (A3) and (A4) into a global one and substituting it into
Equation (A2), we obtain the following recursive formulation for the electric field, i.e.,:

Cen+2 = A
(

4en+1 − en
)
− 2∆tsn+2, (A6)
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where C = 3A + 2∆tB. The final equation for the solution of the electric field can be
written as:

C1
−4A C2

A −4A C3
A −4A C4

. . . . . . . . .
A −4A Cn





e1
e2
e3
e4
...

en


=



−2∆t1s1 + 3Ae0
−2∆t2s2 −Ae0
−2∆t3s3
−2∆t4s4

...
−2∆tnsn


, (A7)

where e0 represents the initial electric field.
Since we assume a grounded wire as the source to transmit a step-off current into the

earth, we need to solve a Poisson’s equation for the initial DC field. We use the nodal finite-
element method to calculate potentials at the nodes and then calculate e0 by interpolations
and spatial derivatives. As the distance from the source increases, the grid size gets bigger.
We need to expand the calculation domain far away from the source, so that we can apply
the homogeneous Dirichlet boundary condition by setting the electric field on the outer
boundary to zero. Equation (A7) can be simplified to:

Ke = sTEM, (A8)

where K is the coefficients matrix, and sTEM is the source term. The direct solver MUMPS [32]
is used to solve Equation (A8) for the electric field at each edge. Then, the electric field at
the receiver locations can be calculated by interpolations, while the magnetic field can be
calculated by Faraday’s law.
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