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Abstract: The rapid, up-to-date, cost-effective acquisition and tracking of intertidal topography are
the fundamental basis for timely, high-priority protection and restoration of the intertidal zone. The
low cost, ease of use, and flexible UAV-based photogrammetry have revolutionized the monitoring
of intertidal zones. However, the capability of the RTK-assisted UAV photogrammetry without
ground control points, the impact of flight configuration difference, the presence of surface water
in low-lying intertidal areas on the photogrammetric accuracy, and the potential of UAV/satellite
Synergy remain unknown. In this paper, we used an RTK-assisted UAV to assess the impact of
the above-mentioned considerations quantitatively on photogrammetric results in the context of
annual monitoring of the Chongming Dongtan Nature Reserve, China based on an optimal flight
combination. The results suggested that (1) RTK-assisted UAVs can obtain high-accuracy topographic
data with a vertical RMSE of 3.1 cm, without the need for ground control points. (2) The effect of flight
altitude on topographic accuracy was most significant and also nonlinear. (3) The elevation obtained
by UAV photogrammetry was overestimated by approximately 2.4 cm in the low-lying water-bearing
regions. (4) The integration of UAV and satellite observations can increase the accuracy of satellite-
based waterline methods by 51%. These quantitative results not only provide scientific insights
and guidelines for the balance between accuracy and efficiency in utilizing UAV-based intertidal
monitoring, but also demonstrate the great potential of combined UAV and satellite observations
in identifying coastal erosion hotspots. This establishes high-priority protection mechanisms and
promotes coastal restoration.

Keywords: intertidal topography; accuracy; flight optimization; UAV/satellite synergy

1. Introduction

Intertidal mudflats, located in the sensitive transitional zone between marine and
terrestrial systems, are of great social, economic, and environmental importance at a global
scale. They support extensive habitats for migratory birds, provide potential land resources
for regional development, and buffer against natural disasters from oceans [1–3]. With the
continuous initiation, transport, and deposition of sediments under the joint effects of tides,
currents, and waves, mudflat geomorphology is changing constantly [4,5]. The mudflat
geomorphology can also be reshaped by high-energy storms (e.g., typhoons) within a short
time frame [6,7]. In turn, topographic changes among mudflats can affect hydrodynamics
and sediment distribution [8]. High-resolution mudflat topography with a high level of
vertical accuracy is beneficial to understanding such coastal geomorphological processes
and identifying coastal erosion hotspots.
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Accurate mudflat topographic data is also fundamental to morphodynamics simula-
tion and tidal wetlands restoration. The creation and/or restoration of salt marshes, also
known as nature-based solutions (NbS), is becoming increasingly economically and ecolog-
ically viable for reducing the risk of coastal hazards [9,10]. Small topographic differences
(i.e., micro-topography) often determine the extent, duration, and frequency of tidal inun-
dation, thereby affecting benthos distribution and salt marsh vegetation colonization on
bare tidal flats [11,12]. Mudflats accumulate sediment constantly and experience seaward
progradation under conditions of adequate sediment supply and they can provide more
accommodation in terms of space for seaward expansion of salt marsh pioneer vegetation.
In contrast, the erosion of mudflats brings uncertainty as to whether salt marshes can
continue to survive in the context of sea level rise [13–15]. Van Regteren et al. [16] revealed
that rapid changes in mudflat elevation may hinder the germination success of salt marsh
vegetation through the burial of freshly sprouted seedlings. Thus, up-to-date topographic
data for mudflats and the quantification of mudflat morphological changes are both critical
to better understanding the geomorphological, hydrological, ecological, and hydrodynamic
systems within intertidal zones.

Traditional field surveys for collecting intertidal mudflat topographic data, however,
are often time-consuming and labor-intensive, spatially, and temporally constrained, with
significant costs, and occasionally even impossible due to the poor accessibility and short
exposure during tidal cycles. To overcome these limitations, a variety of remotely sensed
techniques have been developed, including satellite-based waterline methods, video-based
monitoring, terrestrial LiDAR (TLS), airborne LiDAR (ALS), and the emerging use of
unmanned aerial vehicles (UAVs) for the purposes of structure-from-motion (SfM) pho-
togrammetry (Table 1). The temporal-spatial resolution and accuracy of topographic data
derived from these methods vary from daily to quarterly, and from centimeters to tens of
meters. Particularly, TLS and ALS have been widely used in quantifying intertidal morpho-
logical changes thanks to their centimeter-level accuracy and fine spatial resolution. For
example, Xie et al. [6] accurately tracked the erosion and deposition changes of intertidal
mudflats at the timescale of a typhoon event using TLS. However, LiDAR data is hard
to collect in areas with residual water or high water content on the mudflats at low tide,
thereby, repeated scans are often required [17,18]. The time and costs involved in data
collection result in a compromise in terms of frequency and spatial extent of observations.
Instead, UAV-based SfM photogrammetry offers unique advantages in terms of cost, effi-
ciency, flexibility, and data quality. It is, therefore, regarded as a revolutionary technology
for topographic monitoring for hardly accessible coastal environments [19,20].

Table 1. Comparison of different topographic mapping methods in intertidal mudflats. V—vertical;
H—horizontal.

Technical
Method Spatial Resolution Data

Accuracy
Spatial

Coverage Repeatability Limitations Case
References

Satellite-based
waterline

~30 m, depending on
intervals of the
waterline.

V: ~0.5 m;
H: ~30 m Large scale Quarterly

Low accuracy; coarse
temporal-spatial
resolution; rely on good
satellite observation.

[21–23]

Video-based
monitoring

~5 m, depending on
intervals of the
waterline.

V: ~0.5 m;
H: ~5 m

~1 km2 of
each camera

Daily Low accuracy; cameras need to be
installed at a high field of view. [24–26]

Terrestrial LiDAR ~0.5 m, depending on
the sensor parameter.

V: ~4 cm;
H: ~4 cm

~1 km2 of
each station

Flexible

Costly; difficult to install in
a muddy
environment; few points are
collected from sites where residual
standing water remains.

[6,27]

Airborne
LiDAR

~0.5 m, depending on
the sensor parameter.

V: ~13 cm;
H: ~10 cm Large scale Flexible

Costly; few points are collected
from sites where residual standing
water remains.

[28–30]

UAV-based
structure from
motion

~3 cm, depending on
flight altitude and
sensor parameter.

V: ~4 cm;
H: ~3 cm

~0.5 km2 of
each battery

Flexible Data acquisition cannot be
performed on rainy days. [19,31,32]
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Despite the great potential of UAV-based SfM photogrammetry in monitoring inter-
tidal topographic dynamics, there are some fundamental issues regarding the resultant
topographic accuracy that have not been fully studied. First, SfM reconstructs the three-
dimensional structure of a scene or object from a series of overlapping images acquired
from different perspectives [33,34]. The selection of different flight parameters (e.g., flight
pattern, altitude, and overlap) not only affects the efficiency of the aerial survey but also
could lead to significant differences in the accuracy of the photogrammetric results. For
example, Brunier et al. [35] quantified beach morphological changes based on images taken
by a UAV at an altitude of 280 m, with an 85% frontal overlap and a 50% side overlap,
with a vertical accuracy of about 10 cm; Chen et al. [31] investigated the morphological
characteristics of tidal channels using UAV images acquired at 100-m altitude, with an 80%
frontal overlap and a 70% side overlap, with a vertical accuracy of approximately 5.7 cm;
and Kalacska et al. [19] constructed digital surface models for three salt marshes with a
vertical accuracy of approximately 2.7 cm based on UAV images acquired at 30-m altitude,
a 90% frontal overlap, and an 80% side overlap. However, the systematic evaluation of the
effect of the difference in flight parameters on photogrammetric results was rarely men-
tioned in existing literatures, particularly in geographically distinctive mudflats. Second,
in the case of low-accuracy UAV position and orientation system (POS) data, UAV-based
photogrammetry is characterized by massive images, short baselines, irregular overlap,
and considerable distortion. A large number of ground control points (GCPs) is needed
to increase the accuracy of bundle adjustment [36]. However, the establishment of GCPs
in muddy intertidal environments is impractical, and the number and spatial distribution
of GCPs influence the accuracy significantly [37,38]. Recently, direct georeferencing of the
UAV images with real-time kinematics (RTK) or post-processing kinematics (PPK), has the
potential to accomplish UAV-based photogrammetry without GCPs by providing accurate
and directly georeferenced surveys [39,40]. Although the usual flight configuration with
nadir imaging may produce results with significant systematic elevation error [41], such
error can be mitigated by using a small number of GCPs or by adding oblique imagery
to the SfM workflow [42,43]. Yet, this RTK-assisted UAV-based photogrammetry is not
well-researched in mapping estuarine intertidal topography. Third, in contrast with dry
land surfaces, intertidal mudflats often present high water content under the influence of
periodic tides, with residual water remaining on the surface. These water-bearing areas are
generally considered to be non-Lambert and are highly anisotropic. As a result, variations
in the angle of the images captured by the UAV could potentially lead to key points in
these areas not being detected, thereby resulting in a failed estimation of elevation or
presenting with huge uncertainty [44]. However, the tidal water remaining on the surface
of the mudflats is shallow and turbid, and it is still unknown whether this would affect
photogrammetric elevation estimates. In addition, the spatial extent of UAV observa-
tions is limited, and the ability to accurately construct large-scale intertidal topography in
combination with satellite observations has rarely been investigated.

The limited exposure time for the intertidal zone makes the above issues very rel-
evant to the accuracy and efficiency of UAV-based SfM photogrammetry. Considering
the abovementioned issues, this study aims to quantify the difference in terms of topo-
graphic accuracy using RTK-assisted UAV-based SfM photogrammetry based on various
photogrammetric scenarios, thereby facilitating the precise and efficient application of
UAVs in monitoring intertidal zones. The major contributions are summarized as follows:

(1) The impact of UAV flight pattern, altitude, and image overlap on the accuracy of
intertidal topographic observations without ground control points was quantitatively
assessed. This provides scientific guidelines for the balance between the accuracy and
efficiency of UAV-based intertidal monitoring;

(2) The errors caused by the water-bearing layer in low-lying mudflats were estimated
and elevation corrections for the water-bearing areas were inferred from field measure-
ments, thus ensuring the accuracy of topographic change monitoring in the mudflats;
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(3) Given the limited spatial scale of UAV mapping, the potential for combining UAV and
satellite observations of mudflat topography was explored to take advantage of the
high spatial and temporal accuracy of UAVs and the large spatial coverage of satellite
sensor imagery.

2. Materials and Methods
2.1. Study Area

The Chongming Dongtan Nature Reserve (CDNR, 31.25◦–31.38◦N, 121.50◦–122.05◦E)
is located at the eastern end of Chongming Island (Figure 1a), the largest estuarine alluvial
island in the world. The estuarine wetlands at the CDNR, as the main habitat for migrant
birds, are composed of mudflats in the low tidal zone and salt marshes in the middle and
upper tidal zones. Existing human-induced coastal restoration projects promote sediment
deposition and drive the progradation of shorelines. As a result, the intertidal topography
in the CDNR was altered frequently and at short timescales [45]. A total of 20 transects
with a width of 200 m have been designed for yearly topographic observations of mudflats
since 2020 to investigate recent dynamics of erosion and accretion (Figure 1b). Prior to the
topography monitoring, two experimental sites were selected to evaluate the impacts of
flight parameters and water content variations on accuracy and underlying uncertainty.
The first experimental site (site A; an area of 22 ha) is located in the north of the CDNR,
where low-lying areas are twice inundated by tides daily, and thus a part of the mudflats
retains a shallow water layer (about 2 cm) on the surface (Figure 1c). Another experimental
site (site B, an area of 32 ha) with high elevation is located in the middle of the CDNR and
is only completely inundated during the high tide over the spring tidal regime.
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Figure 1. The study area in the Chongming Dongtan Nature Reserve, northern Chongming Island,
China (a,b). The satellite image was acquired by Sentinel-2 on 4 July 2021; (c) shallow surface water
layer on the low-lying mudflats at site A; and (d) no surface water accumulation of mudflats with
higher elevation at site B.

2.2. Data and Methods

Previous studies have demonstrated that lower flight altitudes of UAVs and higher
image overlap tend to reconstruct terrain with very high accuracy [19,31]. However, lower
flight altitudes mean that a large amount of flight time is required, which poses a significant
obstacle for intertidal mudflats with short exposure times and UAVs with low battery life.
To explore how to well balance the efficiency and accuracy of UAV mapping, a series of
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flight tests were designed prior to conducting the transect observations. Figure 2 illustrates
the flowchart for quantifying mudflat topographic changes using an RTK-assisted UAV
and an RTK mobile station. The terrain acquired by the UAV at a 50-m flight altitude with
an 80% image overlap and vertical photogrammetry was used as a baseline. The terrains
acquired by other photogrammetric configurations (different flight patterns, altitudes,
and overlaps) were compared with the baseline, and then the optimal photogrammetric
configuration that balanced accuracy and efficiency was selected for the annual topographic
monitoring of CDNR. The histogram equalization and K-means clustering were used to
automatically identify low-lying water-bearing areas, and error estimates and elevation
corrections were performed based on field measurements. In addition, a UAV-based DEM
profile and water levels from the tide gauge station were employed to assign elevations to
time-series waterlines, respectively, in order to investigate the difference in the accuracy of
the resulting DEMs.
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Figure 2. (a) The UAV system used in this study; (b–d) the workflow for accurate monitoring of
mudflat topographic change; and (e) the schematic diagram of UAV/satellite synergy for mapping
mudflat topography.

2.2.1. UAV Systems

The DJI Phantom 4 RTK Drone (P4R, Figure 2a) was used for image collection in this
study. The P4R camera has a lens with a maximum focal length of 24 mm and a field of
view (FOV) of 84◦, which can capture high-resolution images with a 1-inch, 20-megapixel
CMOS sensor. The lens has undergone a rigorous intrinsic calibration to measure radial
and tangential lens distortions. This process was carried out by the camera manufacturer.
The distortion parameters were automatically written into the image when the photograph
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was taken. During the SfM process, the camera calibration parameters were used as initial
values and were then further refined by aerial triangulation for accurate self-calibration
of the camera. The RTK receiver on top of the drone can receive the real-time kinematic
data forwarded from the remote controller via connection to the D-RTK 2 GNSS Mobile
Base Station. This ensures 1 cm + 1 ppm RTK horizontal and 1.5 cm + 1 ppm RTK vertical
positioning accuracy. In addition, the RTK positioning accuracy of the camera at the
moment of UAV capture is also written to the image metadata and supplemented with the
results of the photogrammetric outputs to verify the stability of the position and orientation
system (POS). Such an accurate and stable POS for drones makes it possible to survey
inaccessible mudflats without GCPs.

2.2.2. Photogrammetric Experiments and Image Processing

To assess the impacts of flight pattern, flight altitude, and image overlap of the flight
path on elevation surveying of tidal flats, 16 flight experiments were performed at 2 study
sites according to different photogrammetric configurations. Table 2 lists all the flights with
their photogrammetric configurations, ground sample distance (GSD), and the number
of photographs acquired. Three flight patterns (i.e., parallel flight, crosshatch flight, and
five-view flight) were tested with other standardized flight settings (Figure 3). For the
parallel flight, the UAV camera took photographs along parallel flight lines at a nadir
angle (0◦ or perpendicular to the ground; Figure 2a). The crosshatch flight means that the
UAV took pictures along the crosshatch line at an off-nadir camera angle of 30◦, while the
five-view flight consists of oblique photographs taken to the north, south, east, and west
at an off-nadir camera angle of 30◦ and nadir photographs. In particular, for the parallel
flight, the UAV took a set of oblique photographs to improve the calibration of the interior
orientation elements by flying toward the center of the survey area at the end of the aerial
survey (Figure 3a). Nine groups of control experimental flights at different frontal and side
overlaps and six groups of control experimental flights at different flight altitudes were
conducted. A total of 12 brightly colored 0.5 m × 0.5 m photogrammetric targets were
positioned across site B before flying to serve as checkpoints and their coordinates were
collected using the D-RTK 2 GNSS Mobile Base Station. In addition, one flight with the P4R
drone was performed at site A to evaluate the influence of the water-bearing layer on the
accuracy of photogrammetric results. After quantitative comparison and evaluation, an
aerial survey method that balances accuracy and efficiency was selected to collect data at
20 fixed monitoring sections of CDNR to investigate the changing patterns of sedimentation
from 2020 to 2021. All of the above flights were performed at low tide during spring tide
and the ISO and shutter speed were set automatically. All UAV images were pre-processed
using the SfM photogrammetry algorithm implemented by the Pix4Dmapper software,
and all resultant datasets were re-projected to a common horizontal and vertical coordinate
system (UTM 51N WGS84 with the EGM96 vertical datum).
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Table 2. UAV flight experiments with different photogrammetric configurations.

Experiments Flight Pattern Altitude (m) Side Overlap Frontal Overlap GSD (cm) Number of
Photographs

PF-H110-S80-F80 Parallel 110 80% 80% 3.1 444
CF-H110-S80-F80 Crosshatch 110 80% 80% 3.8 1073
FF-H110-S80-F80 Five-view 110 80% 80% 3.6 2551
PF-H50-S80-F80 Parallel 50 80% 80% 1.3 2082
PF-H80-S80-F80 Parallel 80 80% 80% 2.2 792
PF-H140-S80-F80 Parallel 140 80% 80% 4.0 286
PF-H170-S80-F80 Parallel 170 80% 80% 4.9 226
PF-H200-S80-F80 Parallel 200 80% 80% 5.8 166
PF-H110-S70-F70 Parallel 110 70% 70% 3.1 239
PF-H110-S70-F80 Parallel 110 70% 80% 3.1 354
PF-H110-S70-F90 Parallel 110 70% 90% 3.1 676
PF-H110-S80-F70 Parallel 110 80% 70% 3.1 279
PF-H110-S80-F90 Parallel 110 80% 90% 3.1 847
PF-H110-S90-F70 Parallel 110 90% 70% 3.1 504
PF-H110-S90-F80 Parallel 110 90% 80% 3.1 738
PF-H110-S90-F90 Parallel 110 90% 90% 3.1 1407

2.2.3. Accuracy Assessment and Comparisons

SfM can resolve all camera positionings and scene geometry simultaneously using a
highly redundant bundle adjustment based on matching features in multiple overlapping
images. The goal of bundle adjustment is to minimize the reprojection error (RE) between
predicted projections and their observed corresponding image points. The reprojection
error output by the SfM algorithm under different photogrammetric configurations can,
therefore, be used as a reference indicator for error assessment. The object function of
bundle adjustment is presented as:

g(C, X) =
n

∑
i=1

m

∑
j=1

ωi,j ‖ qi,j − P
(
Ci, Xj

)
‖2 (1)

where g(C, X) is the projection of point Xj on the camera Ci; qi,j is an observed image point;
ωi,j is an indicator function with ωi,j = 1 if point Xj is visible in the camera Ci; otherwise,
ωi,j = 0. The root-mean-square error (RMSE) between checkpoints and the UAV-based DEM
derived from a UAV flight at an altitude of 50 m was also calculated. This is especially
true considering that a few validation points cannot fully reveal the accuracy difference
in terrain obtained under different photogrammetric configurations. Therefore, the UAV-
based DEM acquired at 50 m altitude was also used as a baseline and the RMSEs between
it and the DEMs acquired at other flight conditions were calculated, respectively:

RMSE =

√
1
n

n

∑
i=1

(hi − hi, 50)
2 (2)

where hi refers to the elevation value obtained from other UAV-based DEMs, hi, 50 repre-
sents the elevation measured from UAV-based DEM acquired at 50 m altitude, and n is the
number of sample points. In addition, James et al. [46] indicated that the spatial variability
of error should be assessed when using the RMSE, the standard deviation of the error (SDE)
was, therefore, also calculated for measuring precision:

SDE =

√
1
n

n

∑
i=1

(ei − e)2 (3)

where ei refers to the elevation error observed from other UAV-based DEMs and measured
from UAV-based DEM acquired at 50 m altitude and e refers to the average of the errors. In
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order to achieve the above accuracy comparison, experimental site B first meshed with a
grid size of 1 × 1 m and then the elevation values at the center of the grid were extracted
for point-to-point comparison within different DEMs with a total of 108,005 points. Prior to
gridding, high-precision spatial alignment of the different DEM values should be performed
to avoid elevation comparisons of non-synonymous points due to horizontal displacement.
Firstly, the orthomosaic from the 50-m flight was used as a reference image, and then the
corresponding feature points in the orthomosaics from other flight configurations were
identified. Crab burrows throughout the mudflats were considered excellent alignment
control points since they were adequately visible in orthomosaics with different spatial
resolutions. A total of 17 corresponding points were found, evenly distributed in the
orthomosaics. The corresponding DEM registration was then performed using a third-
order polynomial model so that the residuals in the horizontal positions were less than
2 cm. This process was carried out using the georeferencing tool in ArcGIS.

2.2.4. Identification of Surface Water Layer

K-means clustering is a simple and versatile algorithm that can be used for image
segmentation tasks. It can group similar pixels together without any prior knowledge.
In this study, the water body pixels and non-water body pixels in the UAV orthomosaics
show color differences, and the water body pixels have similar colors. Therefore, K-
means clustering is well-suited for clustering these water body pixels together and can
be partitioned into an output class. To accurately identify low-lying water-bearing areas
in the UAV orthomosaics, histogram equalization was first used to enhance the contrast
between water and non-water bodies, and then K-means clustering was utilized to classify
the water bodies (Figure 4). The classification results were converted to vectors and small
isolated patches were removed using ArcGIS. A total of 100 random points were generated
from these classified surface pixels and their elevations were obtained from the DEM
reconstructed by the images acquired simultaneously by the P4R UAV. The elevation of
the adjacent water-free pixel for each random point was also measured manually and the
difference in elevation between the pair was compared.
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2.2.5. Elevation Determination of Satellite-Based Waterlines from Photogrammetric DEMs

Although UAV photogrammetry can achieve high-precision and high-resolution to-
pography for intertidal mudflats and track associated changes, it is limited in scale for
mapping vast coastal mudflats. Commonly used satellite-based waterline methods have
limited accuracy and spatiotemporal resolution. Here, we manually digitized 19 waterlines
from time-series Sentinel-2 images between April 2020 and April 2021 to assess the integra-
tion of UAV and satellite Earth observation for monitoring intertidal mudflat topography.
As shown in Figure 2e, elevation values of waterlines were determined using tide level
data from Sheshan station and a UAV-based SfM photogrammetric elevation for sections
observed in 2021 (i.e., T8 transect), respectively. Triangulated irregular networks (TINs)
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were then constructed using the ArcGIS software. Next, the TINs were converted to raster
to produce two DEMs for the whole of the mudflats in the Chongming Dongtan, including
the tide-adjusted DEM and the UAV-adjusted DEM, respectively. A total of 44 correspond-
ing points were extracted from these 2 DEMs to compare with other UAV-based SfM
photogrammetric elevation sections observed in 2021 for accuracy comparison.

3. Results
3.1. Comparison of Different Photogrammetric Results

The horizontal locations and elevations of 12 checkpoints extracted from the UAV-
based photogrammetric DEM acquired at a 50-m altitude were compared to RTK-GNSS
measurements (Figure 5a). The horizontal displacement ranged from 1.0 to 4.2 cm with an
X-directional RMSE of 3 cm and a Y-directional RMSE of 2.8 cm, while the elevation differ-
ence ranged from 1.6 to 5.8 cm with an RMSE of 3.1 cm. Table 3 provides the reprojection
errors for the different photogrammetric configurations. We found that reprojection errors
from aerial surveys at different flight altitudes and overlap levels hardly differ significantly
at the pixel scale, but there are differences in reprojection errors at the spatial scale for
aerial surveys at different flight altitudes because the flight altitude determines the ground
sampling distance (i.e., UAV image resolution). However, differences in flight pattern, alti-
tude, and side and frontal overlaps all have a significant impact on the accuracy of the final
DEMs generated from UAV images. It is generally agreed that five-view flight photogram-
metry provides the most surface information and a high level of terrain reconstruction
accuracy. However, our flight experiments showed that for the same flight altitude and
image overlap conditions, the highest accuracy of UAV-based terrain reconstruction was
achieved by the parallel flight, and the crosshatch photogrammetry produced the lowest
accuracy for terrain reconstruction. Comparisons of DEMs constructed by UAV images
acquired at different flight altitudes show that the higher the flight altitude, the lower the
accuracy of the constructed DEM, but the accuracy is non-linear in relation to changes in
altitude. Compared to the DEM reconstructed from UAV images at 50 m flight altitude, the
DEMs accuracy generated at 80 m, 110 m, and 140 m flight altitude varied little, with both
RMSEs and SDEs between 2 and 3 cm. When the flight altitude reached 170 m and 200 m,
the accuracy of the generated DEMs lost a considerable amount of accuracy, with RMSEs of
3.5 cm and 5.9 cm, and SDEs of 2.5 cm and 5.8 cm, respectively. In terms of image overlap,
the increase from 70% to 80% in frontal overlap and side overlap resulted in a significant
increase in accuracy of 1–2 cm. However, the accuracy varies very little from 80% to 90%.
The quantitative evaluation of the above flight experiments showed that the selection of
the appropriate aerial photogrammetric mode, flight altitude, and image overlap can save
time in data collection while maintaining a high level of accuracy, which is important for
observations in the very short exposure time of the intertidal zone. As seen in Figure 5b, the
UAV could balance accuracy and efficiency well with an 80% image overlap and off-nadir
photogrammetry at a flight altitude of 110 m.

Table 3. Reprojection error, the root-mean-square error, and the standard deviation of error for each
of UAV flight experiments with different photogrammetric configurations.

Experiments RE
(pixel/cm)

RMSE
(cm)

SDE
(cm) Experiments RE

(pixel/cm)
RMSE
(cm)

SDE
(cm)

PF-H110-S80-F80 0.134/0.415 2.5 2.4 PF-H110-S70-F70 0.136/0.422 5.4 1.8
CF-H110-S80-F80 0.090/0.342 5.4 2.6 PF-H110-S70-F80 0.137/0.425 4.5 2.6
FF-H110-S80-F80 0.096/0.346 3.6 2.4 PF-H110-S70-F90 0.099/0.307 4.4 2.5
PF-H50-S80-F80 0.097/0.126 / / PF-H110-S80-F70 0.144/0.446 5.0 2.2
PF-H80-S80-F80 0.101/0.224 2.1 2.1 PF-H110-S80-F90 0.104/0.322 2.3 1.8
PF-H140-S80-F80 0.142/0.568 2.7 2.5 PF-H110-S90-F70 0.111/0.344 3.8 3.7
PF-H170-S80-F80 0.141/0.691 3.5 2.5 PF-H110-S90-F80 0.108/0.335 2.2 1.6
PF-H200-S80-F80 0.137/0.795 5.9 5.8 PF-H110-S90-F90 0.103/0.319 2.1 2.1
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3.2. The Impact of Surface Water Layer on UAV-Based DEM

In general, areas of the water body areas are missing from photogrammetric recon-
structions, and even if they are not, the reconstructions are anomalous in the vertical
direction. However, in our experiments, we found that the shallow, turbid, and small
extent of the water body did not significantly hinder the detection and matching of image
key points (Figure 6a). As a result, no significant elevation outliers were found in the
water-bearing regions of the generated DEMs. Furthermore, although the DEMs produced
by UAV photogrammetry were the result of smoothing after attempts at pixel-wise image
matching, they could still represent well the topographic features of the mudflats and their
magnitude of variations well, such as the formation of small tidal creeks and the traces of
siltation or scour on the mudflat surface, thanks to their centimeter-level spatial resolution
(Figure 6b–d).

When overlaying the identified water pixel boundaries with the orthophotos and
DEMs obtained by P4R revealed that the elevation of the area where the water pixels are
located is lower (Figure 7b), which is consistent with reality. It was also found that the
water surface elevation values in the same area varied within approximately 2 cm, and no
significant elevation anomalies were found due to the presence of the water surface. By
comparing the elevation values of water pixels with their adjacent non-water pixels, it was
found that 99% of the non-water pixels had an elevation greater than that of their adjacent
water pixels, with an average bias of 4.6 cm (Figure 7c). In addition, field measurements
of the height of the water surface from the non-water surface and the thickness of the
water-bearing layer along the water boundary revealed that the height of the water surface
from the non-water surface was approximately 5 cm and the thickness of the water layer
was approximately 2 cm (Figure 7d). This suggested that the elevation generated by UAV
photogrammetry were overestimated in the low-lying water-bearing regions, with an
overestimate of approximately 2.4 cm. Therefore, a statistical-based elevation correction
was applied to the water-bearing areas during the processing of the transect DEMs to
accurately detect elevation changes.

3.3. The Pattern of Accretion/Erosion in Chongming Dongtan

Based on the above quantitative assessment results, the UAV flights with nadir pho-
togrammetry, a flight altitude of 110 m, and 80% image overlap were conducted at the
fixed observation section of the CDNR in May 2020 and 2021. Figure 8 shows the spatially
distinct patterns of accretion and erosion in the mudflats of the CDNR and the average
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annual change in elevation for each transect. From 2020 to 2021, the mudflat topography
alternated between siltation and erosion from the north to the south of the CDNR. The
most severe erosion occurred in the southern part of Dongtan with an average annual
erosion rate of over 0.1 m/year. The most rapid sedimentation occurred in the central part
of Dongtan, with an average annual sedimentation rate of 0.12 m/year. For the northern
eroded transects, erosion was more severe on the landward side with an average annual
erosion rate of over 0.1 m/year (e.g., T7 and T8). The central transects have experienced
sedimentation (T9–T14) and sedimentation was greatest on the seaward side with an aver-
age annual siltation rate of over 0.2 m/year (e.g., T11 and T12). In contrast, the southern
transects were all subject to erosion with an average annual erosion rate of 0.1–0.2 m/year.
In addition, we found that the erosion or sedimentation of a section was consistent with
the width of the tidal flats. This means that the eroded transects were located on tidal flats
with a relatively small seaward width, while the transects on the tidal flats with a larger
seaward width were undergoing rapid sedimentation.
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3.4. Accuracy Comparison of Tide-Adjusted DEM and the UAV-Adjusted DEM

Figure 9a shows the multi-temporal waterlines extracted from the time-series Sentinel-
2 imagery. The waterlines were assigned elevation values using water level data from
the tide gauge station or a section of elevation obtained by the UAV photogrammetry
and then interpolated to create the tide-adjusted mudflat DEM (Figure 9b) and the UAV-
adjusted mudflat DEM (Figure 9d). A comparison of these two DEMs with the other UAV
photogrammetric section elevations indicates that the RMSEs are 47 cm and 23 cm for
the tide-adjusted DEM and the UAV-adjusted DEM, respectively (Figure 9c). This means
that the UAV photogrammetric results for the determination of waterline elevations can
increase the accuracy of traditional waterline methods by up to 51% significantly. Thus,
UAV/satellite synergy can not only make use of the flexibility for drone surveys, but also
achieve high accuracy for large-scale intertidal topography monitoring.
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digitized from Sentinel-2 images; (b) DEM generation using tide levels to assign waterline elevations;
(c) comparison of DEM accuracy produced by different waterline elevation assignments; and (d) DEM
generation using UAV-based SfM profile to assign waterline elevations.

4. Discussion
4.1. Uncertainty Caused by Photogrammetric Configurations

The main uncertainty in UAV-based photogrammetry without using GCPs for moni-
toring intertidal topography arises from the accuracy in resolving the interior and exterior
orientation elements of the UAV camera [47,48]. The camera of the P4R UAV used in this
study has been rigorously calibrated and the outputs of all flight experiments processed
by the Pix4Dmapper software show that there is no significant difference in the internal
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orientation elements solved by the overall bundle adjustment. The accuracy of the exterior
orientation elements depends primarily on the positioning accuracy at the moment when
the UAV takes a picture, where the time synchronization between the UAV positioning
module and the camera module is particularly important, as a millisecond of time synchro-
nization error will result in a position displacement of several centimeters at a flight speed
of tens of meters per second. In this study, the UAV was connected to the D-RTK 2 GNSS
Mobile Base Station for real-time positioning with an accuracy of better than 2 cm, thus
allowing it to be used for direct positioning in the context of UAV photogrammetry.

In the case of consistent uncertainty of the UAV orientation elements, the uncertainty
caused by the UAV flight pattern, altitude, and image overlap can potentially influence the
critical first step of the SfM algorithm, i.e., key point extraction and matching. Figure 10
shows the average number of extracted key points per image and the number of successful
matchings for the different flight patterns. The average number of key points extracted per
image is comparable for the three flight patterns, but the average number of successfully
matched key points per image varies considerably. The number of successfully matched
key points per image obtained by parallel flight with a nadir camera angle is twice that
of the other flight patterns, possibly indicating its high reconstruction accuracy at other
non-feature points obtained by smoothing in dense matching. For oblique UAV images,
perspective deformations may introduce more false key point matches, especially in tidal
flats with similar repetition of textures [49]. The statistics also show that the success
rate for key point matching was 23% for oblique images obtained by crosshatch flight,
whereas 46% for nadir images obtained by parallel flight. As a result, vertical nadir
photogrammetry achieved the best accuracy in three flight tests and the accuracy was
significantly reduced with the addition of a large number of oblique images (i.e., the five-
view flight photogrammetry). However, in some scenarios with large elevation fluctuations
(e.g., mountainous regions and built-up areas), oblique images are necessary because
information from different angles of the feature is required to reconstruct its full three-
dimensional extent [50,51].

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 20 
 

 

10 shows the average number of extracted key points per image and the number of suc-
cessful matchings for the different flight patterns. The average number of key points ex-
tracted per image is comparable for the three flight patterns, but the average number of 
successfully matched key points per image varies considerably. The number of success-
fully matched key points per image obtained by parallel flight with a nadir camera angle 
is twice that of the other flight patterns, possibly indicating its high reconstruction accu-
racy at other non-feature points obtained by smoothing in dense matching. For oblique 
UAV images, perspective deformations may introduce more false key point matches, es-
pecially in tidal flats with similar repetition of textures [49]. The statistics also show that 
the success rate for key point matching was 23% for oblique images obtained by cross-
hatch flight, whereas 46% for nadir images obtained by parallel flight. As a result, vertical 
nadir photogrammetry achieved the best accuracy in three flight tests and the accuracy 
was significantly reduced with the addition of a large number of oblique images (i.e., the 
five-view flight photogrammetry). However, in some scenarios with large elevation fluc-
tuations (e.g., mountainous regions and built-up areas), oblique images are necessary be-
cause information from different angles of the feature is required to reconstruct its full 
three-dimensional extent [50,51]. 

 
Figure 10. The average number of detected key points and matched points per image acquired un-
der different flight patterns. 

Flight altitude can affect the resulting topographic accuracy significantly, as flight 
altitude determines the image resolution. The key points used for the SfM are commonly 
derived from key point extraction algorithms (e.g., the Scale Invariant Feature Transform 
(SIFT)), with sub-pixel positioning accuracy [52]. However, although the accuracy of key 
point extraction is comparable at the pixel scale, it varies greatly at the spatial scale due to 
the difference in detection scale. As a result, the absolute spatial accuracy of the key point 
detection is higher on the images acquired by the UAV at low altitudes, and the error 
propagated to the resulting DEM in the SfM process is smaller. For image overlap, higher 
overlap degrees (e.g., 90%) in both the side and frontal directions achieved better topo-
graphic accuracy because they ensure a stable image connection for the aerial triangula-
tion. However, lower flight altitudes and higher image overlap will impose more time 
costs. In this study, we found that a UAV flight altitude of 110 m with 80% image overlap 
can provide a good compromise between accuracy and efficiency, and the resolution of 
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different flight patterns.

Flight altitude can affect the resulting topographic accuracy significantly, as flight
altitude determines the image resolution. The key points used for the SfM are commonly
derived from key point extraction algorithms (e.g., the Scale Invariant Feature Transform



Remote Sens. 2023, 15, 1814 15 of 19

(SIFT)), with sub-pixel positioning accuracy [52]. However, although the accuracy of
key point extraction is comparable at the pixel scale, it varies greatly at the spatial scale
due to the difference in detection scale. As a result, the absolute spatial accuracy of
the key point detection is higher on the images acquired by the UAV at low altitudes,
and the error propagated to the resulting DEM in the SfM process is smaller. For image
overlap, higher overlap degrees (e.g., 90%) in both the side and frontal directions achieved
better topographic accuracy because they ensure a stable image connection for the aerial
triangulation. However, lower flight altitudes and higher image overlap will impose
more time costs. In this study, we found that a UAV flight altitude of 110 m with 80%
image overlap can provide a good compromise between accuracy and efficiency, and the
resolution of the generated DEMs is sufficient to characterize the intertidal microtopography
(e.g., small tidal channel) (Figure 11).
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4.2. The Potential and Challenges of UAV/Satellite Synergy

The potential errors of satellite-based waterline methods for reconstructing the large-
scale mudflat topography arise mainly from waterline delineation, determination of water-
line elevations, and waterline interpolation [53]. For mudflats with a slope of 1/1000, the
horizontal displacement of one Sentinel-2 pixel (i.e., 10 m) caused by waterline extraction
would result in an error of 1 cm in elevation. Errors of this magnitude can be tolerated pro-
vided that the accuracy of the waterline extraction is maintained. The errors introduced by
the waterline interpolation can be mitigated by increasing the number of waterlines [54–56].
However, the errors introduced by the use of in situ measured or simulated tidal levels to
assign elevation values to the waterlines cannot be ignored. Most of the tide stations are
located some distance from the mudflats and therefore the tide station data does not truly
match the tidal level at the moment of acquisition of the waterline. For areas without tide
stations, hydrodynamic models are usually used to simulate tide levels, however, the lack
of accurate nearshore bottom topography leads to simulation errors of up to tens of centime-
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ters, especially in shallow nearshore areas with complex bathymetry and geometry [57,58].
Fortunately, UAV-based SfM photogrammetry can obtain the elevation for sections quickly
and flexibly. Such elevation profiles can, therefore, be used to calibrate the elevation of
waterlines, and based on our comparison, this approach can significantly increase mapping
accuracy. Therefore, UAV/satellite synergy can not only bring out the high precision and
flexibility of drones but also perform large-scale intertidal topography monitoring with con-
siderable accuracy. The joint multi-source satellite data (e.g., Landsat 7/8/9, Sentinel-1/2)
can obtain dense waterlines in a short period, supplemented by a cross-sectional elevation
collected by a UAV during that period, which will greatly increase the temporal resolution
and efficiency of intertidal topography monitoring by the UAV/satellite synergy. However,
there are challenges in terms of how to quickly and automatically extract waterlines from
satellite images from different sensors and keep their resultant uncertainty consistent. As
shown in the study by de Vries et al. [59], accurately delineating instantaneous waterlines
on estuarine coasts with very high sediment concentrations remains challenging due to
the spectral similarity and radar backscatter complexity between subtidal- and intertidal
features, and should be given more attention in future studies. Once the above problems
are solved, UAVs can be used to obtain high-precision topography at the transect scale in
the future, and then combined with dense satellite observations can detect hotspots and
general trends of intertidal topographic changes in response to sea level rise and riverine
sediment supply variations.

5. Conclusions

This study has quantitatively assessed the ability of RTK-assisted UAVs for surveying
tidal flat topography without the use of ground control points; and the effects of flight
pattern, altitude, and image overlap on topographic accuracy. These results demonstrate the
availability of the RTK-assisted UAV removes the need for any additional ground control
points. Unexpectedly, the parallel flight gives the highest accuracy and the crosshatch
flight significantly reduces the accuracy. Lower flight altitudes and higher image overlap
could improve the accuracy of UAV-based DEMs, while it will impose further time costs.
Surface water in low-lying areas of intertidal mudflats does not cause anomalies in the three-
dimensional reconstruction using the SfM algorithm, but it can result in an overestimation
of elevation by several centimeters. In summary, the accuracy of UAV surveying in the
intertidal zone is comparable to that of LiDAR, and the accuracy is controllable under
uncertainty. In addition, the combination of UAV and satellite observation can construct
high-precision and large-scale intertidal topography with significantly improved accuracy.
The synergy of UAV and satellite applications can play a major role in identifying coastal
erosion hotspots, establishing priority protection mechanisms, and facilitating coastal
restoration in future work.
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