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Abstract: Tailings ponds’ failure and environmental pollution make tailings monitoring very impor-
tant. Remote sensing technology can quickly and widely obtain ground information and has become
one of the important means of tailings monitoring. However, the efficiency and accuracy of traditional
remote sensing monitoring technology have difficulty meeting the management needs. At the same
time, affected by factors such as the geographical environment and imaging conditions, tailings
have various manifestations in remote sensing images, which all bring challenges to the accurate
acquisition of tailings information in large areas. By improving You Only Look Once (YOLO) v5s,
this study designs a deep learning-based framework for the large-scale extraction of tailings ponds
information from the entire high-resolution remote sensing images. For the improved YOLOv5s, the
Swin Transformer is integrated to build the Swin-T backbone, the Fusion Block of efficient Reparame-
terized Generalized Feature Pyramid Network (RepGFPN) in DAMO-YOLO is introduced to form
the RepGFPN Neck, and the head is replaced with Decoupled Head. In addition, sample boosting
strategy (SBS) and global non-maximum suppression (GNMS) are designed to improve the sample
quality and suppress repeated detection frames in the entire image, respectively. The model test
results based on entire Gaofen-6 (GF-6) high-resolution remote sensing images show that the F1 score
of tailings ponds is significantly improved by 12.22% compared with YOLOv5, reaching 81.90%.
On the basis of both employing SBS, the improved YOLOv5s boots the mAP@0.5 of YOLOv5s by
5.95%, reaching 92.15%. This study provides a solution for tailings ponds’ monitoring and ecological
environment management.

Keywords: tailings ponds; YOLOv5; object detection; large scale

1. Introduction

A tailings pond is a place enclosed by ponds to intercept valley mouths or enclosures.
It is used to stack tailings discharged from metal or non-metal mine ores after sorting,
wastes from wet smelting, or other industrial wastes [1]. Tailings ponds’ liquid is toxic,
hazardous, or radioactive [2]. Therefore, tailings ponds become one of the sources of high
potential environmental risks. Once an accident occurs, it will cause severe damage to
the surrounding residents and environment [3–5]. Restricted by factors such as mineral
resources and topography, tailings ponds are mostly located in remote mountainous areas.
Accurate identification of tailings ponds in a large area is an important part of tailings
supervision [6]. In recent years, the number of accidents and deaths in tailings ponds has
increased significantly, which has adversely affected economic development and social
stability [7–9]. Therefore, it is of great significance to master the number, distribution, and
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existing status of tailings ponds to prevent accidents and carry out emergency work in
tailings ponds.

In the past, the investigation of tailings ponds relied heavily on the manual on-site
investigation, which was very inefficient and did not update timely. Remote sensing tech-
nology has become one of the effective means of monitoring and risk assessment of tailings
ponds and mining areas due to its large spatial coverage and frequent observations. Based
on the unique spectral, texture and shape features of tailings ponds, as well as different
remote sensing data, some methods for extracting tailings ponds were proposed. Lévesque
et al. [10] investigated the potential of hyperspectral remote sensing for the identification
of uranium mine tailings. Ma et al. [11] used the newly constructed Ultra-low-grade Iron
Index (ULIOI) and temperature information to accurately identify tailings information
based on Landsat 8 OLI data. Hao et al. [12] built a tailing extraction model (TEM) to
extract mine tailing information by combining the all-band tailing index, the modified nor-
malized difference tailing index (MNTI), and the normalized difference tailings index for
Fe-bearing minerals (NDTIFe). Xiao et al. [6] combined object-oriented target identification
technology and manual interpretation to identify tailings ponds. Liu et al. [13] proposed
an identification method for the four main structures of tailings ponds, namely start-up
ponds, dykes, sedimentary beaches, and water bodies, using the spatial combination of
tailings ponds. Wu et al. [14] designed a support vector machine method for automatically
detecting tailings ponds.

With the growing success of deep learning in image detection tasks, the task of tailings
ponds detection using deep learning is emerging. To meet the requirements of fast and
accurate extraction of tailings ponds, a target detection method based on Single Shot
Multibox Detector (SSD) deep learning was developed [15]. Balaniuk et al. [16] explored
a combination of free cloud computing, free open-source software, and deep learning
methods to automatically identify and classify surface mines and tailings ponds in Brazil.
Ferreira et al. [17] employed different deep learning models for tailings detection based
on the construction of a public dataset of tailings ponds. Yan et al. [18,19] improved Faser-
RCNN by employing an FPN with the attention mechanism and increasing the inputs
from three bands to four bands to improve the detection accuracy of tailings ponds. Lyu
et al. [20] proposed a new deep learning-based framework for extracting tailings pond
margins from high spatial resolution remote sensing images by combining YOLOv4 and
the random forest algorithm.

In summary, the research on tailings ponds detection has been carried out in depth,
but there are still some challenges. Traditional methods are designed based on the spectral
or texture features of tailings ponds, and it is difficult to obtain good detection results
in a large area due to excessive changes in tone, shape and dimension between tailings
ponds [20]. The application of deep learning methods in tailings pond detection has
greatly improved the effect of tailings detection. However, due to the lack of a public
tailings sample dataset, and the sparse distribution of tailings ponds with various scales,
it is still difficult to accurately detect tailings ponds in a large area. More importantly,
with the increase of high-resolution remote sensing data and their cost reduction, target
detection based on the entire high-resolution remote sensing image will become one of
the mainstream directions of research and engineering. To address the aforementioned
limitations on extracting tailings ponds, we propose a framework for detecting tailings
ponds from the entire remote sensing image based on the improved YOLOv5 model, which
can achieve better detection results than the general YOLOv5.

Our contribution can be summarized as follows:
(1) Combine Swin Transformer and C3 to form the new C3Swin-T module, and use

the C3Swin-T module to construct Swin-T Blockbone as the backbone of YOLOv5s, which
is used to capture sparse tailing pond targets in complex backgrounds.

(2) Introduce the Fusion Block in DAMO-YOLO to replace the C3 module of the neck
to form RepGFPN Neck, which is used to improve the feature fusion effect of the neck.
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Replace the original head with Decoupled Head to improve the detection accuracy and
model convergence speed.

(3) The SBS and GNMS strategies are proposed to improve the sample quality and
suppress repeated detection frames in the whole scene image, respectively, so as to adapt
to tailings ponds detection in standard remote sensing images.

2. Study Area and Data
2.1. Study Area

In this study, Laiyuan County and its surrounding areas are selected as the study
area, located northwest of Baoding, Hebei Province, as shown in Figure 1. Hebei Province,
which is rich in mineral resources, has the largest number of tailings ponds in China, with
various types of tailings, concentrated distributions and high potential risks [21]. At the
same time, there are similar ground objects to tailings ponds in this area, such as reservoirs,
bare rocks, etc., which significantly affect the precise extraction of tailings ponds. Therefore,
the selection of this region is precious for verifying the algorithm’s performance and the
actual regulatory needs.
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Figure 1. Location of the study area.

2.2. Data and Preprocessing

The GF-6 satellite was launched on 2 June 2018. The GF-6 satellite is equipped
with a 2 m panchromatic/8 m multi-spectral high-resolution camera and a 16 m multi-
spectral medium-resolution wide-format camera. In this study, we use data from the 2 m
panchromatic/8 m multispectral camera to study tailings ponds detection. The specific
index parameters are shown in Table 1 [22].

Table 1. Parameters of the 2 m panchromatic/8 m multispectral cameras.

Spectral Band Wavelength (µm) Spatial Resolution (m) Swath Width (km)

Pan 0.45–0.90 2 90
Blue 0.45–0.52

8 90
Green 0.52–0.60
Red 0.63–0.69
NIR 0.76–0.90
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The acquired data are derived from the L1A processing level. We use ENVI software
(version 5.3) to perform the necessary preprocessing such as radiometric calibration and
orthorectification, we did not perform image fusion, and the image spatial resolution
is 8 m. Wang et al. [23] showed that the Gaofen-1 (GF-1) standard false-color synthesis
was the best band combination for effectively identifying tailings ponds. Since the high
spatial resolution camera parameters of GF-6 are similar to those of GF-1, we also used
the standard false-color synthesis of GF-6 for the extraction study of tailings ponds in this
study. GF-6 image data are 12 bits, and the data are converted to 8 bits.

2.3. Types and Characteristics of Tailings Ponds

Due to the influence of many factors such as the topography, landforms, the minerals
mined, the mining technology used, and the scale of the operations, tailings ponds can show
different layouts, usually divided into four types: cross-valley, hillside, stockpile, or cross-
river [15]. Cross-river tailings ponds are rarely in Hebei Province, and we do not consider
this category in this study. GF-6 false-color images showing the features of the other three
types of tailings ponds are shown in Figure 2. The three types of tailings ponds are different
in shape, and the color is mainly gray-blue in the GF-6 standard false-color image.
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Figure 2. Examples of different types of tailings ponds as they appear in GF-6 images. (a) Cross-valley
type, (b) hillside type, and (c) stockpile type.

3. Materials and Methods

The flowchart of the proposed framework in this study is illustrated in Figure 3. It
can be summarized by the following steps: (1) Sample boosting strategy. Considering
the size change of the tailings ponds and the interference of similar ground objects, the
SBS strategy is introduced, including multi-scale sampling and negative sample addition.
(2) Improvement of YOLOv5s network architecture. Integrate Swin Transformer to build
Swin-T Blackbone, introduce Fusion Block to form RepGFPN Neck, and replace the head
with Decoupled Head. (3) Large-scale tailings ponds detection. The overlapping slicing
technique is used to block the entire GF-6 image, and the repeated detection frames are
merged with the GNMS strategy, then the merged detection frames are output in vector
format. (4) Evaluation methods. Some evaluation indicators for model performance are
used to evaluate the proposed tailings ponds detection framework.

3.1. Sample Boosting Strategy

In this study, we label a total of 1045 tailings ponds based on the characteristics of
three types of tailings on the GF-6 image, which are divided into a training set, validation
set and test set according to the ratio of 8:1:1. The sample set contains some samples
covering the local area of the tailings ponds to detect incomplete tailings ponds in different
image slices well. To realize the purpose of tailings pond detection, the GF-6 image
is first sliced. Considering the limitation of computing hardware such as the graphics
processing unit memory, the size of the slice samples is set to 500 × 500 pixels. The fixed
size of the receptive field limits the observation scale and is harmful to capture scale-
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dependent information [24], and the relative spatial relationship of the objects helps to
improve the recognition accuracy of the target [25,26]. Accordingly, for improving the
detection accuracy of tailings ponds, a multi-scale sample sampling strategy needs to be
introduced. To facilitate sample preparation, this study adopts the following formula to
obtain different scales:

S = Rα (1)

where R is the sample size we specified, which is 500 × 500 pixels. α is the scaling factor.
Once α is determined, samples of size S can be obtained, and then stretch to the size of R.
Samples of different scales are obtained by adjusting α.
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Figure 3. The proposed improved YOLOv5 tailings ponds detection framework.

During the model identification of tailings ponds, it is found that there are many
misidentifications because some natural or artificial objects were easily confused with
tailings ponds. To reduce the false detection of these objects as tailings ponds, we collect
280 of them and mark them as negative samples. Figure 4 shows some examples of negative
samples of tailings ponds. Negative samples collected can be mainly divided into four
categories in this study area: water reservoir, bare rock, bare land, and cloud.

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 22 
 

 

sample boosting Large-scale tailings 
ponds detection

Improved YOLO v5

Conv C3Swin-T C3Swin-T C3Swin-T

Fusion
Block

Fusio n
Block

Fusion
Block

Swin-T 
Blockbone

RepGFPN 
Neck

Decoupled Head

 
Figure 3. The proposed improved YOLOv5 tailings ponds detection framework. 

3.1. Sample Boosting Strategy 
In this study, we label a total of 1045 tailings ponds based on the characteristics of 

three types of tailings on the GF-6 image, which are divided into a training set, validation 
set and test set according to the ratio of 8:1:1. The sample set contains some samples cov-
ering the local area of the tailings ponds to detect incomplete tailings ponds in different 
image slices well. To realize the purpose of tailings pond detection, the GF-6 image is first 
sliced. Considering the limitation of computing hardware such as the graphics processing 
unit memory, the size of the slice samples is set to 500 × 500 pixels. The fixed size of the 
receptive field limits the observation scale and is harmful to capture scale-dependent in-
formation [24], and the relative spatial relationship of the objects helps to improve the 
recognition accuracy of the target [25,26]. Accordingly, for improving the detection accu-
racy of tailings ponds, a multi-scale sample sampling strategy needs to be introduced. To 
facilitate sample preparation, this study adopts the following formula to obtain different 
scales: 

S Rα=  (1) 

where R is the sample size we specified, which is 500 × 500 pixels. α is the scaling factor. 
Once α is determined, samples of size S can be obtained, and then stretch to the size of R. 
Samples of different scales are obtained by adjusting α. 

During the model identification of tailings ponds, it is found that there are many 
misidentifications because some natural or artificial objects were easily confused with tail-
ings ponds. To reduce the false detection of these objects as tailings ponds, we collect 280 
of them and mark them as negative samples. Figure 4 shows some examples of negative 
samples of tailings ponds. Negative samples collected can be mainly divided into four 
categories in this study area: water reservoir, bare rock, bare land, and cloud. 

    
(a) (b) (c) (d) 

Figure 4. Examples of negative samples in the GF-6 image. (a) Water reservoir, (b) bare rock, (c) bare
land, and (d) cloud.
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3.2. Improvement of YOLOv5s Network Architecture
3.2.1. The Algorithm Principle of YOLOv5

The YOLO family has many models, but they perform differently on different datasets.
YOLOv5 is easy to deploy and train, has good reliability and stability [27]. At the same
time, Web of Science shows that in the past year, YOLOv5-based publications have an
absolute advantage and are widely used. Therefore, YOLOv5 is still highly competitive
and is chosen in this study for further improvement. YOLOv5 is a prevalent deep learning
framework that includes five network models of different sizes: s, m, l, x, and n, which
represent different depths and widths of the network. YOLOv5 treats the detection task
as a regression problem, using a single neural network to directly predict bounding boxes
and classes. Figure 5 shows the network structure of YOLOv5 (v6.0), which is the latest
version of YOLOv5. The whole network consists of three basic parts: Backbone, Neck, and
Head. Before being fed into the backbone network, the input images are processed with
mosaic data augmentation, adaptive image scaling, and adaptive anchors. In this study,
the anchor boxes are automatically adjusted to (12,481, 87,128, 147,141), (239,128, 159,221,
289,274) and (343,524, 558,371, 583,587).
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Figure 5. The YOLOv5 network structure.

The backbone layer is composed of Conv (Conv+BatchNorm+SiLU), C3, and Spatial
Pyramid Pooling Fast (SPPF) modules. Among them, C3 is the most important module
of the backbone layer, and its idea comes from CSPNet [28]. C3 includes two branches:
branch one is connected by n Bottleneck modules in series, branch two is a convolutional
layer, and then the two branches are spliced together to increase the network depth and
greatly enhance the feature extraction ability. At the same time, the C3 application also
suppresses the problem of duplication of gradient information in the backbone. The Conv
module is the basic convolution module of YOLOv5, which sequentially performs two-
dimensional convolution, regularization and activation operations on the input, which
is used to assist the C3 module in feature extraction. SPPF connects a variety of fixed
block pooling operations to achieve feature fusion of different scales of receptive fields and
enhance the feature expression ability of the backbone.
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The neck layer consists of a Feature Pyramid Network (FPN) and Path Aggregation
Network (PAN) to form a feature pyramid structure. The FPN structure directly transfers
strong semantic features from high-level feature maps to low-level feature maps. The PAN
structure directly transfers the stronger localization features from the feature maps of lower
layers to the feature maps of higher layers. These two structures together enhance the
feature fusion ability of the neck network.

The head layer outputs a vector containing the class probability of the target object,
the object score, and the bounding box position of that object. The YOLOv5 detection
network consists of three detection layers, each of which has feature maps of different sizes
for detecting target objects of different sizes.

3.2.2. Swin-T Backbone

In the entire GF-6 image, a large number of small-sized tailings ponds are in general
sparsely and non-uniformly distributed, and it is difficult to distinguish them from the sur-
rounding background, which makes tailings ponds extraction challenging. The YOLOv5s
model with the C3 module cannot overcome this deficiency well because it lacks the ability
to obtain global and contextual information [29], but the transformer can better integrate
the semantic information of the contextual and global features, and has a good recognition
effect for sparse small targets with complex backgrounds [30,31]. Due to the high-cost
calculation of the transformer, Swin Transformer [32] is selected to improve the backbone
network of YOLOv5s. The Swin Transformer block is the core of Swin Transformer, mainly
composed of two multi-head self-attention (MSA) modules, window-based MSA (W-MSA)
and shifted-window MSA (SW-MSA), followed by a 2-layer multilayer perceptron (MLP)
with GELU nonlinearity in between. A LayerNorm (LN) layer is applied before each
MSA module and each MLP, and a residual connection is applied after each module, as
shown in Figure 6. W-MSA uses regular windows to evenly partition the image in a non-
overlapping manner, and computes self-attention within each local window. Therefore,
W-MSA has linear computational complexity with respect to input image size, rather than
a quadratic complexity of the transformer. Although W-MSA reduces the computational
effort, it lacks connections across windows. SW-MSA realizes the information interaction
between adjacent windows through a shifted window partitioning approach, and finally
realizes the perception of global information. To embed the Swin Transformer block into
the backbone, inspired by the work of C3NRT [29] and C3-Trans [30], we propose a new
C3Swin-T module, which replaces the original Bottleneck block in C3 by the Transformer
block. All C3 modules of the original backbone are replaced by C3SwinT to build a new
Swin Transformer backbone (Swin-T backbone), while other layers keep the same, and the
structure is illustrated in Figure 7.
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ẑ
l+

 

Figure 6. Swin Transformer block. Figure 6. Swin Transformer block.



Remote Sens. 2023, 15, 1796 8 of 21
Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 22 
 

 

 

Conv:6,2,2
Conv:3,2 Conv:3,2 Conv:3,2

SPPF

Conv:3,2

C3Swin-T

C3Swin-T C3Swin-T C3Swin-T

C3Swin-T = Swin-T block

 

Figure 7. The structure of Swin-T block. 

3.2.3. RepGFPN Neck 

The role of the neck is to better integrate the features extracted by the backbone at 

different stages to improve the ability of the model to detect features at different scales. 

YOLOv5s adopts the neck of the FPN+PAN structure. To achieve a better fusion effect, 

some heavier necks were designed, which increase the computation and memory foot-

prints [33]. In our work, we no longer seek to design a new neck module to avoid more 

connections and fusions among feature pyramids. We adopt a strategy of replacing some 

modules of the original neck structure. DAMO-YOLO proposed a novel Efficient-

RepGFPN, which improves the model effect by optimizing the topology and fusion of the 

original GFPN [34]. Additionally, DAMO-YOLO uses the designed fusion block module 

to improve the low efficiency of node stacking operations and realize the optimization of 

fusion features. Inspired by this, we replace the C3 module with the fusion block module 

to improve the feature fusion effect of the model. The fusion block is illustrated in Figure 

8. The input of the fusion block is two or three layers. After concat, the number of channels 

is adjusted on two parallel branches through 1 × 1 Conv. The branch below introduces the 

idea of the feature aggregation module of efficient layer aggregation networks (ELAN), 

which consists of multiple Rep 3 × 3 Convs and 3 × 3 Convs. Finally, the outputs of differ-

ent layers are concat and output. Based on the introduction of various strategies such as 

CSPNet, reparameterization mechanism and multi-layer aggregation, the fusion block 

greatly improves the effect of feature fusion. Based on the excellent performance of the 

fusion block, we replaced the four C3 modules in the neck of YOLOv5s with the fusion 

block to build a new neck called RepGFPN Neck. 

concat Upsample Conv concat Upsample Conv

Fusion Block concatConv Conv concatFusion Block

Fusion Block

Fusion 
Block

Fusion 
Block

1×1

1×1
Rep 

3×3
3×3

Rep 

3×3
3×3

Rep 

3×3
3×3

C C

×N

Conv+BN+Act

=

 

Figure 8. Structure of RepGFPN Neck. 

Figure 7. The structure of Swin-T block.

3.2.3. RepGFPN Neck

The role of the neck is to better integrate the features extracted by the backbone at
different stages to improve the ability of the model to detect features at different scales.
YOLOv5s adopts the neck of the FPN+PAN structure. To achieve a better fusion effect, some
heavier necks were designed, which increase the computation and memory footprints [33].
In our work, we no longer seek to design a new neck module to avoid more connections
and fusions among feature pyramids. We adopt a strategy of replacing some modules of
the original neck structure. DAMO-YOLO proposed a novel Efficient-RepGFPN, which
improves the model effect by optimizing the topology and fusion of the original GFPN [34].
Additionally, DAMO-YOLO uses the designed fusion block module to improve the low
efficiency of node stacking operations and realize the optimization of fusion features.
Inspired by this, we replace the C3 module with the fusion block module to improve the
feature fusion effect of the model. The fusion block is illustrated in Figure 8. The input of
the fusion block is two or three layers. After concat, the number of channels is adjusted
on two parallel branches through 1 × 1 Conv. The branch below introduces the idea of
the feature aggregation module of efficient layer aggregation networks (ELAN), which
consists of multiple Rep 3 × 3 Convs and 3 × 3 Convs. Finally, the outputs of different
layers are concat and output. Based on the introduction of various strategies such as
CSPNet, reparameterization mechanism and multi-layer aggregation, the fusion block
greatly improves the effect of feature fusion. Based on the excellent performance of the
fusion block, we replaced the four C3 modules in the neck of YOLOv5s with the fusion
block to build a new neck called RepGFPN Neck.
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3.2.4. Decoupled Head

The head performs the detection of objects in different resolutions to obtain classifica-
tion and regression prediction results. YOLOv5s uses a coupled head, which implements
classification and regression tasks together. In object detection, the conflict between clas-
sification and regression tasks is a well-known problem, affecting the network detection
accuracy [35,36]. Thus the Decoupled Head module has been applied in YOLOX, which
improves the convergence speed of the network while improving the AP [37]. Due to the
excellent performance of the Decoupled Head, it has been used in various subsequent
YOLO series models [38,39], even the recently released YOLOv8. To obtain better detection
results, we introduced the Decoupled Head into YOLOv5s to replace the original coupled
head. The Decoupled Head is illustrated in Figure 9. For each level of the FPN feature, first
the number of feature channels is first adjusted by a 1 × 1 Conv layer. Then, two parallel
3 × 3 Conv layers are used to separate the classification and regression tasks so that the
classification and regression tasks are performed separately. After that, IoU branch is added
to the regression branch. The classification, localization, and confidence detection tasks
are implemented by 1 × 1 Conv layer in classification and regression. Cls. represents the
category corresponding to the object contained in each feature point. Reg. can obtain the
prediction frame coordinates; while IoU. is used to judge whether a feature point contains
an object. Finally, these three prediction results are stacked and integrated.
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3.3. Large-Scale Tailings Ponds Detection
3.3.1. Overlapping Slices of Large-Scale Imagery

The swath width of the GF-6 high spatial resolution camera image is 90 km, so it is not
possible to directly detect tailings ponds on the entire image. Object detection on large-scale
images usually uses image slicing [40] or sliding window strategies [41]. Image slicing is
likely to cause objects that fall on the segmentation line to be truncated, making objects
unable to be detected normally. Additionally, sliding window lacks object detection, and it
has high temporal complexity and window redundancy [42]. Therefore, an overlapping
slice strategy for large-scale imagery is proposed, as shown in Figure 10. In Figure 10, ol is
the overlap ratio, s is the size of the slice, and s−ol × s is the sliding step size.

The process of this strategy is to take the upper left corner as the origin, move from
left to right, and from top to bottom according to a certain step size and overlap ratio, and
slice until the entire GF-6 image is sliced. In order to easily find the positions of tailings
ponds in different sub-slices on the whole image, we calculated the coordinates of the
upper left corner of different sub-slices and named different sub-images with the calculated
coordinates. The formula for calculating the upper left corner coordinates (xtl, ytl) is defined
as follows:

xtl =

{
w − s, s × j − ol × s(j − 1) > w
(s − ol × s)(j − 1), otherwise

(2)

ytl =

{
h − s, s × i − ol × s(i − 1) > h
(s − ol × s)(i − 1), otherwise

(3)

where w is the width of the entire image, h is the height of the entire image, ol is the overlap
ratio, and i and j are the ith row and jth column of the traversed image, respectively.
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3.3.2. Global Non-Maximum Suppression

Non-maximum suppression (NMS) is a common and important algorithm for dealing
with border (rectangular box) redundancy, which is used to merge windows that might
belong to the same object [43]. Large-scale remote sensing images are divided into many
overlapping slices, and some tailings ponds may completely fall into multiple adjacent
slices. In other words, the same tailings pond will be detected multiple times, and multiple
detection frames will be generated. Inspired by NMS, we design a strategy for global
non-maximum suppression (GNMS) to solve this problem. The GNMS steps are as follows:
(1) Obtain the global coordinates of the detection frames of the tailings ponds. Based
on the coordinates of the tailings ponds in different sub-slices and the coordinates of the
upper left corner of the sub-cut, the global coordinates of the tailings ponds in the entire
image are obtained. (2) Merge the duplicate detection frames. Compare the coordinates
of the detection frames of the same tailings pond, if a large detection frame covers other
detection frames, keep the large detection frame and suppress other detection frames.
(3) Non-maximum suppression. If the detection frames of the same tailings pond overlap
each other and there is no mutual coverage, the non-maximum suppression method is
employed for processing; that is, by comparing the scores of different detection frames and
the intersection and ratio operation, remove duplicate frames.
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3.4. Evaluation Methods

To evaluate the performance of the proposed framework, we evaluate the model both
qualitatively and quantitatively. For qualitative evaluation, the model performance is
evaluated by comparing the differences between the images detected by different models;
that is, comparing the positioning accuracy of the target frame and whether there are
missed or false detections. In quantitative evaluation, the leading selected indicators are:
precision, recall, and F1 score. The formula is as follows:

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

F1 =
2 × precision × recall

precision + recall
(6)

where TP refers to the number of correct identifications by the detection model, FP refers
to the number of incorrect or unrecognized identifications, FN refers to the number of
wrongly detected tailings ponds targets as other ground objects.

3.5. Experimental Environment

The configuration parameters of the software and hardware platform implemented by
the algorithm in this paper are shown in Table 2.

Table 2. Configuration parameters.

Device Configuration

Operating system Windows 10 (64-bit)
Processor Intel(R) Core(TM) i7-8750H at 3.80 GHz

RAM 16 G
GPU accelerator Cuda 10.2, cuDNN 7.6.4

GPU NVIDIA RTX2070, 8 G
Framework PyTorch 1.8.1

Scripting language Python 3.7

Some critical hyperparameters are investigated, including training steps, warmup
epoch, warmup momentum, batch size, optimization algorithm, initial learning rate, mo-
mentum, and weight decay. Table 3 shows the specific hyperparameter settings.

Table 3. The hyperparameters of the model.

Hyperparameters Value

training steps 300 epochs
warmup epoch 3

warmup momentum 0.8
batch size during training 16
batch size during testing 32
optimization algorithm SGD

initial learning rate 0.01
momentum 0.937

weight decay 0.0005

4. Results and Discussion

To evaluate the performance of the proposed tailings pond detection framework, we
design two sets of comparative experiments based on the GF-6 satellite tailings pond image
sample dataset. In the first set of experiments, we mainly highlight the effect of introducing
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the GNMS strategy. In the second set of experiments, we mainly tested the performance of
introducing the SBS (named YOLOv5s+SBS), and the performance of improved YOLOv5s
with SBS (named Improved YOLOv5s+SBS), and compared the two models with original
YOLOv5s to highlight the contribution of introducing the SBS and improved model.

4.1. Experimental Results of GNMS

In order to analyze the results of different comparative experiments more objectively,
it is necessary to perform GNMS first. In this study, ol is set to 0.2, and the entire remote
sensing image is sliced into 3897 image slices. Taking YOLOv5s+SBS as an example, the
results of employing the GNMS strategy on the entire GF-6 image are shown in Figure 11.
As can be seen from Figure 11, due to the image slice, the tailing ponds are divided into
different image slices, and the training samples that focus on the local area of the tailing
ponds are added. Many repeated and partial detection frames are generated. GNMS
can effectively eliminate duplicate and partial detection frames. Some of these detection
frames even exceed the sample size fed to the YOLOv5s model, which can more accurately
count the number of real tailings ponds. Compared with the label frames, the error of the
detection frames generated by GNMS on the entire GF-6 image is 9.8%.
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Figure 11. Experimental results of GNMS on the entire GF-6 image.

In order to further observe the performance of GNMS in detail, four local regions
are selected for display. The blue detection frames are the experimental results using the
GNMS strategy, and the yellow detection frames are original results. In local region 1, the
same tailings pond is repeatedly detected many times due to part of the training samples.
Most of the detection frames are suppressed using GNMS, but since the two tailings ponds
are too close, they are both represented by the same detection frame. The tailings ponds
in region 2 and region 3 are large and may be repeatedly detected in different sub-slices,
so the generated detection frames are marked on the image. After being processed by
GNMS, the detection frame on the same tailings pond will no longer have partial coverage,
but full coverage of the tailings pond. In local region 4, we can see that the same tailings
pond is repeatedly detected three times, and after processing by GNMS, only one detection
frame remains.
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To investigate the effect of the IoU threshold of GNMS on the accuracy of tailings
ponds detection, different IoU thresholds are selected to obtain the best mAP@0.5 on the test
set. The IoU threshold ranges from (0, 1) with a step size of 0.1, and the results are shown
in Figure 12. Figure 12 shows that the mAP@0.5 is maximum when the IoU threshold is 0.4.
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4.2. Comparative Results of Different Experiments
4.2.1. Qualitative Results

To obtain a more accurate ground truth map, we first marked the location of the
tailings ponds on a high-resolution Google Earth map. Based on the precise location
information, we marked the label frames of the tailings ponds on the entire GF-6 image.
From Figure 13, these label frames are purple. In order to show the truth map more clearly,
we selected two typical local regions, and selected four tailings ponds from each region for
display. According to a statistical analysis of the size of the marked tailings ponds, their
length and width are typically between 70 m and 3000 m.
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Figure 14 shows the qualitative tailings ponds detection results of YOLOv5s and
YOLOv5s+SBS on the entire GF-6 image. Compared with ground truth, the results of the
YOLOv5s have more obvious misidentifications. From the results of YOLOv5s, we can see
that there are mainly three ground objects that are more misidentified as tailings ponds,
namely clouds, reservoirs and bare rocks of mountains. We selected three local regions
to display typical errors. Local region 1 is used to show that clouds are misidentified as
tailings ponds. Local region 2 is used to show that reservoirs are misidentified as tailings
ponds. Local region 3 is used to show that bare rocks are misidentified as tailings ponds. In
these three local regions, compared with YOLOv5, the detection results of YOLOv5+SBS
can well avoid these obvious errors and obtain better detection results.
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Figure 15 shows the qualitative tailings ponds detection results of YOLOv5s+SBS
and improved YOLOv5s+SBS on the entire GF-6 image. Compared with the YOLOv5s
model, YOLOv5s+SBS has significantly improved the erroneous extraction of tailings
ponds, but there are also several obvious erroneous extractions. Through observation,
these misidentified ground objects are mainly concentrated near residential areas, and
scattered in other areas, mainly bare land and buildings. We selected two local regions
around Lingqiu County and Laiyuan County to show the results. Region 1 is Lingqiu
County and region 2 is Laiyuan County. In order to show the detection results more clearly,
we selected two sub-areas (a) and (b) in local region 1, and two sub-regions (c) and (d) in
local region 2. In sub-region (a), the YOLOv5s+SBS model misidentifies the bare land in
the left detection frame and the pond in the right detection frame as tailings ponds. In
sub-region (b), the YOLOv5s+SBS model misidentifies a factory in the detection frame as
a tailings pond. In both sub-region (c) and (d), the YOLOv5s+SBS model misidentifies
the bare land as a tailings pond. Compared with YOLOv5+SBS, the detection results of
improved YOLOv5+SBS can obtain better detection results.
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Figure 15. The qualitative results of YOLOv5s+SBS and improved YOLOv5s+SBS on the entire GF-6
images. The yellow detection frames are the detection result of YOLOv5s+SBS, the blue detection
frames are the detection result of improved YOLOv5s+SBS, and the purple label frames are the
ground truth.

In order to overall compare the performance of the three models, we show the results
of misrecognition and omissions of different models, respectively, on the entire GF-6 image.
Red detection frames represent misrecognition, and green detection frames represent
omissions. From Figure 16, the misrecognition of YOLOv5s is the highest, followed by
YOLOv5s+SBS, and our framework has achieved the best performance. YOLOv5s has
about the same number of omissions as our framework, while YOLOv5+SBS has relatively
more omissions.
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4.2.2. Quantitative Results

In this study, a counting method is used for performance evaluation. We use the GF-6
image with label frames as a ground truth map, as shown in Figure 13. If the detection
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frame predicted by the models intersects with the label frame, we consider the detection
frame predicted by the model to be correctly identified and denote it as TP; if there is
no intersection between the detection frame and the labeled frame, and it is identified
as other ground objects, it is judged as a misrecognition, which is denoted as FP; if the
labeled frames are not detected, they are judged as missing and denoted as FN. We obtain
quantitative comparison results of different models using the calculation formula for
accuracy evaluation, see Table 4.

Table 4. Performance comparison of different models.

Models Precision Recall F1 Iteration Time

YOLO v5 61.02% 81.20% 69.68% 58.05 s
YOLO v5+SBS 78.34% 75.54% 76.91% 58.07 s

Improved YOLO v5+SBS 86.00% 78.18% 81.90% 166.01 s

From Table 4, the accuracy of the proposed framework has been greatly improved
by introducing the SBS and improving YOLOv5s. Compared with the original YOLOv5s,
the F1 score has increased by 12.22%, and the precision has increased by nearly 25%, but
the recall is lower than YOLOv5s. Compared with the YOLOv5s+SBS, the F1 score has
increased by about 5%, the precision has increased by 7.66%, and the recall has increased by
2.64%. However, compared to the other two models, the proposed framework increases the
detection execution time of tailings ponds on the entire GF-6 image by about three times. It
should be pointed out that the final detection result is saved in vector format, not in raster
format. It not only improves the detecting efficiency and saves storage space, but also can
be easily superimposed on any map with a coordinate system for display.

4.3. Discussion

In this study, YOLOv5s is comprehensively improved, combining the strategies of
SBS and GNMS, and innovatively designing a new framework for large-scale tailings
ponds extraction from the entire remote sensing image. Our framework achieves the best
performance in comparative experiments. Although the execution time is the longest,
an entire GF-6 image is about 90 km by 90 km in size, and it takes about 166 s, which is
acceptable. In this subsection, it is clarified that all models employ SBS.

4.3.1. Ablation Experiment

There are many improvement measures in our model, including: replacing C3 with
C3SwinT module in backbone, replacing C3 with fusion block module in neck, and replac-
ing the coupled head with Decoupled Head. To verify the effect of these measures on the
improved YOLOv5s, an ablation experiment is undertaken in this paper. Additionally, the
mAP@0.5 and number of parameters are used as evaluation indexes. For fair comparison,
default parameters are used for all models. The final results are listed in Table 5.

Table 5. Results of ablation experiments.

Model Parameters (M) mAP@0.5 Improvement over YOLOv5s

YOLOv5s (baseline) 7.03 86.20% -
+Swin-T Backbone 7.27 90.20% 4%
+RepGFPN Neck 12.25 89.60% 3.4%
+Decoupled Head 14.33 88.20% 2%

Ours 19.82 92.15% 5.95%

Compared with the baseline network, the improved YOLOv5s boosts mAP@0.5 by
5.95%. Although our model has the highest mAP@0.5 of 92.15%, it has the largest number of
parameters. YOLOv5 with Swin-T Backbone achieves 90.20% mAP@0.5, an increase of 4%
mAP@0.5 compared with the baseline network, and the number of parameters of the model
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is slightly increased. YOLOv5 with RepGFPN Neck achieved 89.60% mAP@0.5, mAP@0.5
increased by 3.4%, and the number of parameters increased by 5.22 M. In comparison
with the baseline network, YOLOv5 with Decoupled Head improved 2% mAP@0.5, and
the number of parameters increased by 7.3 M, second only to our model. It can be seen
that the improvement of different parts of YOLOv5 has achieved an increase of mAP@0.5.
Swin-T Backbone contributed the most, showing that Swin Transform has a good effect on
extracting sparse targets in complex background images. The contribution of RepGFPN
Neck is second, indicating that this new feature fusion mode that transfers node stacking
calculations to convolutional layer stacking calculations is very effective in target recog-
nition on remote sensing images. Decoupled Head also cannot be ignored, and it is an
important means to improve the accuracy of target detection.

4.3.2. Comparison with Other Object Detection Methods

To demonstrate the effectiveness of the improved YOLOv5s in detecting tailings
ponds on GF-6 images, this study compares the performance of our method with that of
several other state-of-the-art (SOTA) object detection methods, such as YOLOv8s, YOLOv5l,
YOLT [44] and the Swin Transformer [32], on the GF-6 self-made tailing pond dataset.
Table 6 shows the performance comparison of different methods.

Table 6. Experimental results of comparative experiments.

Model Parameters (M) mAP@0.5

YOLOv5l 46.11 87.60%
YOLOv8s 11.13 88.00%
YOLTv5s 7.06 88.60%
Swin-T 47.37 88.70%
Ours 19.82 92.15%

From Table 6, compared to several other SOTA methods, our improved YOLOv5s
obtains the highest mAP@0.5, followed by Swin Transformer and YOLTv5s. For Swin
Transformer, the backbone we choose is Swin-T with Lr Schd 3x. YOLTv5 is the fifth
version of YOLT, developed based on YOLOv5, and we also chose the size of s. YOLOv8s
achieved 88.00% mAP@0.5, which is the latest YOLO released by the community. It
adopts the new C2f module and decoupled head, and has a very good performance.
Compared with YOLOv5s, YOLOv5l has a larger model depth multiple and layer channel
multiple, which can usually achieve better detection results. It should be noted that default
hyperparameters were used for all compared models. Although Swin Transformer has
achieved sub-optimal performance, it has a large number of parameters. After fusing it
with C3, it can maintain a good extraction accuracy and greatly reduce the number of
parameters. YOLTv5s can still achieve good detection results while maintaining the same
number of parameters as YOLOv5s. YOLOv8s has a small number of parameters and has
achieved good detection results. The number of parameters of YOLOv5l is almost the same
as that of Swin Transformer, but its improvement of mAP@0.5 is relatively small. In general,
our improved YOLOv5 has a great advantage in the task of detecting tailings ponds on
GF-6 images.

In order to further analyze the recognition performance of the proposed model for
tailings ponds, our model is also compared with the improved YOLOv8s. We replace the
C2f modules of the YOLOv8s backbone with C3SwinT modules to form Swin-T Backbone,
and replaced the C2f modules of the YOLOv8s neck with fusion block modules to form
RepGFPN Neck. From Table 7, the first row represents YOLOv5s and YOLOv8s with
Swin-T Backbone, the second row represents YOLOv5s and YOLOv8s with RepGFPN
Neck, and the third row represents improved YOLOv5s and YOLOv8s with Swin-T Back-
bone, RepGFPN Neck and Decoupled Head. It should be pointed out that YOLOv8s
has Decoupled Head, and the improved YOLOv8s only employs Swin-T Backbone and
RepGFPN Neck. Compared with different improved YOLOv8s models, different improved
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YOLOv5s models have higher mAP@0.5, and the parameters of the models also have
certain advantages.

Table 7. Comparison of improved YOLOv5s and YOLOv8s.

Model
YOLOv5s YOLOv8s

Parameters (M) mAP@0.5 Parameters (M) mAP@0.5

+Swin-T Backbone 7.27 90.20% 10.29 90.10%
+RepGFPN Neck 12.25 89.60% 15.37 89.30%
Improved Model 19.82 92.15% 14.51 90.06%

4.3.3. Limitations and Future Works

Although our framework obtained the best accuracy for tailings ponds identification,
there are still misidentifications, and the detection of tailings ponds in a large area still faces
challenges. Figure 17 shows some typical cases misidentified by our framework, such as
bare soil, factories, residential areas, and highway service areas, which are morphologically
and spectrally similar to tailings ponds. In addition, the phenomenon of missing extraction
of the framework cannot be ignored, and the typicality of these undetected tailings ponds
is often not prominent enough, which is also worthy of attention and research in the future.
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Furthermore, we generated a dataset of tailings ponds based on standard false-color
images of the GF-6 high-resolution camera, which is still small-scale and not particularly
general compared to other public datasets of ground objects. In the future, it is necessary
to establish large-scale tailings pond dataset based on GF-6 standard false-color images
and explore specific data enhancement methods. Apart from some misidentifications and
omissions, our framework lacks competition in the number of model parameters and
detection time. We hope to carry out model pruning and knowledge distillation in the
future to improve model efficiency and meet more application scenarios. In addition,
tailings ponds have strong spatial heterogeneity, and the characteristics of tailings ponds
in different regions are quite different. Therefore, the fusion of multi-source data, such as
hyperspectral data, are used to more finely detect tailings ponds in larger areas.

5. Conclusions

This study proposes an improved YOLOv5s framework for tailings ponds extraction
from the entire GF-6 high spatial resolution remote sensing image. The proposed SBS
technique improves the quality of the tailings ponds image sample dataset by adding
multi-scale samples and negative samples. The improved YOLOv5s consists of Swin-
T Backbone, RepGFPN Neck and Decoupled Head. The C3Swin-T module formed by
Swin Transformer and C3 can well-capture the features of sparse tailing pond targets in
complex backgrounds. Fusion Block can achieve better feature fusion effects by introducing
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strategies such as CSPNet, reparameterization mechanism, and multi-layer aggregation.
Decoupled Head replacing a coupled head also achieved better results. In addition, the
designed GNMS can effectively suppress the repeated detection frames on the entire remote
sensing image and improve the detection effect. The results show that the precision and F1
score of tailings ponds detection using the improved framework are significantly improved,
which are 24.98% and 12.22%, respectively, compared with the original YOLOv5s, and
7.66% and 4.99%, respectively, compared with YOLOv5s+SBS, reaching 86.00% and 81.90%,
respectively. Our framework can provide an effective method for government departments
to conduct a tailings ponds inventory, and provide a useful reference for mine safety and
environmental monitoring.
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Abbreviations

ELAN Efficient layer aggregation networks
FPN Feature Pyramid Network
GF-1 Gaofen-1
GF-6 Gaofen-6
GNMS Global non-maximum suppression
LN LayerNorm
MSA Multi-head self-attention
NMS Non-maximum suppression
PAN Path Aggregation Network
RepGFPN Reparameterized Generalized-FPN
SBS Sample boosting strategy
SOTA State-of-the-art
SPPF Spatial Pyramid Pooling Fast
Swin-T backbone Swin Transformer backbone
SW-MSA Shifted-window MSA
W-MSA Window-based MSA
YOLO You Only Look Once
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