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Abstract: Narrow-leafed lupin (Lupinus angustifolius) is an important dryland crop, providing a protein
source in global grain markets. While agronomic practices have successfully controlled many dicot weeds
among narrow-leafed lupins, the closely related sandplain lupin (Lupinus cosentinii) has proven difficult
to control, reducing yield and harvest quality. Here, we successfully trained a segmentation model to
detect sandplain lupins and differentiate them from narrow-leafed lupins under field conditions. The
deep learning model was trained using 9171 images collected from a field site in the Western Australian
grain belt. Images were collected using an unoccupied aerial vehicle at heights of 4, 10, and 20 m. The
dataset was supplemented with images sourced from the WeedAI database, which were collected at
1.5 m. The resultant model had an average precision of 0.86, intersection over union of 0.60, and F1 score
of 0.70 for segmenting the narrow-leafed and sandplain lupins across the multiple datasets. Images
collected at a closer range and showing plants at an early developmental stage had significantly higher
precision and recall scores (p-value < 0.05), indicating image collection methods and plant developmental
stages play a substantial role in the model performance. Nonetheless, the model identified 80.3% of the
sandplain lupins on average, with a low variation (±6.13%) in performance across the 5 datasets. The
results presented in this study contribute to the development of precision weed management systems
within morphologically similar crops, particularly for sandplain lupin detection, supporting future
narrow-leafed lupin grain yield and quality.

Keywords: narrow-leafed lupin; sandplain lupin; Lupinus angustifolius; Lupinus cosentinii; image
segmentation; deep learning; precision agriculture; herbicide application; weed management

1. Introduction

Sandplain lupin (Lupinus cosentinii) is a highly competitive weed species that signif-
icantly reduces the grain yield and quality of narrow-leafed lupin (Lupinus angustifolius)
crops [1–3]. Initially, sandplain lupins were introduced as a leguminous pasture species for
cattle production due to their rapid growth on infertile sandy or loamy calcareous soils,
and high protein content [1,2]. However, with the increase in cropping intensity, sand-
plain lupins became problematic, decreasing the yield and quality of narrow-leafed lupin
crops through interspecific competition and acting as a source of anthracnose infection [4].
Narrow-leafed lupin is an important protein crop, with 75% of global production in Aus-
tralia [5]. Grain lupin produces seeds with up to 44% protein content and is used as flour
or a food supplement [5,6]. Currently, there are no options to chemically control sandplain
lupins among narrow-leafed lupins due to their biological similarity; therefore, precision
application of herbicide to sandplain lupin individuals is required to limit crop damage [7].
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Precision agriculture considers the intra-field variability to provide tailored treatments
for each region of the field [8]. This includes the development of weed maps to inform robotic
weeding or targeted herbicide application, decreasing herbicide use while improving weed
control [9,10]. Multiple studies have proposed methods for building weed maps and weed
detection systems using images captured through unoccupied aerial vehicles (UAVs), ground
vehicles, and hand-held devices [7,11–13]. Red–Green–Blue (RGB) images are most commonly
used for weed detection due to easy accessibility. Nonetheless, multispectral and hyperspectral
cameras are becoming increasingly common, as they provide more features that might be used
to discriminate between weed and crop species [11]. The images are often analysed using
handcrafted features to discriminate between crop and weed pixels. Handcrafted features are
defined by the algorithm developer, using simplified shapes, or from plant spectral variation,
based on differences in the canopy structure and leaf morphology [11,14–16]. However, using
handcrafted features can introduce bias, which limits the method from being applied under
different environmental conditions, such as varying light intensity [15].

Deep learning algorithms have emerged as an alternative approach to discriminate
between crop and weed species without using handcrafted features. Deep learning algo-
rithms learn directly from labelled training datasets, automatically extracting the relevant
features that can be used to discriminate between objects [17]. The main deep learning
algorithms applied for image-based weed detection are based on convolutional neural
networks (CNNs) and transformers [18–22]. A study using CNNs obtained 97% accuracy
in identifying grass and broadleaf weeds among soybeans (Glycine max) [18]. Additional
studies using YOLOv3, a CNN-based architecture, successfully detected hedge bindweed
(Convolvulus sepium) weed in sugar beet (Beta vulgaris) crops, with an average precision
of 76–89% [19]. The YOLOv3 algorithm also achieved a precision of 71% and recall of
78% for common purslane (Portulaca oleracea) weed treatment by autonomously control-
ling the smart sprayer prototype, demonstrating the value of CNN-based architectures
for precision agriculture [23]. Other CNN-based architectures have also been used for
weed segmentation, allowing researchers to estimate the weed density and its likely im-
pact on crop yield [20–22,24]. Segmentation models are reported to discriminate weeds
from sunflower (Helianthus annuus) crops with 90% accuracy at an early stage [24]; rice
(Oryza sativa) seedlings from three-leaf arrowhead (Sagittaria trifolia) weeds with 92.7%
accuracy [22]; and chamomile (Matricaria chamomilla), common poppy (Papaver rhoeas), ivy-
leaved speedwell (Veronica hederifolia), and field pansy (Viola arvensis) weeds from winter
wheat (Triticum aestivum) with 94% accuracy [20]. Although CNN-based architectures are
relatively successful at detecting and segmenting weeds in the field, deep learning models
present high variability in performance (ranging from 76% to 94% accuracy), indicating
that detection capability is associated with crop and weed targets [20–22,24].

In the case of sandplain and narrow-leafed lupins, the similarity between the species
presents a challenge for implementing weed detection in the field. Similar weed and crop
species present fewer discriminating features to enable accurate discrimination between
plants, especially under varying field conditions, such as altitude/height, luminosity, plant
density, soil appearance, and tillage [19]. In this study, we trained and assessed the perfor-
mance of a U-net deep learning model with a pretrained Resnet18 model backbone [25]
to identify sandplain lupins growing among morphologically similar narrow-leafed lupin
crops. The model accuracy was assessed for weed segmentation; measuring the impact of
the image and plant conditions; and appraising the model efficiency in locating sandplain
lupin plants for robotic weed control and automated herbicide application.

2. Materials and Methods

The data collected for this study are available in WeedAI “2022—WA Sandplain and
Narrow-leafed lupin” and Figshare at https://figshare.com/articles/dataset/21746669 (ac-
cessed on 10 April 2022). The scripts developed are available on GitHub at https://github.
com/mdanilevicz/WeedDetectionML (accessed on 10 April 2022). The docker files and sin-
gularity images [26] used were downloaded from https://hub.docker.com/layers/osgeo/
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gdal/alpine-small-latest/images/sha256-640f4dfba9d7d48b6f66a4ca3436ab0913f7473fad6
033125dcb3da940227038?context=explore (accessed on 10 April 2022) and https://docs.
nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel_21-07.html (accessed
on 10 April 2022). A persistent overlay filesystem was used to dynamically install the
required Python libraries as the study was developed. Unless otherwise stated, the scripts
indicated in the methodology refer to the GitHub repository.

2.1. Experimental Field and Data Collection

Field experiments of narrow-leafed lupin naturally infested with sandplain lupin
were conducted under rainfed field conditions in Mingenew, Western Australia (AU). The
narrow-leafed lupin crop was sown on 9 May 2022 at a seeding rate of 95 kg/ha to a 3 cm
depth over a 0.59 ha area. The field study had a stubble cover of 45% and was treated with
pre-emergence herbicide before sowing. Images collected in the field trial site were named
field-1 and field-2. Grower field images were collected at a cropping field in Mingenew,
Western Australia. The images collected at the grower’s field were named grow-1 and
grow-2. The “field” and “grow” datasets present different farm management strategies,
with varying seeding rates and crop row distance.

The images for the field-1, field-2, grow-1, and grow-2 datasets were collected using a
DJI Phantom 4 unoccupied aerial vehicle (UAV) RGB camera. The images were collected
between 12 and 2 PM under overcast or clear sky conditions. The details for the image
collection can be seen in Table 1. The images were collected with 75% side overlap and
80% front overlap, with five ground control points distributed across the field to increase
the GPS accuracy. Additionally, 217 images with 4879 sandplain lupins labelled among
narrow-leafed lupins were downloaded from the Weed-AI database [27]. The images from
ext-1 were collected on 12 July 2019 in multiple locations in Geraldton, Western Australia
(AU), using an iPhone XS rear camera at an approximately 1.5 m height and 90 degree
angle. The plant growth stage in each dataset was estimated using the Lupin Growth and
Development report [28], which uses a crescent decimal score from 0–5.9 to indicate plant
growth from dry seeds for sowing to harvest ripe, respectively.

Table 1. Description of the image datasets for weed detection and segmentation. GSD means ground
sample distance, and the flight height is indicated in metres.

ID Field Type Platform Collection Date Growth Stage
GSD

(cm/px) Flight Height (m)
Total

Images
Total

Labels

field-1 Trial site UAV 16 July 2021 2–3.3 0.27 10 101 1602

field-2 Trial site UAV 11 August 2021 3–4 0.55 20 97 840

grow-1 Grower UAV 16 July 2021 2–3.3 0.11 4 88 462

grow-2 Grower UAV 19 August 2021 2–4 0.55 20 292 207

ext-1 Grower Smartphone 12 July 2019 1–2.5 0.01 1.5 217 4879

2.2. Image Data Processing

The images in the “field” and “grow” dataset were processed following the method previ-
ously detailed in [29] to prepare the images for an orthomosaic and model input. The orthomo-
saics were assembled using Metashape (v1.8.0, Agisoft), and the plot shapefiles were generated
using the plotshpcreate R library [30], as shown in the R script “generate_shapefile.Rmd”.
The shapefiles were used to extract the plots from the orthomosaic using Gdal (v3.2) and
the “extract_plots.sh” script written in bash, and using the container image downloaded
from https://hub.docker.com/layers/osgeo/gdal/alpine-small-latest/images/sha256-640f4
dfba9d7d48b6f66a4ca3436ab0913f7473fad6033125dcb3da940227038?context=explore (accessed
on 10 April 2022). The images gathered from the grower sites and obtained from Weed-AI did
not undergo this processing, as they were not collected in a continuous overlap, as were the
field experiment images.
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The Python script (“improcessing.ipynb”) was employed to perform the following
image processing steps in the field-1, field-2, grow-1, and grow-2 datasets. The GeoTiff
images were converted to NumPy arrays and rotated to fit the same orientation. The array
pixel values in each image were normalised to fit the 0–1 range, standardising the pixel
values between datasets, and a copy of the images was converted to the jpeg format for
drawing the bounding box labelling.

2.3. Bounding Box Labelling and Segmentation Masks

After processing the images from the “field” and “grow” datasets, the Colour Index
of Vegetation (CIVE) detailed in Equation (1) [31] and the Otsu Threshold from Opencv2
were used to discriminate between soil and plant pixels [32,33] in the “improcessing.ipynb”
custom Python script (Figure 1B). Makesense.ai tool was used to manually draw the
bounding boxes around sandplain lupin plants identified in the field-1, field-2, grow-1, and
grow-2 datasets, as shown in Figure 1C [34]. The ext-1 dataset had been previously labelled
by the dataset owners. The coordinates from the bounding boxes around the sandplain
lupin plants were overlaid on the plant pixels to label narrow-leafed and sandplain lupin
pixels, using “improcessing.ipynb” to generate the segmentation masks used to train
the deep learning model, as shown in Figure 1D. The images and masks were split into
the standard size of 500 by 500 pixels using the “resize_images.ipynb” custom script to
accelerate training the deep learning model.

CIVE = 0.441 × Red Band − 0.881 × Green Band + 0.385 × Blue Band + 18.78745 (1)
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Figure 1. Representation of the image processing steps. (A) Original RGB image, (B) CIVE vegetation
index mask separating soil pixels are coloured in purple and plant pixels are green, (C) Bounding
box labelling over sandplain lupins overlaid on RGB image, (D) Ground-truth segmentation mask
overlaid on the RGB image.

2.4. Segmentation Model Architecture

The deep learning model consisted of a feature extraction and a semantic segmentation
module based on the U-Net architecture using a pretrained Resnet18 backbone [25,35], as
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shown in Figure 2. The model was implemented and trained using the fastai library [36]
in the custom script “model_kfold.py”. The model architecture used Pixel shuffle during
segmentation [37]; self-attention [38], with DICE loss due to the unbalanced segmentation
classes [39]; and ADAM as the optimisation function, and the learning rate was set to
0.001. The model implementation and fivefold validation were developed using an NVidia
container available at [40], https://docs.nvidia.com/deeplearning/frameworks/pytorch-
release-notes/rel_21-07.html (accessed on 10 April 2022).
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Figure 2. Scheme of the weed segmentation model based on the U-Net architecture. The feature
extraction module is indicated by the green arrows, and the semantic segmentation module is
indicated by the yellow arrows. The yellow box indicates the copied feature maps used in the
segmentation module.

2.5. Pixel-Wise Evaluation Metrics

The metrics used to evaluate the pixel-wise segmentation performance were Precision,
Recall, Intersection over Union (IoU), and Macro F1, using the scikit-learn library [41] and
implemented through the “prediction_analysis.ipynb” script. The Precision and Recall
metrics are detailed in Equations (2) and (3). The Intersection over Union, also known
as the Jaccard Index (Equation (4)), calculates the area overlap between the predicted
segmentation and the ground mask. Macro F1, shown in Equation (5), calculates the
arithmetic mean over the individual F1 scores of the different target classes, and it is more
robust toward unbalanced datasets [42].

Precision = True positive/(True positive + False positive) (2)

Recall = True positive/(True positive + False negative) (3)

IoU = Area of overlap/Area of union (4)

Macro F1 = 1/n ∑ (2 Precision × Recall)/(Precision + Recall) (5)

https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel_21-07.html
https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel_21-07.html
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2.6. Object-Wise Weed Detection

The predicted sandplain lupin estimator generated from the segmentation mask was
obtained using the custom script “prediction_analysis.ipynb”. The contour of the sandplain
lupin labels was extracted from the predicted segmentation mask, and objects with a total
area smaller than 10 × 10 pixels were removed. The contours from the predicted mask and
the ground-truth mask were superimposed to count which objects were identified in both
masks and which sandplain lupins were mispredicted by the model.

2.7. Weed Map Construction from Predicted Masks

The reconstruction of the predicted masks into a weed map enables overlaying the
predicted sandplain lupin position on the orthomosaic to extract its geospatial position. The
original RGB orthomosaic from the field-1 dataset generated in Section 2.2 was converted
to JPEG and cut into blocks of 500 × 500 pixels. Each image block was named according
to its position in the orthomosaic (i.e., row00_column00.jpeg). The block images were
fed to the trained deep learning model for sandplain lupin segmentation. The predicted
segmentation masks were assembled back into position, based on their ID and standard
size of 500 × 500 pixels, and overlaid in the orthomosaic. The general workflow is illus-
trated in Figure 3, in which the sandplain lupin segmentation mask on the right can be
mapped back to the GPS-marked orthomosaic, guiding the implementation of the weed
management strategies. The Python script used for the weed map assembly is shown in
“plotting_results/weed_map_prediction.ipynb”.
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Figure 3. Sandplain lupin prediction in the field-1 dataset. The orthomosaic from the field-1 dataset
was split into multiple smaller RGB images, which were fed to the deep learning model for prediction
and reassembled into a weed map.

3. Results
3.1. Segmentation Performance for Sandplain and Narrow-Leafed Lupins

The segmentation model converged after 100 epochs using the mixed training dataset,
with no noticeable improvement observed when training for longer periods. High segmen-
tation performance was achieved for pixel-wise labelling of sandplain and narrow-leafed
lupins in the field, with an average precision of 0.86, recall of 0.95, IoU of 0.60, and Macro
F1 of 0.70. A detailed performance evaluation for each dataset condition is presented in
Table 2. Narrow-leafed lupin segmentation was slightly more accurate in identifying the
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pixels associated with the crop, providing a segmentation mask more like the ground-truth
label, as indicated by the IoU and Macro F1 metrics. The precision metric was similar for
both plant targets, showing a high proportion (0.85) of pixels labelled as narrow-leafed or
sandplain lupins was true. Recall indicates the model’s ability to detect pixels related to
each class, showing that most of the narrow-leafed lupin pixels were detected (0.96), and
more than half of sandplain lupin pixels were detected (0.62). The highest sandplain lupin
segmentation performance was observed with the ext-1 and grow-1 datasets, which depict
the plants at a higher resolution and at earlier developmental stages (Figure 4). Sandplain
and narrow-leafed lupins are heliotropic plants, with the leaves moving in response to the
sunlight direction to maximise absorption, as depicted in ext-1.

Table 2. Segmentation performance comparison between the hold-out datasets for each condition
using fivefold cross-validation. Metrics are presented per class: narrow-leafed lupin (NLL), sandplain
lupin (SL), and weighted average (Avg), which averages the metric between the classes considering
the number of true instances in each class.

Dataset
Precision Recall IoU Macro F1

NLL SL Avg NLL SL Avg NLL SL Avg NLL SL Avg

field-1 0.81 0.82 0.81 0.95 0.70 0.93 0.51 0.45 0.51 0.64 0.57 0.64

field-2 0.89 0.82 0.88 0.91 0.43 0.89 0.51 0.26 0.50 0.58 0.37 0.57

grow-1 0.96 0.84 0.96 0.99 0.85 0.99 0.87 0.64 0.87 0.93 0.76 0.92

grow-2 0.95 0.83 0.95 1.00 0.32 0.99 0.72 0.29 0.72 0.82 0.42 0.82

ext-1 0.68 0.88 0.69 0.97 0.78 0.97 0.41 0.54 0.42 0.56 0.67 0.57

3.2. Target Accuracy for Detecting Individual Sandplain Lupin Weeds

Identifying sandplain lupin infestations in the field is a primary requirement for
implementing targeted weed management practices. Object-wise detection at the plant
level is commonly used to indicate the model’s capacity to locate weeds in the field [43],
as opposed to pixel-wise segmentation (Section 3.1), which measures the segmentation
mask completeness. The weed objects were obtained by leveraging the segmentation mask
contours, considering each independent contour object as an individual target, as shown
in Figure 5. The predicted sandplain lupin location (indicated in orange) may not cover
the whole weed area, but it can guide weed management decisions if a minimum area
threshold is defined (Figure 5). In this case, each sandplain lupin contour label had an area
larger than 100 pixels, removing low confidence regions, as most sandplain lupin leaves
would occupy an area above the defined threshold.

The performance of the object-wise identification varied depending on the dataset,
with an average of 80.3% of the sandplain lupins being accurately detected, as shown in
Table 3. Although the number of sandplain lupin targets varied substantially between the
datasets, a high percentage of sandplain lupin regions were identified in each condition.
In the ext-1 dataset, each leaf was considered an independent object because of its canopy
structure during an early developmental stage, causing ext-1 to present an inflated sand-
plain lupin count. Overall, 4 datasets presented a sandplain lupin identification accuracy
above 77%, except for the grow-2 dataset, in which the images were collected at a 20 m
height at a later developmental stage, causing a loss in image resolution and constituting a
more complex challenge for the segmentation model (Table 3). The total number of sand-
plain lupins present in each image was correlated with the number of predicted sandplain
lupins, as indicated in Figure 6. The field-1 and ext-1 datasets presented a higher density
of weeds per image. However, the variation in weed infestation levels did not affect the
model accuracy.
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Figure 4. Predicted mask from the segmentation model. Each column shows an image sample from a
specific dataset (field-1, field-2, grow-1, grow-2, and ext-1). The first row is the RGB image, followed
by the ground truth and predicted masks.

3.3. Effect of Environmental Conditions on Sandplain Lupin Detection

A comparison between the sandplain lupin segmentation performance across the
different datasets indicates that field management conditions, plant development stage,
and UAV flight altitude play a substantial role in the model performance (Figure 7). The
precision metrics indicate what proportion of sandplain lupin pixels predicted is true,
whereas recall shows whether the model could find all sandplain lupin pixels. Most datasets
presented a similar trend in precision performance, with the model showing significantly
higher precision scores in ext-1 in comparison to field-2 (p-value 0.01). Regarding the recall
performance, the model showed strong variation, depending on the dataset observed. A
one-on-one comparison revealed that the recall metrics varied significantly for all datasets
(p-value < 0.05), although ext-1, field-1, and grow-1 present similar recall values between
0.70 to 0.85, which indicates these datasets have the majority of the sandplain lupin pixels
detected. It is possible to observe that in Figure 7B, there was a higher dispersion of the
recall value across the different image samples within the same dataset, as some datasets
also presented a higher number of images in the hold-out dataset due to a larger initial
dataset. The field-2 and grow-2 datasets presented the lowest recalls observed, but they
were still significantly different (p-value < 0.05).

3.4. Weed Mapping Increases Herbicide Use Efficiency

The reconstruction of the predicted sandplain lupin images into a field orthomosaic
enables visualisation of the weed-infested regions for both targeted herbicide application
and measuring the total area covered by sandplain lupin and narrow-leafed lupin. Here, the
reconstruction of the field trial dataset (field-1) in Figure 8 shows that the predicted sandplain
lupins compose 5.4% of the total area associated with plant pixels, with the remaining 94.6%
labelled as belonging to narrow-leafed lupin. The field trial shown in Figure 8 is approximately
5952 m2, but only 1.5% of the area is covered by sandplain lupin weeds, meaning a spraying
area reduction of 98.5%, in which the model can target 79.9% of the weeds in the field for the
field-1 dataset (Table 2).
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Figure 5. Object-wise detection of sandplains by the model on different datasets. Each line corre-
sponds to images from a single dataset; the order from top-bottom is ext-1, field-1, field-2, grow-1,
and grow-2. The sandplain lupin bounding boxes represent the ground-truth weed labelling, whereas
the orange contour shows the weed region identified by the model.

Table 3. Percentage of identified sandplain lupin regions. The count was performed using model
predictions on the hold-out dataset compared to the ground-truth labels.

Dataset
Number of

Sandplain Lupins
Predicted

Sandplain Lupins
Percentage

Identified (%) R2

field-1 737 589 79.91 0.76

field-2 143 111 77.62 0.64

grow-1 87 75 86.20 0.76

grow-2 31 23 74.19 0.73

ext-1 938 785 83.37 0.91

Total 1936 1583 80.32 0.76
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Figure 6. Comparison of predicted and observed sandplain lupins. Each point corresponds to the
number of sandplain lupins identified in the 500 × 500-pixel image. The x-axis indicates the number
of sandplain lupins identified in the ground-truth labelling, and the y-axis shows the number of
sandplain lupins detected by the model. The prediction R2 values for each dataset are ext-1 (0.91),
field-1 (0.76), field-2 (0.64), grow-1 (0.76), and grow-2 (0.73).
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Figure 8. Reconstruction of the weed map for visualisation of the sandplain lupin infestation on the
field-1 dataset. In this figure, the RGB image was overlaid with the model prediction mask, in which
green represents the predicted narrow-leafed lupin, and the sandplain lupins are in orange.

4. Discussion

Weed detection among morphologically similar crops is a challenge for effective weed
control, as fewer features can be employed by deep learning models to distinguish between
species [44,45]. In this study, we employed pixel-wise and object-wise metrics to evaluate
the model efficiency for detecting sandplain lupins among narrow-leafed lupins in the field.
Object-wise detection is particularly effective in indicating the proportion of weeds that
could be targeted by real-time robotic weeding or precision herbicide application [44]. In
this study, an average of 80.3% of the sandplain lupin objects were successfully identified
by the model, with a low variation (±6.13%) across the 5 datasets assessed. As reported in
Gao [19], an accuracy of 70% is sufficient for a weed detection model to be efficient for field
operation in order to achieve meaningful reductions in herbicide application.

The model presented in this study achieved high pixel-wise segmentation performance,
with the precision (0.82 to 0.88) and recall scores (0.32 to 0.85) showing variation across the
5 datasets analysed, which were collected under distinct conditions. The object-wise and
pixel-wise metrics indicate the model was able to identify most of the sandplain lupins
across the five datasets, although the segmentation masks are likely to only partially cover
the weed canopy area. The model’s resultant performance is comparable to previous studies
tackling the detection of weeds among similar crops [44,46,47]. For example, a canola and
wild radish classification model achieved an average of 90.9% accuracy under a controlled
environment using LBP handcrafted features [46]. Another study reports an F-score of
93.3% for Italian ryegrass (Lolium perenne) detection among wheat crops [47]. Even though
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these studies present high-performance metrics, the detection of these morphologically
similar species relied on handcrafted features, which may limit the model’s applicability
in the field environment. In contrast, our study measured the model performance across
diverse field conditions.

Developing a weed detection model that achieves robust performance under diverse
field and plant conditions remains a challenge [43], as the plant developmental stage,
density, and image conditions themselves significantly impact the model performance, as
shown in this study. Here, the model presented the highest weed detection performance
(precision > 0.82, recall > 0.70, object-wise detection > 79.9%) in the field-1, grow-1, and
ext-1 datasets for identifying pixels associated with sandplain lupin weeds. The images
collected in these datasets present high resolution (GSD below 0.3 cm/pix), which may have
contributed to distinguishing the morphologically similar weed and crop species across the
different sites. Previous studies pointed out that image collection methods may impact the
leaf spectral reflectance, playing a central role in the detection performance [15,47,48]. Using
the field-1, grow-1, and ext-1 datasets, the plants were presented at early developmental
stages, showing reduced canopy overlap and plant density. The background complexity
and canopy overlap are known issues for weed detection in the field [45]; a previous study
focusing on the detection of morphologically similar ryegrass within wheat fields observed
a variation in the model performance, depending on the plant developmental stage [44].
Altogether, our results indicate using images collected at high resolution from young plants
are more suitable for the detection of sandplain lupin weeds among a morphologically
similar crop. This find is corroborated by previous studies carried out using images
collected at 2–3 m height for distinguishing combinations of crops and weeds with similar
morphology [44,46,47].

Narrow-leafed and sandplain lupins present heliotropism, which changes the plant’s
leaf direction and canopy structure relative to the position of the sun, enhancing solar
absorption and affecting evapotranspiration [49,50]. Heliotropism is depicted in the ext-1
dataset, with both species’ leaves pointing sideways. Besides showing the heliotropic
movement of the plants, the ext-1 dataset presented a complex environment, with plants at
the seedling stage and surrounded by tillage and the residue of the previous crop. The ext-1
dataset was the only instance in which the sandplain lupin detection precision was superior
to narrow-leafed lupins by 0.20, potentially due to the thinner leaves of narrow-leafed
lupin when seen from above, making them difficult to spot in the complex background.
Heliotropism in young narrow-leafed lupin may positively affect the precision of sandplain
lupin identification, as the highest value was achieved in the ext-1 dataset (0.88) compared
to the other datasets with no observed heliotropism (<0.84). The variation in canopy
structure imposes an additional factor for the identification of morphologically similar
crops and may affect models for weed detection among other crops presenting heliotropism,
such as the common bean (Phaseolus vulgaris), pea (Pisum sativum), sunflower (Helianthus
annus), and soybean (Glycine max) [51–54]. To circumvent this challenge, this study aimed
to image the plants around midday and/or under overcast conditions. However, when
covering large field areas, heliotropism is unavoidable and should be included in the
model’s training dataset. As shown in this study, a representative training dataset is
important for detecting sandplain lupins among narrow-leafed lupins.

Using the model proposed here, it is estimated that the area requiring herbicide
application was reduced by 98% compared to broadcast application, accurately targeting
79.9% of the sandplain lupins in the field-1 dataset. However, depending on the attributes
of the datasets, the model could successfully identify 74% to 86% of the sandplain lupins,
having the potential to further increase the herbicide application efficacy. Another study
using UAV for weed detection showed a 20–60% increase in the herbicide application
efficiency, targeting 74% of broadleaf weeds growing among grasses [10]. The efficiency of
herbicide use, when comparing precision versus broadcast application, varies depending
on the weed density and distribution in the field, with patchy weed infestations being more
efficiently controlled using precision herbicide application [10,55]. In addition, machinery
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technology factors, such as the machinery travel speed and time required to achieve
operating pressure at the nozzle to initiate a full spray distribution, will also affect the final
area to be treated with herbicide. In our study, the predicted reduction in the herbicide-
treated area is due to the sparseness and heterogeneity of the sandplain lupin infestation
in this field trial. Although there is no specific literature published on the dormancy of
sandplain lupin, other wild species of hard-seeded lupin, such as Lupinus articus, have been
found to remain viable for an estimated 10,000 years [56]. To control the seed bank of these
highly dormant species, weed maps, as shown in Figure 5, can be used to monitor the weed
density, assess the effectiveness of weed control strategies over multiple seasons, and apply
weed control measures that will exhaust the weed seed bank.

It is important to highlight that the prediction mask may not cover the whole weed
canopy and that overlapping plant canopies may lead to underestimating the weed density
in each area. In addition, further model development and training are required before
deployment, as the model was trained solely using images obtained in a limited region
in Western Australia. Future studies can use multiyear weed maps to finetune the model,
assessing whether it will present increased detection accuracy for areas with persistent
sandplain lupin infestations.

5. Conclusions

Sandplain lupins are a problematic weed in narrow-leafed lupin crops, causing a
decrease in the yield and quality. The lack of selective herbicide treatments requires the
development of advanced weed management techniques for crop protection and the re-
duction of the weed seed bank. This study presents an effective model for identifying and
mapping sandplain lupins among morphologically similar narrow-leafed lupins, gener-
ating a weed map that can inform spatial weed control strategies, such as spot spraying
herbicide treatments. Although the similar morphology between sandplain and narrow-
leafed lupins poses a challenge for weed identification, this study on average achieved a
70% pixel-wise F1 score and 80.3% object-wise accuracy for the identification of sandplain
lupins across 5 datasets depicting distinct field conditions. The results also indicate that
high-resolution images and imaging plants at early developmental stages may be more
suitable for weed identification. Over a longer timeframe, sandplain lupin maps generated
at multiple time points can be compared to assess the effectiveness of the weed control
strategy and to detect regions recalcitrant to treatment.
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