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Abstract: Bias correction is a key prerequisite for radiance data assimilation. Directly assimilating 

the radiance observations generally involves large systematic biases affecting the numerical predic-

tion accuracy. In this study, a nonlinear bias correction scheme with Random Forest (RF) technology 

is firstly proposed based on the Fengyun-4A (FY-4A) Advanced Geosynchronous Radiation Imager 

(AGRI) channels 9–10 observations in the Weather Research and Forecasting Data Assimilation 

(WRFDA) system. Two different se�ings of the predictors are additionally designed and evaluated 

based on the performance of the RF model. It seems that an apparent scene temperature-dependent 

bias could be effectively resolved by the RF scheme when applying the RF method with newly 

added predictors. Results suggest that the proposed nonlinear scheme of RF performs be�er than 

the linear scheme does in terms of reducing the systematic biases. A more idealized error distribu-

tion of observation minus background (OMB) is found in the RF-based experiments that measure 

the nonlinear relationship between the OMB biases and the predictors when using the Gaussian 

distribution as the reference. Furthermore, the RF scheme shows a consistent improvement in bias 

correction with the potential to ameliorate the atmospheric variables of analyses. 
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1. Introduction 

Directly assimilating the geostationary imager observations has been demonstrated 

as a practical approach to enhancing the numerical prediction accuracy [1,2]. However, 

the systematic biases between the observation (O) and the background (B) exist in the 

assimilation of the uncorrected radiance data, which are always included in the observa-

tion minus background (OMB) residuals [3]. The sources of systematic errors with large 

uncertainties originate from errors in the numerical models, biases in the observations, 

and the bias caused by the observation operator. Most data assimilation methods are able 

to account for the random error by a combination of spectral, temporal, and spatial filter-

ing rather than for the systematic bias. Thus, the bias correction (BC) procedure has be-

come an indispensable part of most assimilation systems in the numerical weather pre-

diction (NWP) [4]. As a fundamental requirement, BC schemes are generally designed to 

remove systematic biases between the observation and the model-simulated background 

[5,6]. 

The differences between observations and their NWP background equivalents were 

often quantitated for the ‘offline’ BC method to remove systematic biases [7]. Considering 
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the sources of systematic biases are statistically changing with the atmosphere- and satel-

lite-related parameters, researchers generally applied a linear combination of several re-

lated BC predictors to correct the scan and air-mass dependent biases, for example, for the 

TIROS Operational Vertical Sounder (TOVS) observations and for the Advanced TOVS 

(ATOVS) of NOAA observations, respectively [8,9]. Meanwhile, the air-mass dependent 

biases may be a�ributed to the design of the observation operators. For this reason, Wa�s 

and McNally (2004) corrected the absorption coefficient error of each channel in radiative 

transfer modeling (RTM) for the Atmospheric Infrared Sounder (AIRS) [10]. However, 

those offline schemes are not available to continuously track the systematic bias for radi-

ance observations that change in time and space. Thus, an adaptive BC method called 

variational bias correction (VarBC) is widely adopted in most data assimilation systems 

[11]. The VarBC method is designed to correct the systematic bias adaptively by including 

BC coefficients of predictors as control variables in the cost function for iterative minimi-

zations [12–14]. Auligné et al. (2007) proved that the VarBC scheme can be considered as 

an optimization result of the static and the offline adaptive schemes [15]. On the other 

hand, following the assumption that BC should be independent of the data assimilation 

system, the online BC with an ensemble Kalman filter was applied for the state-space-

dependent biases correction for the 15 channels of AIRS in the primitive equation dynam-

ics (SPEEDY) model with simplified parameterizations [16]. Furthermore, an innovative 

method called “Constrained Variational Bias Correction” is proposed by Han et al. (2016) 

to avoid unrealistic drifts from the full global 4D-Var system models [17]. Though previ-

ous studies have shown that the VarBC-based schemes are able to effectively remove sys-

tematic errors during the clear-sky data assimilation experiments, it was proved that the 

VarBC methods based on a linear combination of predictors bring few positive effects in 

the assimilation of cloudy pixels [18]. The lack of improvement may have occurred be-

cause the cloud-related biases were too complex and nonlinear to be removed using a 

linear combination of BC predictors [19].  

The above static and online BC methods typically assume a linear correlation be-

tween the OMB departures and some selected predictors. For satellite data assimilations, 

nonlinear sources of biases commonly exist, especially in the all-sky assimilation experi-

ments [20,21]. Therefore, Otkin et al. (2018) implemented a nonlinear correction scheme 

with a Taylor series polynomial expansion, which removed the linear and nonlinear con-

ditional biases from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) all-sky 

radiances [22]. Their results also suggested the benefits of including scene brightness tem-

perature as a BC predictor. Nowadays, machine learning technologies have been widely 

applied to the nonlinear issues in NWP [23,24]. Wang et al. (2021) proposed a machine 

learning-based correction scheme with the Random Forest (RF) technique for the Geosta-

tionary Interferometric Infrared Sounder (GIIRS) observations, proving that the RF 

scheme with the added predictors of longitude and latitude outperforms the traditional 

offline method [25]. A brightness temperature remapping technique based on a deep con-

volutional neural network (CNN) demonstrated the added benefits to the decreased rep-

resentativeness error in FengYun-3D (FY-3D) microwave radiation imager (MWRI) obser-

vations assimilation [26]. 

As one of the advancements of Fengyun-4A (FY-4A), the AGRI (Advanced Geosyn-

chronous Radiation Imager) is a�racting a�ention due to its high spectral, temporal, and 

spatial resolutions compared to its previous generation (Fengyun-2) [27]. Assimilating the 

two water vapor channels 9–10 of AGRI has been proven to benefit the initial value of the 

model and improve the prediction accuracy of “21·7” Henan extremely persistent heavy 

rainfall [28]. Most efforts have been made focusing on the bias characteristics of each chan-

nel for AGRI. For instance, it was verified that the biases of AGRI channel 9 and channel 

10 are smaller than the biases of AGRI infrared window channels [29,30]. Geng et al. (2020) 

proved that the BC predictors of satellite zenith angles (sa�en) have less effect on AGRI 

radiance bias correction based on the VarBC method [31]. Similarly, it is noted that the 

OMB variance of AGRI has less dependence on satellite zenith angles on the basis of linear 



Remote Sens. 2023, 15, 1809 3 of 21 
 

 

regression tests but has stronger dependence on the scene brightness temperature [32]. A 

common issue of these scene-dependent biases is also noticed by Zou et al. (2016) in the 

Advanced Himawari Imager Infrared (AHI), owing to the nonlinearity of instrument cal-

ibration [33]. In addition, for the GIIRS observations from the FY-4A satellite, a scanpos-

dependent bias is observed [34]. 

Although the above productive achievements have been made in terms of the appli-

cation of the FY-4A AGRI radiance data, there has been few explorations in comparisons 

of the non-linearity and the linearity BC methods for the geostationary infrared observa-

tions assimilation. Meanwhile, the traditional BC schemes based on a linear combination 

of predictors may not be able to remove those systematic biases caused by the nonlinear 

processes. Thus, a nonlinear BC scheme is developed based on the machine learning tech-

nology of RF against the linear BC scheme by utilizing the observations of AGRI channels 

9–10 under clear-sky in the Weather Research and Forecasting Data Assimilation 

(WRFDA) system. The proposed BC scheme is performed based on a nonlinear combina-

tion of predictors as well as the nonlinear fi�ing relationship between the predictors and 

OMB biases. Moreover, the quantification and the contribution of several BC predictors 

are investigated through sensitivity experiments. This study aims to apply a nonlinear 

correction method of OMB biases for FY-4A AGRI radiance data assimilation. The poten-

tial positive effect of the RF scheme is checked to enhance the accuracy of data assimila-

tion. It may be conducive to improving the numerical weather forecasting through this 

nonlinear BC method in data assimilation systems. 

The outline of this study is organized as follows. Detailed descriptions of two differ-

ent BC schemes are provided in Section 2 for FY-4A AGRI radiances assimilation. The 

experimental design is described in Section 3. Section 4 gives the results and analysis be-

fore summarized conclusions and a plan of future work is elaborated in Section 5. 

2. Materials and Methods 

2.1. The Data Assimilation System 

In order to obtain positive impacts in NWP from the satellite radiances, different BC 

methods are coupled into the WRF three-dimensional variational data assimilation system 

(WRF-3DVar), which minimizes the so-called variational cost function  xJ as Equation 

(1) [35]. 

           biaso
1T

biasob
1T

b OMBOMB
2

1

2

1
 xΗyxΗyxxxxxJ ---- -- RB  (1) 

where x  is the atmospheric state vectors, bx  is the first guess (background) states, and 

oy  the observation vector. R  and B  are the error covariance matrices for the observa-

tions and background, respectively. H  stands for the observation operator by using the 

Radiative Transfer for TIROS Operational Vertical Sounder (RTTOV). It is noted that the 

observation minus the observation operator is an essential component of the variational 

cost function. Therefore, it is necessary to recognize the systematic bias prior to data as-

similation (Dee and Uppala, 2009). Usually, the systematic bias here denoted as biasOMB  

could be calculated using the OMB statistics before correcting the )(xH  [36]. In this 

study, the BC procedures are conducted with the linear and nonlinear schemes, respec-

tively. 
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2.2. Linear Bias Correction 

In the linear BC scheme, the biasOMB  for each channel are removed through two 

terms as 

)(OMB ∑
10bias x
N

ii i p
p


  , (2)

where 0  represents the constant component of the total bias, a linear combination of ith 

state-dependent predictors ip  here account for the weather condition and the character-

istics of AGRI observations, and i denotes the number of used predictors. Two correction 

coefficients of i  and 
0

  are computed with the least squares fi�ing in the linear ex-

periments. In addition, the BC coefficients are assumed to be channel-dependent [37]. 

2.3. Nonlinear Bias Correction 

A bagging-based ensemble learning algorithm called “Random forest” was chosen to 

construct the nonlinear BC process for the following advantages. RF technology is de-

signed to be efficient and adaptable to high-dimensional datasets. It has be�er perfor-

mance in the aspect of generalization ability [38]. 

The detailed flowchart of the RF-based nonlinear BC scheme is described in Figure 1. 

First of all, in the RF training model, the statistics of normalized predictors trainp  and 

OMB for AGRI channels 9–10 were extracted as the feature variables and the target varia-

bles, respectively. The last two-week samples were randomly divided into a training set 

and a validating set with 80 and 20 percent ratios, respectively. To improve the robustness 

of the RF model, the RF training model first fits the nonlinear relationship between the 

OMB and predictors based on the training sets. Then, the outputs of the OMB_RFtrain are 

calculated by the RF training model based on the information of predictors from the other 

validation sets. The outputs of the OMB_RFtrain represent the bias estimates of each pixel. 

Afterwards, two basic parameters (“number of trees” and “depth of trees”) in the RF 

model need to be adjusted at each node. Through two metrics of MAE and RMSE, the RF 

model was constantly adjusted to obtain the optimized parameters. Another unique ad-

vantage of RF is that the influence of each predictor on the model performance, termed as 

‘feature importance’, can be quantified by Gini index [39]. The selection of predictors 

could be adjusted according to the feature importance scores. 
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Figure 1. Flowchart of the RF model coupling with the WRFDA system for the bias correction of 

satellite radiances. 

Secondly, once the model optimal parameters have been confirmed, the nonlinear 

relationship between the OMB departures and several predictors fi�ed by the RF training 

model will be inherited to the RF predicting model. Meanwhile, the predictors from test-

ing datasets valid at the analysis time will be extracted as inputs to the RF prediction 

model. Then, the outputs of the RF prediction model denoted as OMB_RFpred in Figure 

1 are applied as the estimates of the systematic bias for the radiance data assimilation in 

the WRFDA system. The final prediction of OMB_RFpred is made based on the mean of 

all predictions from each individual tree on test samples x , as, 





T

t

RF
T 1

)(
1

OMB_RFpred x , (3)

where T is the total number of regression trees. 

2.4. Experimental Design 

Three parallel experiments are designed to evaluate the impact of different BC 

schemes for AGRI channels 9–10 under clear-sky. These experiments differ in predictors 

and BC algorithms with their detailed configurations shown in Table 1. The RF_pre4 and 

RF_pre7 experiments are configured consistently with the same nonlinear correction 

method of RF but differ in the se�ings of BC predictors. Unlike the other experiments, 

Linear_pre7 uses a linear solver of the least square fi�ing to correct the OMB biases. Apart 

from the traditional predictors p0–p4, the predictors p5—longitude, p6—scene brightness 

temperature, and p7—scan position (scan pixels number in the latitudinal direction) are 

additionally used for the RF_pre7 and Linear_pre7 experiments. The three newly added 

predictors p5–p7 are more sensitive to the OMB biases as shown in Section 3.2.1. Predictors 

p1–p4 generally depend on the atmospheric state, while predictors p5–p7 are to allow for 

representing the bias characteristics of the satellite observations. 
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Table 1. The se�ing of three experiments. 

Experiment Predictors Used Bias Correction Method 

RF_pre4 

p0: 1 (constant) 

p1: 1000–500hPa thickness 

p2: 300–50hPa thickness 

p3: Skin temperature 

p4: Total column water 

Random forest 

RF_pre7 p0: 1 (constant) 

p1: 1000–500hPa thickness 

p2: 300–50hPa thickness 

p3: Skin temperature 

p4: Total column water 

p5: Longitude 

p6: Scene brightness temperature 

p7: Scan position 

Random forest 

Linear_pre7 Least square fitting 

For all the experiments, the statistical correlations based on both the linear and non-

linear methods are obtained on a representative set of OMBs and predictors over the do-

main. The local area concerned is covering from the west of China to the western Pacific 

Ocean (15°N–55°N, 90°E–140°E) centered at 35°N, 115°E, where the “21·7” Henan ex-

tremely heavy rainfall occurred. The offline statistics are generated by the WRF-3DVar 

system based on the datasets of National Centers for Environmental Prediction (NCEP) 

operational 0.25° × 0.25° Global Forecast System (GFS) analysis and the full disk FY-4A 

AGRI observations. The training sets are available from 1800 UTC 4 July 2021 to 1800 UTC 

18 July 2021, every 6 h. As for the RF predicting model, the testing datasets are valid at 

0600 UTC 19 July 2021. The background is generated from a 6-h spin-up forecast as the 

cold starts. 

Successful radiance assimilation requires high-quality datasets for the RF model and 

the WRFDA system. The following four steps of quality control (QC) are adopted in all 

the experiments, including (1) rejecting all channels with mixture surface types of obser-

vation data; (2) rejecting the satellite zenith angels are larger than 60°; (3) rejecting the 

observations if the absolute OMB innovation exceeds 3 times the observation error under 

clear-sky conditions, and if it exceeds 15 K; (4) for the clear-sky radiance data assimilation, 

rejecting the cloudy pixels with a Particle Filter (PF) cloud detection scheme proposed by 

Xu et al. (2016) [40]. 

3. Results 

3.1. Predictive Capability of RF Model 

The optimal parameters can be confirmed based on the error metrics of out-of-bag 

data (OOBD) without cross-validations, which is a highly efficient way to assess the model 

generalization capability for the operational forecast. In each round of bootstraping, about 

one-third of the training sets called “out-of-bag data” are left out and averaged as an out-

of-bag score (OOBS) when the “bootstrap” is set to true. The details of model optimization 

are described as following. 

To optimize the RF model, the model predictive capability is evaluated by adjusting 

the model configurations in terms of parameters and features. Figure 2 shows the OOBS 

based on the different model parameters (number and depth of trees). A larger OOBS in-

dicates be�er predictive capability. As shown in Figure 2a, the OOBS for channel 9 is sig-

nificantly increased until the depth reaches 25, when the number of trees is 130. Moreover, 

the trees numbers from 180 to 220 obtain a higher score when the depth of trees is smallest. 

In Figure 2b, a relatively higher score is found after the depth reaches 30 for the number 

170. Accordingly, we set 180 trees and a maximum depth of 25 for channel 9 and 170 trees 
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and 30 depth for channel 10, respectively, to avoid the over-fi�ing issue. Based on the 

optimal parameters, the predictors in the first analysis valid at 0600 UTC 19 July 2021 are 

formed as the new inputs, to obtain the OMB_RFpred through the RF predicting model. 

 

Figure 2. Out-of-bag score (OOBS) map of RF training model with different model parameters (num-

ber and depth of trees) for (a) channel 9 and (b) channel 10. The horizontal axis represents the num-

ber of trees, and the vertical axis represents the depth of trees. The sum of OOBSs is 1. 

As a premise, it is of great importance to diagnose the contributions of each predictor, 

whether in the proposed scheme or in the traditional BC schemes. Figure 3 illustrates the 

feature importance of several predictors for AGRI channel 9 and channel 10, respectively, 

in the RF training model. The model normalized the feature importance so that the sum 

of all importance scores is 1. The higher the score, the greater the correlation between 

predictors and OMB biases. It is evident that the predictors of scene brightness tempera-

ture, scan position, and longitude contribute more to the RF model compared to other 

traditional predictors. Moreover, the importance score of the scene brightness tempera-

ture is significantly higher than the other predictors for both AGRI channels 9 and 10. 
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Figure 3. Feature Importance of the applied predictors in the RF model for AGRI (a) channel 9 and 

(b) channel 10. The sum of all importance scores is 1. 

To evaluate the predictive capability of the RF model, the differences between the 

real OMB and the predicted OMB from validation sets are measured using the mean ab-

solute error (MAE) and root mean squared error (RMSE) for two experiments with two 

different bundles of predictors. One bundle consists of predictors p0–p4 and the other in-

cludes predictors p0–p7 for BC. As is shown in Table 2, the MAE and RMSE scores of 

RF_pre7 for AGRI channels 9–10 are significantly lower than those of RF_pre4. The results 

indicate a strong generalization capability of the RF model based on the extended predic-

tors. The statistical dependence of OMB on the newly added three predictors p5–p7 will be 

further investigated in the next sections for a be�er understanding of the model perfor-

mance. It is worth noting that the error scores for channels 9–10 are rather different. This 

is probably due to the fact that the statistics are calculated based on the datasets with 

different data counts. To be specific, the data of channel 10 are more likely to be eliminated 

by the quality control processes due to the influence of the surface emissivity. 

Table 2. The RF model prediction scores of two different experiments. 

Experiments Channels MAE (K) RMSE (K) Data Counts 

RF_pre4 
9 1.72 2.17 101,845 

10 1.48 1.91 99,845 

RF_pre7 
9 0.93 1.23 101,845 

10 1.02 1.35 99,845 
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3.2. Comparison of Different BC Schemes 

The comparison of three experiments is elaborated in this section to assess the per-

formance of linear and nonlinear BC schemes in the assimilation of the observations of 

AGRI channels 9–10. Meanwhile, the contribution of those additional predictors p5–p7 to 

the BC effectiveness will be further evaluated by adding the sensitivity experiments in the 

framework of the same BC method. 

3.2.1. Variations in Bias with Predictors 

The OMB biases are characterized with the nonlinearity variations along with several 

predictors. As seen from Figure 4, the biases of OMB noticeably increase as the p5 scene 

brightness temperature (scene temperature) increases in all the experiments except for the 

RF_pre7, especially when the scene temperature is less than 238 K (250 K) for channel 9 

(channel 10). The OMB_noBC results without BC have a large amplitude of more than 6 

K for both AGRI channels. An apparent scene temperature-dependence bias of OMB exits 

in the OMB_noBC, RF_pre7 and Linear_pre7 experiments, caused by the instrument non-

linearity. The practical nonlinearity problem is an important factor affecting the calibra-

tion accuracy of infrared imaging instruments [41]. As expected, the nonlinear correction 

ability of RF would be desirable to overcome this assimilation issue when taking p5–p7 as 

one of the predictors. The OMB biases of AGRI channels 9–10 in RF_pre7 are both weak 

or negligible dependent on the scene temperature according to the smallest variation am-

plitude in a range of −2 K to 2 K. 

 

Figure 4. Variations in the biases of OMB (unit:K) with respect to the predictors of scene brightness 

temperature (unit: K) for AGRI (a) channel 9 and (b) channel 10 valid at 0600 UTC 19 July 2021. 

Variations in the OMB biases with respect to the predictors of longitude is elaborated 

for AGRI channels 9–10 in Figure 5. A finite range of values for the scan position and lon-

gitude is relevant to the regional statistics applied for the limited-area model of the 

WRFDA system (Figures 5 and 6). The biases variation along with the longitude display 

relatively small fluctuations near 0 K in the RF_pre4 experiment compared to those from 

other experiments, especially for the AGRI channel 9. The Linear_pre7 and OMB_noBC 

results show a clearly negative bias with an amplitude of more than 1 K and 2K, respec-

tively. In the region from 100°E to 130°E, the corrected bias from the RF_pre7 experiment 

is rather significant. Furthermore, it is found that the bias correction effects are different 

between channel 9 and channel 10. A possible reason is that the predictive capability of 

the RF model for channel 9 and channel 10 is different, as shown in Table 2. 
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Figure 5. Variations in the OMB biases (unit: K) with respect to the predictors of longitude for AGRI 

(a) channel 9 and (b) channel 10 valid at 0600 UTC 19 July 2021. 

 

Figure 6. Variations in the average OMB biases (unit: K) with respect to the predictors of scan posi-

tion (pixels number of latitudinal direction) from the different experiments for AGRI (a,b) channel 

9 and (c,d) channel 10, respectively, valid at 0600 UTC 19 July 2021. (a,c) The left panels represent 

the comparison between the OMB_noBC (black lines) and RF_pre4 (blue lines) experiments. (b,d) 

The right panels represent the comparison between the OMB_noBC (black lines) and RF_pre4 (blue 

lines) experiments. 
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The OMB biases before BC exhibit negative biases of AGRI channels 9–10 along with 

the latitudinal scan position values from 700 to 1100 (Figure 6a,c). It seems that these cold 

biases are efficiently revised by the RF method since the corrected biases are mostly closer 

to 0 K in the RF_pre4 and RF_pre7 experiments in Figure 6. Nevertheless, the cold biases 

still partly exist in the experiments of Linear_pre7. As is well known, the assimilation of 

undetected cloudy pixels will likely lead to a cooling observed field, for which the OMB 

biases are negative for the infrared radiances [42]. Results indicate that the nonlinear cor-

rection scheme has the potential ability to account for the prevalence of nonlinear biases 

caused by clouds. 

3.2.2. OMB Distributions 

Figure 7 shows the QC-passed sca�ers of the simulated brightness temperature (B) 

versus the observed brightness temperature (O) before and after the BC for AGRI channel 

9 and channel 10 radiance data along with the density distribution of pixels. It can be seen 

that the mean of the OMB is notably large before BC, which is effectively reduced by all 

the experiments except for channel 10 in the Linear_pre7 experiment. The best agreement 

between the observation and the background after BC is provided by the RF-based exper-

iments, with the smallest OMB mean nearly at 0.233 K for channel 9 and 0.105 K for chan-

nel 10. Additionally, the sca�er distribution of RF_pre7 around the isoline is denser than 

the other experiments (Figure 7c,g). It is noted that the standard deviation (std) of cor-

rected-OMBs in the experiments of RF_pre7 and Linear_pre7 are smaller than those from 

the experiments with only the predictors p0–p4. 
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Figure 7. The QC-passed sca�ers of observed versus RTTOV-calculated brightness temperature 

(unit: K) from the background (a) before BC, (b) after BC with RF_pre4, (c) after BC with RF_pre7, 

and (d) after BC with Linear_pre7 for AGRI channel 9. The sca�ers of observed (OBS Tb) versus 
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RTTOV-calculated brightness temperature (unit: K) from the background (BAK Tb) (e) before BC, 

(f) after BC with RF_pre4, (g) after BC with RF_pre7, and (h) after BC with Linear_pre7 for AGRI 

channel 10. The proportions of data counts are indicated as the shading. 

The probability density function (PDF) of the normalized OMB is shown in Figure 8 

based on different BC schemes after the quality control. Approaching the Gaussianity dis-

tribution (black do�ed curves) is expected to statistically lead to more accurate analyses. 

The kurtosis of OMB distributions before BC (orange curves) are obviously sharper than 

the Gaussian curve. As compared to the reference, the positive skewness of OMB_noBC is 

symmetrically shifted to near 0 K by all the BC experiments for both AGRI channels. How-

ever, it is observed that the OMB from Linear_pre7 experiment displays too-pronounced 

peaks at the left tails near around −2 K, as is marked with the black boxes. This cold de-

parture is probably corresponding to the cloudy pixels not being completely rejected. On 

the contrary, the frequencies of OMB from the RF_pre7 and RF_pre4 experiments match 

the Gaussian distribution relatively be�er, especially for those left tails. All the results 

suggest that the RF method is capable of measuring the nonlinear relationship between 

the OMB biases and the BC predictors. 

 

Figure 8. Probability density function (PDF) of normalized OMB departures before BC (orange 

curves) and after BC from the experiments of RF_pre4 (blue curves), RF_pre7 (red curves), and Lin-

ear_pre7 (green curves), respectively, versus the Gaussian distribution (black do�ed curves) for 

AGRI (a) channel 9 and (b) channel 10. 

In addition, the brightness temperature (BT) distributions of OMBs for AGRI chan-

nels 9−10 are illustrated with and without the BC by comparing the experiments of 

RF_pre7 and Linear_pre7 (Figure 9). It can be seen that the OMB BT distribution without 

the BC in Figure 9a,b shows large negative biases and positive biases in some areas, which 

could be modified by the BC experiments of RF_pre7 and Linear_pre7, respectively. How-

ever, there is a significant cold bias of OMB BT in the Linear_pre7 experiment, especially 

over the continental area (Figure 9e,f). This is consistent with the finding of more negative 

OMB biases from Linear_pre7, indicated by the black boxes do�ed in Figure 8. In contrast, 

those cold biases have been removed to some extent in the RF_pre7 experiment (Figure 

9c,d). The otherness of OMB BT distributions from RF_pre7 is relatively insignificant, with 

a smaller std of OMB against the linear experiments. 
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Figure 9. The brightness temperature (unit: K) distributions of the observation minus the back-

ground (OMB) before the bias correction for AGRI (a) channel 9 and (b) channel 10, after the bias 

correction from the RF_pre7 experiment for AGRI (c) channel 9 and (d) channel 10, and from the 

Linear_pre7 experiment for AGRI (e) channel 9 and (f) channel 10, valid at 0600 UTC 19 July 2021. 

3.2.3. Verification of Analyses 

It is important to verify the potential effects of different BC methods on the subse-

quent assimilation of AGRI radiances. If the model background or observations contains 

systematic errors, the analysis will diverge from the true state [43]. Figures 10 and 11 show 

the bias and root-mean-square error (RMSE) vertical profiles of the analyses verified 

against a set of conventional observations (sounding and surface synoptic). The dots 

marked in Figures 10 and 11 show the results above a 95% significant level. 
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Figure 10. The bias vertical profiles of the analyses with the radiances of AGRI channels 9–10 from 

the OMB_noBC (black lines), RF_pre7 (red lines), and Linear_pre7 (green lines) experiments, respec-

tively, verified against the sounding and surface synoptic observations for (a) U-wind, (b) V-wind, 

(c) temperature, and (d) specific humidity valid at 0600 UTC 19 July 2021. The marked dots show a 

significance level above 95%. 
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Figure 11. The root-mean-square error (RMSE) vertical profiles of the analyses with the radiances 

of AGRI channels 9–10 from the OMB_noBC (black lines), RF_pre7 (red lines), and Linear_pre7 

(green lines) experiments, respectively, verified against the sounding and surface synoptic obser-

vations for (a) U-wind, (b) V-wind, (c) temperature, and (d) specific humidity valid at 0600 UTC 19 

July 2021. The marked dots show a significance level above 95%. 

Among the results of different BC experiments, the best initial estimate is achieved 

by the proposed RF_pre7 scheme with the smallest bias for all variables at almost all lev-

els, except for a slightly positive impact on the temperature analyses at the higher levels 

above 400 hPa (Figure 10). However, the Linear_pre7 scheme is not as effective as the non-

linear scheme in the improvements of the initial conditions. Figure 11 displays the con-

sistent conclusions as Figure 10 but for the verification metrics of RMSE. The results sug-

gest that the analyses after BC are generally improved for the synoptic variables, though 

the RF nonlinear scheme has a li�le direct impact on the reduced RMSE of analyses for 

specific humidity, as shown in Figure 11d. Yet, in the RF_pre7 experiment, the variables 

of winds and temperatures below 400 hPa show some improvements in terms of the re-

duced RMSE scores (Figure 11a–c). 

To further assess the robustness of the RF scheme, the experiments are conducted for 

another analysis time that is far from the training period. Figures 12 and 13 show the bias 

and RMSE vertical profiles, same as Figures 10 and 11, but are valid at 0600 UTC 20 July 
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2021. It is observed that the bias and RMSE scores from Linear_pre7 experiments are char-

acterized by the smallest errors of U-winds in the upper troposphere and higher errors of 

other variables as a comparison to RF_pre7. The errors in RF_pre7 experiments are gener-

ally reduced, especially for the temperature. The smaller errors from the BC experiments 

relative to the OMB_noBC experiment indicate that the quality of the synoptic variables 

from analyses could be improved by the BC. Generally, the largest improvements exist in 

the experiments with the proposed RF scheme. 

 

Figure 12. The bias vertical profiles of the analyses with the radiances of AGRI channels 9–10 from 

the OMB_noBC (black lines), RF_pre7 (red lines), and Linear_pre7 (green lines) experiments, re-

spectively, verified against the sounding and surface synoptic observations for (a) U-wind, (b) V-

wind, (c) temperature, and (d) specific humidity valid at 0600 UTC 20 July 2021. The marked dots 

show a significance level above 95%. 
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Figure 13. The root-mean-square error (RMSE) vertical profiles of the analyses with the radiances 

of AGRI channels 9–10 from the OMB_noBC (black lines), RF_pre7 (red lines), and Linear_pre7 

(green lines) experiments, respectively, verified against the sounding and surface synoptic obser-

vations for (a) U-wind, (b) V-wind, (c) temperature, and (d) specific humidity valid at 0600 UTC 20 

July 2021. The marked dots show a significance level above 95%., 

4. Discussion 

In this study, a nonlinear BC method based on the RF machine learning technology 

was developed and implemented in order to remove the nonlinear conditional biases to 

enhance the efficiency of AGRI radiance data assimilation. Compared with other machine 

learning technologies, one of the advantages of RF is that it is suitable for high-dimen-

sional datasets and has the capability to evaluate the feature importance of BC predictors. 

Unlike the traditional BC schemes, such as the VarBC method, the proposed scheme has 

the advantage of fi�ing the nonlinear relationship between the predictors and OMB biases 

to be�er correct the nonlinear conditional biases. 

First, the performance of the RF-based correction model was evaluated with two dif-

ferent se�ings of BC predictors. According to the results, it is confirmed that the configu-

ration of p0–p7 predictors is able to enhance the generalization capability of the RF model. 

The additional predictors of p5–p7 were also diagnosed in the RF model as contributing 

significantly to the prediction of objects. To be specific, the traditional predictors p0–p4 
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mainly represent the bias characteristics in the model space, while the newly added pre-

dictors p5–p7 could reflect the information of observed space errors. Moreover, those re-

sults can be explained by the fact that the RF model is suitable for the high-dimensional 

and multi-feature datasets. 

The application effects of the BC nonlinear scheme were investigated and compared 

with the linear BC scheme for the observations of AGRI channels 9–10. As expected, the 

OMB biases could be effectively decreased by the RF nonlinear scheme against the linear 

scheme as well as a more idealized error distribution of OMB shown in the RF-based ex-

periments. The nonlinear BC method based on RF outperforms the linear BC method, es-

pecially for correcting the biases of AGRI observation caused by the nonlinear processes. 

An apparent scene temperature-dependence bias of OMB is observed for AGRI channels 

9–10, which is caused by the nonlinearity process of the instrument calibration. Further-

more, the significant negative biases of OMB may be related to a cooling observed field 

resulting from the simulation of cloudy pixels. The cloud-related processes are generally 

non-linear and complicated. Thus, the simulation of cloud-related processes is always 

simplified and linearized in most numerical models, causing non-negligible nonlinear bi-

ases. 

In addition, according to the verification of analyses, it is speculated that the pro-

posed nonlinear BC scheme with p0–p7 predictors has the potential to increase the quality 

of the analyses after recognizing the system biases from AGRI observations. All of those 

results shown in Section 3 suggest that identifying the nonlinear correlations among the 

OMB and the predictors through the RF method is conducive to BC with the subsequent 

positive impacts on data assimilation. 

5. Conclusions 

BC is an essential step to remove the systematic biases before radiance data assimila-

tion. In this study, the AGRI clear-sky observations from channels 9–10 were utilized to 

explore the ability of a nonlinear BC method based on the RF technology in the WRF-

3DVar system. The experiments are conducted using a comparative assessment, using a 

traditional linear method as the benchmark to assess the proposed RF scheme perfor-

mance. According to the feature importance of BC predictors, two different se�ings of BC 

predictors are designed in order to further enhance the application effect of the RF model. 

It is found that the configuration of predictors p0–p7 provides a consistent improve-

ment in systematic bias correction. Utilizing the newly added predictors p5–p7 based on 

the RF nonlinear method may effectively contribute to the reduced scene temperature-

dependent biases. The mean and std of OMB with the RF scheme are significantly de-

creased in comparison to the traditional linear scheme. Further, the proposed nonlinear 

scheme yields an optimized estimate of the real atmospheric state by taking advantage of 

the reduced system biases of AGRI channels 9–10. 

Despite the above encouraging results, more efforts will be extended to assess the 

positive impact on data assimilation from the infrared observations, upgrading the nu-

merical forecasting skill by applying the machine learning method in the procedure of BC. 

On the other hand, the inherent nonlinear interactions are largely found in the cloud-re-

lated processes between the local thermodynamic environment and various cloud hy-

drometers. Thus, nonlinear BC methods are also planned for the all-sky radiance data as-

similation. 
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