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Abstract: This paper presents the development and application of a deep learning-based approach
for semi-automated detection of tar production kilns using new Finnish high-density Airborne Laser
Scanning (ALS) data in the boreal taiga forest zone. The historical significance of tar production,
an important livelihood for centuries, has had extensive environmental and ecological impacts,
particularly in the thinly inhabited northern and eastern parts of Finland. Despite being one of
the most widespread archaeological features in the country, tar kilns have received relatively little
attention until recently. The authors employed a Convolutional Neural Networks (CNN) U-Net-based
algorithm to detect these features from the ALS data, which proved to be more accurate, faster, and
capable of covering systematically larger spatial areas than human actors. It also produces more
consistent, replicable, and ethically sustainable results. This semi-automated approach enabled
the efficient location of a vast number of previously unknown archaeological features, significantly
increasing the number of tar kilns in each study area compared to the previous situation. This
has implications also for the cultural resource management in Finland. The authors’ findings have
influenced the preparation of the renewal of the Finnish Antiquities Act, raising concerns about the
perceived impacts on cultural heritage management and land use sectors due to the projected tenfold
increase in archaeological site detection using deep learning algorithms. The use of environmental
remote sensing data may provide a means of examining the long-term cultural and ecological impacts
of tar production in greater detail. Our pilot studies suggest that artificial intelligence and deep
learning techniques have the potential to revolutionize archaeological research and cultural resource
management in Finland, offering promising avenues for future exploration.

Keywords: airborne laser scanning; archaeology; feature detection; deep learning; tar production;
boreal forest; Finland

1. Introduction

In 2020 the Finnish National Land Survey (FNLS) started producing new, more detailed
Airborne Laser Scanning 5p (ALS-5p) data, which corresponding to its name has an average
density of at least 5 points per square meter. This is ten times more than the old airborne
laser scanning 2008-2019 data publicly available in Finland (FNLS). The Finnish National
Heritage Agency, University of Oulu, and Blom Kartta (today Field) are carrying out a
study for the potential applications of this new dataset in archaeological analyses, Cultural
Resource Management (CRM), and detection of archaeological features within the LIDARK
consortium project funded by the Finnish Ministry of Agriculture and Forestry [1]. Our
assessments of the ALS-5p material have already illustrated its high potential for various
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kinds of archaeological analyses, including the semi-automated detection and measurement
of various kinds of archaeological objects [2,3].

In this article we discuss the development, testing, and first results of using Deep
Learning (DL) and a Convolutional Neural Networks (CNN) U-Net-based algorithm for
detecting some of the most common and yet most understudied archaeological features in
the Finnish boreal taiga forest based on the ALS-5p datasets, namely tar production kilns.
These have some distinctive characteristics that make them especially suitable for feature
detection (Figures 1 and 2). This approach has not been used previously in the country [4,5].
As our test cases, we have used three Airborne Laser Scanning (ALS) production areas that
the FNLS flew in 2020 and 2021, Néljdankd, Kuivaniemi and Hossa, all situated in northern
Finland but in differing environmental and land use settings (Figure 3). In this process the
Naljanka area was used for training the detection algorithm, and Kuivaniemi and Hossa for
evaluating its performance. All the areas turned out to be very productive for the detection
of kiln-like features from the ALS data.

Tar kilns are amongst the most widespread archaeological features in Finland, es-
pecially in the northeastern part of the country (Figures 1 and 2) [5]. This mirrors the
importance of tar production and export for the Swedish and Finnish economy in the 16th—
20th centuries—Finland was part of Sweden until 1809, becoming thereafter momentarily
part of the Russian Empire until 1917. Historical accounts report that the tar burning had
widespread environmental and ecological impacts, for example due to the high demand
for firewood that caused deforestation and changed forest compositions. However, the
long-term ecological effects of these activities remain little studied. At the same time, tar
kilns are among the least studied and most poorly known archaeological features in the
country, largely owing to their general prevalence and commonness in Finnish forests. They
were virtually ignored by archaeologists until the 2010s, and owing to that there is very
little information beyond the historical and ethnographic accounts [6-8], even regarding
most fundamental issues like the chronology and typology of tar production kilns [4].

This is also true more widely in a global perspective [9]. Most of the recent archaeo-
logical activity in this respect has focused on the (semi-)automatic detection of charcoal
kilns, also known as relict charcoal hearths, from ALS data [10-18]. The research focusing
on tar kilns, on the other hand, is limited to a single recent contribution [9]. Yet tar kilns
have common characteristics both as their own group and together with charcoal kilns that
make them especially suitable for detecting. Tar kiln features have a stereotypically round
footprint with a central pit and an outlet trench that runs to one side (Figures 1 and 2). The
outlet trench was originally used to run out the produced tar into barrels on the downhill
side, traditionally through a recurrently used wooden pipe. Contrary to their counterparts
located and studied by archaeologists in the US [9], Finnish tar kilns customarily lack trench
surrounding the kiln (Figures 1 and 2).

In the following we describe first our study areas and the tar kiln data previously
known from them, and then the used methods, algorithm development, and the detection
results. Lastly, we put forth some remarks about the tar kilns as an archaeological feature
type in the Finnish context, and about the effects that the semi-automated detection will
have on their identification, number and researchability. In addition, we briefly assess
the impact of these novel research methods on the rewriting-in-progress of the Finnish
Antiquities Act.
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Figure 1. Photographs of tar-production kilns. Top: A tar kiln is being built in 1931 at Lappajarvi,
western Finland, the outlet trench in the foreground (Photograph Finnish Heritage Agency/ E. A.
Luukko 1931/ KK1971:167/ CC BY 4.0). Middle: Clearing a tar kiln foundation after burning, in
preparation for the next burning. Notice the collected large piles of firewood as well as branches and
moss for covering the kiln (Photograph Finnish Heritage Agency/ Eino Makinen 1936/ KK2135:119/
CC BY 4.0). Bottom: An archaeological tar kiln in Kolari, Lapland, the outlet trench in the foreground
(Photograph Finnish Heritage Agency/ Kaisa Lehtonen 2009/ AKDG823:1/ CC BY 4.0).
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Figure 2. Archaeological footprints of tar-production kilns (A-E), showing their characteristic shape
with outlet trench running to one side, and one charcoal kiln (F) in different visualisations of the ALS-
5p data; notice the destruction caused by forest management activities in (C,D). (A) Multidirectional
hill shading of a tar kiln. (B) Sky-View Factor visualization of the same tar kiln. (C) PCA of
multidirectional hill shading of a partly ploughed tar kiln. (D) Multidirectional hill shading of a
ploughed tar kiln. (E) Multidirectional hill shading, a small and a large tar kiln. (F) Multidirectional
hill shading of a charcoal kiln (also known as relict charcoal hearth) (Illustration Janne Ikdheimo and
Oula Seitsonen, includes Finnish National Land Survey Laser Scanning 5p data from the year 2020;
Finnish National Land Survey: Helsinki, Finland, 2020).
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Figure 3. Location of the study areas and the areas falling under the restrictions of the Territorial
Surveillance Act shown with the red hatching (Illustration Janne Ikdheimo).
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2. Materials and Methods
2.1. Study Areas and the Previously Known Tar Kilns

For the algorithm development we chose three entire ALS-5p production areas from
northern Finland, Naljankd, Kuivaniemi and Hossa (user licenses MML 15920/05 00
00/2021, MML 43580/05 00 00/2020 and MML 46881/05 00 00/2022)—the first two were
among the first made available by the FNLS in 2020, and the last became available the fol-
lowing year. Of these Naljanka covers 2304 km?, Kuivaniemi 2760 km? and Hossa 2004 km?.
These areas are outwardly analogous, especially regarding the landcover that consists dom-
inantly of coniferous and mixed forest as well as bogs and mires, with relatively very
agrarian or urban land use. However, as we wanted to examine how the geomorphology
and land use impact the detectability of archaeological features, some distinct differences
can also be pointed out. Niljankd and Hossa, located near the eastern border of Finland,
belong to the supra-aquatic region left untouched by the successive marine stages that
followed the last glaciation. Then again, Kuivaniemi located by the Bothnian Bay in the
west has undergone a sequence of subaquatic stages. These differences have impacted the
local geomorphology and ecology and influenced the land use. Agriculture and animal
husbandry have been practiced for centuries in the river valleys of the Kuivaniemi area,
whereas forest-related sources of subsistence have prevailed in Naljankd and Hossa.

The supra-aquatic region of Hossa is located adjacent to Naljanké in the northeast. It
is a sparsely populated region and has very little land use beyond some logging in its vast
boreal pine forest dotted with numerous lakes. The eastern edge of the Hossa area forms
the border zone with Russia and for this reason its easternmost quarter (500.754 km?),
approximately 13-19 km wide strip, is sanctioned by the Territorial Surveillance Act
(755/2000) limiting the gathering and distribution of aerial photographs or geospatial
data. For this reason, the FNLS has scaled down the resolution of the respective LIDAR
data from 5 points/m? to 0.3 points/m?. While not necessarily obstructing the successful
operation of the detection algorithm, it most certainly was expected to pose a challenge
to the interpretation of the results. Thus, as the area is an interesting case regarding the
capabilities of our algorithm, a summary of the respective results and interpretations are
presented below.

Before the analyses presented here, some tar and charcoal kilns were known from
the study areas in both the Finnish Heritage Agency (FHA) and FNLS registers. Of these,
the latter registry is more extensive regarding tar kilns due to recent survey program of
cultural heritage in Finnish state-owned forests carried out by Metsahallitus, the authority
responsible for their maintenance: 743 in Néaljanké, 92 in Kuivaniemi and 553 in Hossa.
However, the FNLS register is in part based on a citizen science approach where non-
professionals have been reporting their chance tar kiln finds in the woods. A previous
study focusing on the tar kilns from the Lake Pesiojdrvi sub-region that forms the SE corner
of the Naljanka study area, carried out based on visual inspection, showed that many of
the reported tar kilns in the heritage registers are in fact misidentified charcoal kilns, many
of which result from input by non-professionals [5]. This turned out to be true also with
the previously registered tar kiln identifications in the Hossa area. In addition, Ikdheimo’s
study proposed a notable increase in the number of tar kilns for the Néljdnkd area, based on
the nearly four times increase in their number in the Lake Pesitjdrvi sub-region in southeast
Naljanka [5].

2.2. Generating DEMs and DEM Variants

The new FNLS-generated ALS-5p data is distributed as 1 x 1 km tiles [3]. The material
has not been made available to the general public, but a license can be applied for profes-
sional use, while one can freely obtain a downgraded version of it from an FNLS download
service (see https:/ /tiedostopalvelu.maanmittauslaitos.fi/tp /kartta?lang=en, accessed on
6 January 2023). These FNLS point clouds have been automatically pre-classified, of which
only ground points (class 2) were used in the production process [2]. First, a DEM was
created from each ALS-5p tile by sampling a TIN (Triangulated Irregular Network) based
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on the irregularly spaced points into a raster. By experimenting, we settled on the 25 cm
resolution that is well aligned with the 5 points/m? density and shows a nice level of detail
on archaeological features.

For the DEM production, we used LAStools’ las2dem function, with 25 cm DEM
resolution, a maximum triangle distance of 50 meters, and a 50 m overlap to neighbour-
ing ALS-5p-tiles. DEM smoothing was also tested using LAStools’ las2dem and lasgrid
functions and TerraScan’s smooth points, model keypoints, and thin points options, but
no significant enhancement of detection was observed, and therefore no smoothing was
applied in the final algorithm.

DEMs were created with two goals in mind; firstly as input for the detection algo-
rithms; and secondly, for visualisation of the terrain as background for maps and for on
screen quality check of the detection results. For visualizations we experimented with
both traditional and multidirectional analytical hillshading, as well as the various outputs
generated with the open source Relief Visualization Toolbox [19,20]. For example, Local
Dominance, Simple Local Relief Models, Positive and Negative Openness, Slope Gradient
and Sky-View Factor (SVF) were all tested (Figure 2) [5]. For visual inspection of archaeo-
logical features and detection results, a combination of Multidirectional Hillshade and SVF
was primarily used, augmented by the other layers and orthophotos.

After experimenting with the various visualizations, we settled on using the To-
pographic Position Index (TPI) as an input for the algorithm development and detec-
tion. TPI was created with a Python Numpy routine developed by Zoran Cugkovié [21]
(Figures 4 and 5). The advantage of using the Numpy routine to calculate TPI is the ability
to run it on GPU using the Pytorch, which leads to much faster processing times. TPI visual-
isation illustrates how enclosed or exposed each raster cell is compared to its surroundings,
by subtracting from the elevation of the assessed cell the average elevation of the cells
within a predeterminate radius. Thus, the cells that are higher than their surroundings
get positive values and the ones that are lower get negative values [22-24]. The 25 cm
DEM resolution was maintained here, but to assess the effects of the radius we tested
several settings—namely 5, 10, 20, 30 and 40 cells—in the analyses. The most promising
TPI setting in highlighting relevant characteristics in the terrain for analysing and detecting
tar production kilns turned out to be the radius of 30 cells; in other words, 7.5 meters
(Figure 4).

The average size of the FNLS ALS-5p-production areas is about 2281 km?, and each
includes about 2550 1 x 1 km tiles. With our current setup consisting of a Lenovo Thinksta-
tion P340 Core i7 3.8 GHz with 128 MB RAM and NVIDIA Quadro RTX 4000 8GB GPU, the
generation of the LAS-DEM conversion runs at about 550 tiles per hour, taking on average
about 4.5 h, and the TPI production runs at about 400 tiles per hour and takes on average
about 6 h per production area.

2.3. Deep Learning and Algorithm Development

For detection of archaeological features, a convolutional neural network-based U-Net
algorithm was developed using semantic segmentation in the Python Keras deep learning
environment that applies the TensorFlow machine learning platform (Figure 5) [25,26].
A neural network is a set of weights connected in a structure that information is being
sent through, and these weights are adjusted to solve the classification objective. The
semantic segmentation approach uses a convolutional neural network (CNN) to predict
the class of every single pixel in an image. Convolutions are filters that are applied to input
information to find patterns that can be used to understand the information in relation to
the classification objectives. Deep learning is then applied when these convolutions are
extracted based on derivatives of the original information. U-Net is named after the shape
of the overall structure, where the image information is processed down in resolution, and
then up again to the full image size, forming a U-curve [27].
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Figure 4. Two tar production kilns visualised with the 25 cm resolution TPI using a 30—cell radius,
with the elevation contours visualised at 25 cm intervals; notice the deep outlet trenches (Illustration
Oula Seitsonen, includes Finnish National Land Survey Laser Scanning 5p data from the year 2020;
Finnish National Land Survey: Helsinki, Finland, 2020).

For each ALS-5p tile in the data, a TPI visualisation was generated and then cut into
smaller tiles that could be processed by the U-Net. The tile size depends on the available
GPU-memory, and should not be too small, as otherwise the background context will be
lost. After experimenting, an image tile size of 512 x 512 pixels, with 25 cm resolution and
50% overlap, was selected as a good compromise for assessing the tar kilns, in terms of
both the level of detail and background information in the images. This corresponds to a
spatial footprint of 128 x 128 meters.

For each image tile, a raster mask based on the vector representation of the training
data is stored in tandem with the image. This can include both true and false objects
to train the model further. True objects will get positive mask pixels, while false objects
will stay negative. When a stack of randomly centred image-mask pairs is generated for
each object in the training data, they go through an augmentation process where they are
flipped according to their x and y axes. Altogether six images were used of each object
in the training dataset, and the processed image pairs were then split randomly into the
training (80%) and validation datasets (20%). According to their names, the training dataset
is used for training the model, whereas the validation dataset is used for assessing the
performance of the model with known archaeological features not used in the training. This
gives a better picture of the performance of the model and of its generalization potential to
other datasets.
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Figure 5. Workflow from the ALS point cloud to the ground truthing of the detected features and re-
training of the model with new data (Illustration Niko Anttiroiko, Janne Ikdheimo and Oula Seitsonen).

The U-Net model is trained in so-called epochs. Each epoch means one training cycle of
the model by going through the training data one time, after which its performance is tested
against the validation dataset. During the modelling, its performance gets better to a point,
after which it starts to get weaker owing to over-adjusting. We used Intersect-over-Union
(IoU) to measure the model performance. IoU illustrates how accurately the predictions
produced by the model mirror the masks in the training data. This is calculated by dividing
the area shared by the polygon masks in the training data and those produced by the model
with their total summed area. The training was continued until the performance of the
model did not improve in the ten previous epochs, or at the latest after 200 epochs. The
model that showed the best performance when compared with the validation data was
then selected for further use. Hyperparameters used in the model are shown in the Table 1.

Table 1. Hyperparameters used in the model.

Hyperparameters Value
Image size 512 x 512 pixels
Batch size 6
Activation Relu

Learning rate 0.001
Optimizer Adam

Loss function

Binary Cross-entropy
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During the development both the model and the training data were advanced itera-
tively by repeating the process of enhancing them based on the results acquired from the
previous training cycle. In this case, the first cycle used the training data with about 400 tar
kilns and 100 other features, which were mostly generated in a pilot study based on visual
inspection of part of the area around the Lake Pesitjarvi [5]. After each cycle the features
detected by the model were visually inspected and classified into one of the following
categories: true, unclear, and false. Based on these validated detections the training data
was augmented with the newly detected tar kilns and a sample of the false detections. This
process was repeated for three iterations in the Naljanka study area, after which it was
concluded that further iterations would not notably improve the results [18]. Changes
in the model between iterations were mostly small adjustments, mainly enhancing the
detection of features located on the borders of ALS-5p tiles.

The prediction result from the binary semantic segmentation is expressed as a heatmap
of probability pixels for which, in this case, the Sigmoid activation delivered a range from 0
to 1. To convert the results to a more useable format, values above 0.5 were vectorized as
polygons in a shapefile format (*.shp) that is widely used in storing geospatial information.
For each polygon, the mean probability value of the encircled pixels and their area were
stored as the attribute values. In post-processing, it became apparent that not only did the
algorithm occasionally assign several polygons to a single feature, but a single polygon
could also contain several features. To reduce the group of multiple identifications, a Python
script for merging such partial identifications was developed, instead of mechanically
removing all the polygons falling below a pre-agreed area threshold, as carried out by
Suh et al. [16].

After running the three cycles in the Niljanka area to develop the model, its perfor-
mance and potential for generalization and application in other areas was assessed using
the Kuivaniemi and Hossa ALS-5p production areas that had not been used in the training.
The detection process was repeated in these test areas following the above-described steps.

The detection algorithm runs about 110-120 tiles in an hour, taking about 22-23 h per
production area. As a rough estimate for the whole workflow starting from the ALS-5p
point cloud to the completed detection, our processing time is at the moment bit over 30 h.
On average one could estimate that one production area can be processed in about a day.
However, then of course comes the quality control of the detection results, firstly on screen
and then the ground truthing of at least some observations in the field. Altogether it seems
that a good estimate for this whole process, including the fieldwork, is little over one month
per ALS-5p production area (Table 2).

Table 2. Average processing times in the different phases of our workflow for an average-size ALS-5p
production area.

Units/h Hours
LAZ to DEM conversion 550 5
TPI production 400 6
Feature detection 110-120 23
Screen truthing * 500-2000 1-3

* All other units refer to the number of tiles, except screen truthing, which refers to individual polygons.

3. Results

In the following we describe the results from the study areas, first from the Naljanka
area and then from the Kuivaniemi and Hossa areas. Here we place emphasis on the char-
acteristics related to the useability and performance of the developed algorithm based on
screen truthing and ground truthing of the detection results. Interpretational aspects related
to the tar kilns and other features will be discussed in detail in our future contributions.
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3.1. Results from the Niljinki Study Area

After three cycles of training, predicting, and evaluation of the results, an overall
accuracy of 93% was reached, as can be seen from Table 3 presenting some commonly used
accuracy metrics from each study area. The percentage of false positives, or detections
that are not tar kilns, is relatively low, at only 3%. The percentage of false negatives is a
bit higher, namely 9% (Table 3). False negatives are real tar kilns that were not detected
by the algorithm. Table 4 shows the confusion matrix of classification for Néljanka and
the other study areas. Figure 6 illustrates well how most detections with a low detection
probability are indeed false detections. From a probability of 80% upwards the number of
true detections increases. At about 89% detection probability, there are almost solely true
detections. Using detection probability, one can thus fine-tune the results.

Table 3. Accuracy metrics (%), accepting a detection probability of >90%.

Accuracy Metrics (%) Niljanka Kuivaniemi Hossa

Overall accuracy 93 95 95
Precision 97 82 95
Sensitivity (recall) 91 72 99
Specificity 96 98 90
F1 score 94 77 97

False positives 3 18 5
False negatives 9 28 1

Table 4. Confusion matrix of classifications in Naljanka; values illustrate the number of detections.

Niljanka Reference
True False Total
Lo True 2499 88 2587
Prediction
False 252 2017 2269
Total 2751 2105 4856

Figure 6 also shows how the overall accuracy changes in tandem with the used
probability threshold. For example, if we accept all objects with a detection probability of
70% and higher, then the overall accuracy is 85%. The optimal overall accuracy lies at a
probability of 90% (see Carter et al., 2021). Then again, if we only accept detections with a
probability of 95%, the accuracy drops to 85%. If we accept detections with a probability of
50% and higher, then we end up with 100% false positives, or detections that are not real tar
kilns, and no false negatives, or undetected tar kilns. In other words, we detect everything
but at the same time have a high rate of false detections. If we only accept detections with
a high detection probability, for example higher than 95%, then we have almost no false
positives, but 24% false negatives.

However, why would anyone be interested in the changing rates of false positives
and false negatives? The reason is that the “cost” of a false positive and a false negative
might be different, depending on the aims. If it is important to discover absolutely all
archaeological features of interest, then one must accept that there are more false positives
in the results that need to be inspected visually or in the field. On the other hand, if it is
important that each single detection is true, then one must accept more false negatives,
i.e. missed detections. This is up to the end user to decide and based on the illustrated
results, the end user can make an informed decision. Note that the curves and the statistics
presented here are based on one test area that has been thoroughly validated. The curves
can and will be different in other areas and for other types of cultural heritage objects, like
charcoal kilns or pitfall traps.
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Figure 6. Néljanka area: (A) True and false detections and detection probability. (B) Percentage of
overall accuracy (green), false positives (yellow) and false negatives (blue) at different probability
thresholds (Illustration Floris Jan Groesz and Stian Rostad).

3.2. Results from the Kuivaniemi Study Area

For the Kuivaniemi study area, we ran one prediction cycle based on the training
data from Naljankd, to test the applicability and transferability of the model to new areas.
Table 5 shows the prediction results with an overall accuracy of 95%, and additional
accuracy metrics. Both the percentages of false positives (18%) and false negatives (28%)—
in other words missed tar kilns—are much higher than in Naljankd. However, in this
area many more kiln-like features were detected, such as old ground cellars with roughly
analogous topographical characteristics. It is also noteworthy that the overall accuracy

(95%) is not a very good metric for accuracy, whereas an F1 score allows for better insight
(Table 4).
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Table 5. Confusion matrix of classifications in Kuivaniemi; values illustrate the number of detections.

Kuivaniemi Reference
True False Total
Prediction True 228 50 278
False 89 2251 2340
Total 317 2301 2618

Figure 7 illustrates how most of the detections with a low probability are indeed false.
In Kuivaniemi, from around 0.9 probability the number of true detections increases notably.
However, throughout the whole probability range from 0.57 to 0.89 there is a small but
quite constant number of true detections. In the same vein as in the Néljanka area, the
overall accuracy reaches an optimum at a probability of around 0.90. The false positives
show an analogous curve to that of Niljanké, but the false negative rate, or missed tar kilns,
increases much more steeply. There are some possible explanations for this discrepancy; for
example, in some cases charcoal seems to have been cleaned or extracted for other purposes
from a tar kiln afterwards distorting their appearance (see Figure 1). This and other aspects
related to the afterlives of tar kilns are worth examining in more detail in the future. These
observations also underline how little studied and known these features and their chaines
opératoires are archaeologically.

3.3. Results from the Hossa Study Area

The execution of the algorithm in the Hossa area resulted in 3179 polygons, of which
937 were identified as tar kilns, 12 as charcoal kilns and 29 as other features of interest.
By applying a filter of p > 0.9, the number of polygons will be reduced to 882, but as a
result, just 841 tar kilns and no other features would be detected. On the contrary, by first
manually verifying the polygon data and thereafter cross-checking the identifications with
both FNLS and FHA registries, the grand total was brought up to 1011 features: 973 tar
kilns and 38 charcoal kilns. Of the 36 additional tar kilns thus discovered, 27 are found
in the restricted zone. Only two other features of archaeological interest and no charcoal
kilns were identified by the algorithm in the restricted border zone with the downgraded
ALS data.

Of the 553 tar kilns from Hossa listed in the FNLS registry, altogether 132 (23.9%)
are located within the restricted zone. The FHA registry contains 86 tar kilns from the
Hossa area, and yet 16 of them (18.6%) are in the restricted zone. On the other hand, the
respective number of tar kilns in the restriction zone identified by the algorithm was 84;
that is only 8.96% of the total positive tar kiln identifications. This comparison highlights
the underperformance of the detection algorithm with the scaled-down ALS-data. The
repercussions of this observation are highly significant, as about 6% of Finland’s land
surface falls under the restrictions of the Territorial Surveillance Act.

When attention is turned to the non-scaled-down portion of the Hossa research area,
the total number of polygons is 2971, 803 of which have p > 0.9. The numbers in the unfil-
tered group are 853 tar kilns and 2118 false positives, of which 39 are other archaeological
features of interest. By applying the cut rate of p > 0.9, these figures are brought down
to 762 tar kilns and 41 false positives, of which 28 false positives are other archaeological
features of interest (Table 6, Figure 8). In addition, one must insert the nine false negatives
from this area into the calculation of algorithm performance metrics (Table 4).
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Figure 7. Kuivaniemi area: (A) True and false detections and detection probability. (B) Percentage of
overall accuracy (green), false positives (yellow) and false negatives (blue) at different probability
thresholds (Illustration Floris Jan Groesz and Stian Rostad).

Table 6. Confusion matrix of classifications in Hossa; values illustrate the number of detections.

Hossa Reference
True False Total
Prediction True 762 41 803
False 91 2077 2168

Total 853 2118 2971
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and QOula Seitsonen).

4. Discussion

The single most important outcome of the current study is that it illustrates unequivo-
cally how a semi-automated deep learning approach can be successfully applied over large
areas of boreal forest with high confidence levels using the new ALS-5p datasets in Finland.
Thus, deep learning-based algorithms can make a notable difference to Cultural Resource
Management (CRM), archaeological research, and general knowledge of the country’s past.
In this paper we have described one possible strategy to achieve this, using a CNN-based
semantic segmentation U-Net approach to detect tar production kilns, one of the most
common, but least studied, archaeological features found in Finland [4,5].

All the tar kiln detections made by the algorithm were first verified on screen, and
following that a sample of sites was verified in the field to assess the working of the
algorithm and to train it further. In the future, the ground truthing of results from the
algorithmic studies will present a distinct challenge, as more and more new sites will be
located in new study areas. As mentioned above, at least a month should be budgeted
for evaluating each new study area, if ground truthing will be included. How this will
be achieved in practice is something that needs to be widely discussed amongst Finnish
heritage professionals.

Figure 9 and Table 7 illustrate the marked increase in the number of tar kilns in
each study area compared to the situation before the analysis. The numbers of known
archaeological features were more than tripled in the Néljanka area, nearly doubled in the
Kuivaniemi area, and more than doubled in the Hossa area, analogous to observations
made by Norstedt et al. [28]. In Néljanka this mirrors closely the predictions based on the
Pesiojarvi pilot study [5].
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Figure 9. Previously known tar kilns (small red dots, based on the FHA and FNLS registers) and tar
kilns detected using the U-Net algorithm (open black circles) in each study area. (A) Kuivaniemi.
(B) Néljanka. (C) Hossa (Illustration Janne Ikdheimo and Oula Seitsonen).

Table 7. Increase in the number of tar production kilns in each study area.

Tar Production Kilns (N)

FHA * FNLS * U-Net Increase
Naéljanka 39 757 2499 3.14 x
Kuivaniemi 40 77 228 1.95x
Hossa ** 70 352 853 2.42 %

* FHA = Finnish Heritage Agency; FNLS = Finnish National Land Survey; ** Hossa non-restricted zone.

It is noteworthy that in all areas most of the detected false positives pertain to other
types of archaeological features—for example charcoal kilns, ground cellars, and Stone
Age housepits—that all share some characteristics with tar kilns (Figure 10) [10,17]. This
illustrates the algorithm’s good potential for also detecting other types of archaeologi-
cal objects. Even if our initial model development focused on the tar production kilns,
our smaller-scale tests using other kinds of archaeological feature datasets already show
analogous promising results. We have so far tested the algorithm in the detecting of, for
instance, charcoal kilns, pitfall traps, Stone Age housepits, and Second World War-era
remains like dugouts, foxholes, and trenches [2,3,29]. Moreover, the algorithm detects
many of these features despite of modern destructive forest management activities with
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timber harvesters [9,10], which often cause more or less severe damage to the ground
surface and archaeological features (see Figure 2).

Figure 10. Other archaeological features detected as false positives by the detection algorithm:
(A) House foundations and a ground cellar. (B) Stone Age housepits. (C) Charcoal kiln field.
(D) Second World War dugout (Illustration Janne Ikdheimo, includes Finnish National Land Survey
Laser Scanning 5p data from the year 2020; Finnish National Land Survey: Helsinki, Finland, 2020).

There are several possible ways to increase the performance of the model in the future
and to make it more robust, besides training the algorithm with more sites. These include,
for instance, the use of other kinds of visualisations of DEMs in tandem with the TPI [27], as
well as combinations of TPI with different radii, and including various kinds of attributes
for the detected structures, such as roundness, depth, or other characteristic features [30].
The ALS-5p tiles and the characteristics of the point cloud also merit closer attention,
including the impacts of extreme seasonality in parts of Finland [3], and testing the effects
of different spatial resolutions on the analyses. In addition, experimenting with other kinds
of predictive approaches and algorithms could be beneficial for comparisons with our
current U-Net-based work.
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As noted, the detection probability works as a relatively good indicator of true detec-
tions in our case studies. However, if one mechanically filters the features with a lower
detection probability—or as another possibility their size—to get rid of the main body of
false positives [17], this would inevitably result in also losing true detections. For instance,
if one filters out all detections with an area of less than 10 m?, this results in a notable
decrease in the number of polygons to be manually checked either on computer screen or
ground truthed in the field in uncertain cases. This would lead to significant savings in
work time but would also always result in the loss of a small number of real archaeological
features. This should be openly acknowledged when deciding between possibilities and
applying the selected approaches to the material at hand.

If mechanical filtering of polygons is applied in some cases, it needs to be carefully
documented in the metadata and reports, so that other researchers will know the selected
procedures. From our point of view, manual verification of all data on screen should always
be on option, as with a bit of training one can process it quite rapidly at a rate of about
2000 polygons per hour. In any case, the original unfiltered polygon data should always
be saved, so that one can go back to the beginning if necessary. Long-term storage and
archiving of data products require their own special arrangements. Archiving and storage
space for digital data are some of the factors that need to be considered when planning the
wider use and application of algorithmic approaches based on machine learning. At the
moment, we have the advantage of relying on the University of Oulu, National Heritage
Agency, and national CSC—IT Center for Science data storage facilities, but how this will
be arranged in the long run remains to be seen.

5. Consequences for Archaeological Research and Cultural Heritage Management

Based on our pilot studies [2-5,30], the semi-automated detection of archaeological
features will revolutionize future archaeological research and especially the CRM work in
Finland. A rough estimate of its effect is that with artificial intelligence and deep learning
methods, the number of archaeological sites in Finland will likely grow nearly tenfold from
the present approximately 58,000 sites included in the Finnish Heritage Agency registry [3].

When planning the wider application of algorithmic semi-automated approaches,
one notable aspect is the persistent requirement for manual labour—for example in the
examination and verification of detection results both on screen and eventually in the
field—that needs to be recognized and considered. Attempts can be made to reduce the
amount of manual labour for example by mechanically filtering the detection results based
on, for instance, the probability values or the size of the predicted features, to minimize
the number of false positives. However, if such an approach is selected, it needs to be
recognized and openly admitted that the time-saving mechanical filtering will also result
in the loss of a small number of archaeological features. One must thus decide what is an
acceptable number of true objects that can be lost to save time and resources. From our
point of view, the careful manual onscreen and field verification of objects, which results
in more accurate data for archaeological and paleoenvironmental research and heritage
management [10], should be aimed for and preferred over temporal or monetary issues.

Even if the predictive model clearly outplays human actors in its accuracy, repeatability,
and spatial coverage [4], it is never perfect. Algorithms always perform only the tasks
defined for them and do not consider anything beyond those. However, when dealing with
large research areas and datasets, the machine learning approach results in more accurate,
consistent, productive, and perhaps more ethically sustainable outcomes than analyses
based on, for instance, visual inspection. The latter are always dependent on many possible
factors introducing errors; for example, the individual researchers conducting the study,
their experience with the different types of archaeological features, and the time invested
in the analyses.

Our project has also had an unexpected impact on the renewal of the Finnish Antiqui-
ties Act, which has experienced only minor updates since it became effective in 1963. Under
the current law, tar and charcoal kilns are regarded as protected archaeological heritage.
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However, the projected number of tar and charcoal kilns to be detected with deep learning
algorithms in the whole of Finland has raised some concerns over perceived impacts on
the cultural heritage management and land use sectors. At present, it seems likely that the
number of protected tar and charcoal kilns will be reduced by using an artificial terminus
ante quem cut-off set to the year 1721 AD, where the features post-dating this terminus
would not fall under the protection of the new law. How these features, outwardly largely
analogous from the 16th to the 20th century, could be dated this accurately in the first place
is an issue that remains to be resolved.

Nevertheless, in the future the detection of tar kilns through deep learning and semi-
automatic algorithms is likely to become a routine act in Finland, in tandem with the
detection of charcoal kilns. This hopefully brings research on their internal dynamics into
focus with questions concerning their chronology and typology as well as geographic, tem-
poral and cultural factors affecting their distributions [9]. In a similar vein, the impact of tar
manufacture on local ecosystems—described in the historical and ethnographical sources
as extensive and devastating—can be better evaluated and assessed with improved data
on feature locations and their properties, for example, with multi-temporal environmental
remote sensing datasets.

6. Conclusions

This paper describes the developing and testing of deep learning-based algorithms on
a large-scale for the detection of archaeological features from the new FNLS ALS-5p data.
Our iterative experiments with training and validating the routine yielded good results in
the Naljanké area used for developing the used algorithm. When the trained model was
transferred and applied to other areas it reached equally promising although slightly lower
results. Based on these initial experiments, the model can be relatively easily fine-tuned for
new study areas to reach better results [4].

Even with all their limitations, semi-automated methods produce more consistent and
systematic results than, for instance, visual inspection carried out by individual researchers.
Algorithms can be run efficiently and effectively over much larger topographic areas than
manual detection allows and show excellent locational accuracy with high resolution and
good-quality ALS data. In addition, the collecting of various kinds of feature characteristics
related to their size and shape can be easily (semi-)automated and used to produce research
datasets for further analyses.

Corroborating the observations of Casana [31], our results also question the fruitfulness
of the citizen science approach adopted e.g. by the FNLS for locating tar kilns in the woods.
Numerous features reported in their database by the non-professionals as tar kilns are in
fact charcoal kilns or other archaeological features not related to wood chemistry at all,
such as Second World War dugouts, root cellars, or moraine formations (Figure 10). In this
paper we have omitted these other types of archaeological features, thousands of which
have been detected using the algorithmic approach (and which will be discussed elsewhere
in detail). Better results may be achieved if the use of citizen science is integrated within
the validation of archaeological features detected from ALS data, instead of relying solely
on citizen reports [32]. The use of various forms of (environmental) remote sensing data
must also be considered for future analyses in tandem with the ALS data. Combinations of
these will allow examining more closely for example the long-term ecological impacts of
tar production.

Overall, our studies have shown that the combination of ALS-5p material with deep
learning methods offers huge potential for studying the archaeologies and ecologies of
historical tar production in the boreal forests. The described approach allows systematic
locating of large numbers of previously unknown archaeological features in the vast
and understudied northern and eastern Finnish forestlands. It also enables automated
determination of their various properties, such as size, shape, depth, and so on [4,29,30].
Gaining a more holistic understanding of the spread and distribution of tar production
infrastructure will allow the studying of its wider, long-term cultural and environmental
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impacts for example with various environmental, ecological, and population datasets. The
developed algorithms are also transferable and scalable to new study areas and for different
types of archaeological objects and training data beyond tar kilns, as shown by our tests
with other types of archaeological objects [2]. In addition, in the future, once the algorithm
is perfected and made publicly available, the use of high-performance computing, such as
the supercomputer facilities offered by the national CSC—IT Center for Science for data
analyses, can permit more efficient handling of the data.
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