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Abstract: Long-time coherent integration works to significantly increase the detection probability
for maneuvering targets. However, during the observation time, the problems that often tend to
occur are range cell migration (RCM) and Doppler frequency cell migration (DFCM), due to the
high velocity and acceleration of the maneuvering target, which can reduce the detection of the
maneuvering targets. In this regard, we propose a new coherent integration approach, based on
the product scale zoom discrete chirp Fourier transform (PSZDCFT). Specifically, by introducing
the zoom operation into the modified discrete chirp Fourier transform (MDCFT), the zoom discrete
chirp Fourier transform (ZDCFT) can correctly estimate the centroid frequency and chirp rate of the
linear frequency-modulated signal (LFM), regardless of whether the parameters of the LFM signal
are outside the estimation scopes. Then, the scale operation, combined with ZDCFT, is performed on
the radar echo signal in the range frequency slow time domain, to remove the coupling. Thereafter, a
product operation is executed along the range frequency to inhibit spurious peaks and reinforce the
true peak. Finally, the velocity and acceleration of the target estimated from the true peak position,
are used to construct a phase compensation function to eliminate the RCM and DFCM, thus achieving
coherent integration. The method is a linear transform without energy loss, and is suitable for low
signal-to-noise (SNR) environments. Moreover, the method can be effectively fulfilled based on the
chirp-z transform (CZT), which prevents the brute-force search. Thus, the method reaches a favorable
tradeoff between anti-noise performance and computational load. Intensive simulations demonstrate
the effectiveness of the proposed method.

Keywords: maneuvering target; coherent integration; product scale zoom discrete chirp Fourier
transform; range cell migration; doppler frequency cell migration

1. Introduction

In recent years, radar maneuvering target detection has attracted extensive research
interest in spaceborne, airborne, and ground-based radar [1–3], due to the growing demand
for practical applications, such as for high-resolution remote sensing imaging and high
precision tracking [4–8]. However, it is often difficult for radar to detect high maneuvering
targets, due to the weak radar echoes caused by their low radar cross section (RCS) [9–13].
Long-time coherent integration can enhance the signal-to-noise ratio (SNR) of the echo
signal and increase the detection probability of maneuvering targets [14–16]. However,
during coherent processing, the high velocity and acceleration of the maneuvering target
can induce linear range cell migration (LRCM), quadratic range cell migration (QRCM), and
Doppler frequency cell migration (DFCM). Not only that, when the radar pulse repetition
frequency (PRF) is low, the excess motion parameters of the maneuvering target may
not be estimated correctly. These adverse effects can seriously degrade the detection
performance of traditional methods (e.g., moving target detection, MTD). Therefore, in
order to improve the detection performance, it is imperative to propose an effective method
to solve these problems.
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For the elimination of LRCM, many successful methods have been proposed. Repre-
sentative methods involve the keystone transform (KT) [17,18], Radon Fourier transform
(RFT) [19,20], axis rotation transform (ART) [21], scaled inverse Fourier transform (SIFT) [22],
and frequency-domain deramp-keystone transform (FDDKT) [23], where the KT is a linear
transform for eliminating LRCM of multiple targets without prior information. However,
the KT may suffer from Doppler ambiguity, due to the high velocity and low PRF. The RFT
and ART eliminate the LRCM through the two-dimensional search procedure, which may
require a heavy computational burden. The SIFT and FDDKT can achieve the cancellation
of LRCM with the help of the symmetric autocorrelation function, which can maintain a low
computational burden at the cost of anti-noise performance. Nevertheless, the coherent gain
of the above method can decline sharply, due to overlooking the QRCM and DFCM arising
from the target’s acceleration.

To address this issue, various methods have been introduced. The generalized RFT
(GRFT) [24], is a classical method which extracts the target trajectory through a three-
dimensional search, and constructs a corresponding filter to accomplish coherent inte-
gration. However, the consequent problem is that the GRFT has severe blind speed side
lobes (BSSLs) interference, due to the nature of its filter construction. Based on this, the
Radon-Lv’s distribution (RLVD) [25] and Radon-fractional Fourier transform (RFRFT) [26]
were developed, and they can successfully avert the effect of BSSLs due to their adoption
of LVD and FRFT as filters, respectively. Unfortunately, the aforementioned methods are
prohibitively computationally intensive and are not conducive to real-time processing. In
this respect, improved axis rotation fractional Fourier transform (IAR-FRFT) [27], modi-
fied axis rotation transform and Lv’s transform (MART-LVT) [28], and modified location
rotation transform and improved discrete chirp Fourier transform (MLRT-IDCFT) [29], can
slightly diminish the computational burden, by reducing the search dimension. However,
these three methods come at the cost of not being able to eliminate the QRCM, which may
degrade some of the accumulation gain. Moreover, the computational burden of these meth-
ods remain considerable. To further drastically reduce the computational cost for real-time
processing, some rank-reduction based methods have been widely investigated. Typical
methods include, the adjacent cross-correlation function (ACCF) [30], three-dimensional
scaled transform (TDST) [31], second-order Wigner–Ville distribution (SoWVD) [32], and
frequency autocorrelation function and Lv’s distribution (FAF-LVD) [33]. These methods
can reduce the rank of the echo signal by carrying out correlation operations, thus avoiding
the brute-force search and reducing the computational load. Although these methods have
low computational complexity and facilitate real-time processing, they are only suitable
for high SNR environments due to the loss of signal energy and cross terms caused by
correlation operations. Besides, time-reversal transform (TRT)-based methods, such as
improved axis rotation and time reversal transform (IAR-TRT) [34], keystone transform and
time reversal transform (KT-TRT) [35], and phase compensation and time-reversal trans-
form (PC-TRT) [36], can also obtain efficient calculations, by implementing TRT operations.
However, similar to the rank-reduction-based approaches, the anti-noise performance of
TRT-based methods can also drop tremendously in a low SNR environment, due to the fact
that TRT operations are nonlinear.

With the aim of striking a better balance between computational cost and anti-noise
performance, this paper proposes a novel coherent integration approach, based on the
product scale zoom discrete chirp Fourier transform (PSZDCFT). The basic idea of the
method, is that the velocity and acceleration of the maneuvering target are estimated via
PSZDCFT, then the phase compensation function is constructed to eliminate the RCM and
DFCM, and finally, the slow-time Fourier transform is applied, to accomplish coherent
integration. The zoom operation is used to extend the estimation scopes of the modified
discrete chirp Fourier transform (MDCFT) [37] when the velocity and acceleration of the
target are superabundant, which also results in the occurrence of other false peaks in the
two-dimensional spectrum. The scale operation is used to eliminate the coupling between
the true peak location and the range frequency, while making the false peak locations
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couple with the range frequency. The product operation is used to identify and reinforce
the true peak, while suppressing the false peaks. The most important features of the
proposed method are, extending the estimation ranges of MDCFT by zoom operation, and
improving the parameter estimation performance by product operation. The former can
be applied to the uniform motion target with velocity ambiguity, and the latter can be
developed into other parameter estimation methods, such as dechirp estimation. Moreover,
in contrast to the rank-reduction-based and time-reverse-based methods, the proposed
method is a linear transform without loss of target energy and no cross terms for multiple
targets. Compared with the traditional methods of brute-force search, such as GRFT and
RLVD, this method is search-free, thanks to its efficient implementation by fast Fourier
transform (FFT), inverse fast Fourier transform (IFFT), and complex multiplication, which
greatly reduces the computational burden, without significant degradation in detection
performance. Thus overall, the presented approach reaches a favorable tradeoff between
anti-noise performance and computational complexity.

The rest of this paper is arranged as follows. In Section 2, the signal model is formu-
lated and the problem to be addressed is presented. Section 3 details the development
and rationale of the proposed method. In Section 4, the relevant analysis of the proposed
approach is given. Section 5 provides the simulation results. Finally, the conclusions are
drawn in Section 6.

2. Signal Model and Problem Formulation

Assume that a pulsed radar transmits a narrow-band linear frequency-modulated
signal (LFM), as follows

s(t̂, ηm) = rect
(

t̂
Tp

)
exp

(
jπγt̂2

)
exp

[
j2π fc

(
t̂ + ηm

)]
, (1)

where Tp and rect(·) represent the pulse width and rectangular function, respectively. γ
and t̂ are the frequency modulated rate and fast time, respectively. fc is the carrier frequency.
ηm = m/ fr (m = −M/2, . . . ,−1, 0, 1, . . . , M/2− 1) is the slow time. fr = 1/Tr and M
indicate the PRF and pulse number, respectively. Tr is the pulse repetition interval (PRI).

We consider a second-order motion model and assume that the instantaneous slant
range R(ηm), between the target and the radar is

R(ηm) = R0 + v0ηm +
1
2

a0η2
m, (2)

where R0, v0, and a0 are the initial range, radial velocity, and acceleration of the
target, respectively.

Then, after the signal demodulation, the received baseband signal is stated as

sr
(
t̂, ηm

)
= σ0 rect

[
t̂− 2R(ηm)/c

Tp

]
× exp

[
−j

4π fc

c
R(ηm)

]
× exp

{
jπγ

[
t̂− 2R(ηm)

c

]2
}

,

(3)

where σ0 and c indicate the echo amplitude and velocity of light, respectively. After pulse
compression (PC) using matched filters, the received signal can be noted as

sc
(
t̂, ηm

)
= σ1 sinc

[
B
(

t̂− 2R(ηm)

c

)]
exp

(
−j

4π fcR(ηm)

c

)
, (4)

where σ1 and B are the signal amplitude after PC and the signal bandwidth, respectively.
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Then, performing FFT on Equation (4) along the fast time t̂, yields

Sc( f , ηm) = σ2 rect
(

f
B

)
exp

[
−j

4π( f + fc)R(ηm)

c

]
, (5)

where f is the range frequency corresponding to the fast time t̂, and σ2 indicates the signal
amplitude after performing FFT.

Substituting Equation (2) into Equation (5), one obtains

Sc( f , ηm) = σ3 exp
[
−j4π

f
c

(
R0 + v0ηm +

1
2

a0η2
m

)]
× exp

[
−j

4π

λ

(
R0 + v0ηm +

1
2

a0η2
m

)]
,

(6)

where σ3 = σ2 rect
(

f
B

)
. λ = c/ fc is the wavelength.

Since the range frequency is coupled to slow time, the first exponential term of
Equation (6) could bring about the LRCM due to velocity and QRCM due to accelera-
tion. The second exponential term may result in the DFCM induced by acceleration.
Therefore, it is critical to accurately estimate the velocity and acceleration of the maneu-
vering target, to eliminate the adverse effects of the RCM and DFCM and improve the
detection performance.

3. Description of the Proposed Method
3.1. MDCFT and Its Limitations

In [38], Xia proposes the DCFT to estimate the centroid frequency and chirp rate of the
LFM signal. However, this method has the requirement that the total sampling number
of the signal is prime and the parameters of the signal are integers. With this in mind, the
MDCFT is proposed, which eliminates two constraints of DCFT. The principle of MDCFT
is as follows.

The analog form of the LFM signal can be expressed as

z(ηm) = σ exp
[

j2π
(

f0ηm + µ0η2
m

)]
, (7)

where σ and ηm denote the signal amplitude and slow time, respectively. f0 and u0 are the
centroid frequency and chirp rate, respectively. After discretization, Equation (7) can be
written as

z(m) = σ exp
[

j2π
(

f0Trm + µ0T2
r m2

)]
= σW

−
(

k0m+
l0
M m2

)
M ,

(8)

where k0 = f0Tr M and l0 = µ0T2
r M2 represent the digital centroid frequency and chirp

rate of the signal, respectively. WM = exp(−j2π/M).
The MDCFT of z(m) is defined as

ZMDCFT(k, l) =
1√
M

M/2−1

∑
m=−M/2

z(m)W(km+ l
M m2)

M , (9)

where k ∈ [−M/2, M/2− 1] and l ∈ [−M/2, M/2− 1] denote the centroid frequency
index and chirp frequency index, respectively. It is obvious that the estimation scopes of
both k0 and l0 are [−M/2, M/2). With the substitution of Equation (8) into Equation (9),
we can obtain

ZMDCFT(k, l) = σ
1√
M

M/2−1

∑
m=−M/2

W
1
M (l−l0)m2

M W(k−k0)m
M . (10)
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Depending on whether k0 and l0 exceed the estimation scopes, the peak position of
|ZMDCFT(k, l)| can be divided into the following cases.

Case 1: |k0| < M/2 and |l0| < M/2. This means that both k0 and l0 are within
their estimation scopes, and as shown in Equation (10), the peak of the two-dimensional
spectrum can be observed at (k0, l0).

Case 2: |k0| ≥ M/2 and |l0| < M/2. In this case, k0 is over its valid estimation range,
which implies that Doppler ambiguity would occur. k0 can be written as

k0 = k′0 + pM, (11)

where p = round(k0/M) is the number of the Doppler ambiguity. k′0 ∈ (−M/2, M/2).
Inserting Equation (11) into Equation (10), one obtains

ZMDCFT(k, l) = σ
1√
M

M/2−1

∑
m=−M/2

W
1
M (l−l0)m2

M W(k−k′0)m
M . (12)

Here, we use the constant equation W−pMm
M = 1. As shown in Equation (12), we

can see that the peak is located at (k′0, l0) in the two-dimensional spectrum, which is the
folded peak. From the coordinates of the folded peak, we cannot get the correct digital
centroid frequency.

Case 3: M/2 ≤ |l0| < M2/2. At this point, since l0 is out of the estimation scope, k0
and l0 cannot be accurately estimated, regardless of the value of k0. In the two-dimensional
spectrum, |ZMDCFT(k, l)| has no distinctive sharp peak.

Case 4: M2/2 ≤ |l0|. In this case, l0 is still out of the estimation scope, but similar to
case 2 , chirp rate ambiguity can occur. l0 can be written as

l0 = l′0 + hM2, (13)

where h = round(l0/M2) is the number of the chirp rate ambiguity . l′0 ∈ (−M2/2, M2/2).
By taking Equation (13) into Equation (10), we have

ZMDCFT(k, l) = σ
1√
M

M/2−1

∑
m=−M/2

W
1
M (l−l′0)m2

M W(k−k0)m
M . (14)

W
− 1

M hM2m2

M = 1 is used here. The analysis of Equation (14) is the same as the previous
three cases, and it is worth noting that the correct value of l0 cannot be obtained in this case.
In practice, chirp rate ambiguity is almost impossible, that is, |l0| � M2/2. Therefore, we
will not analyze this case later.

3.2. Zoom DCFT

In the previous subsection, we expounded the principle and limitations of the MDCFT.
In order to remove these limitations and make MDCFT more practical, we proposed the
zoom DCFT method (ZDCFT).

The ZDCFT of z(m) is defined as follows

ZZDCFT(k, l) = ZDCFT[z(m)]

=
1√
M

M/2−1

∑
m=−M/2

z(m)W(αkm+β l
M m2)

M ,
(15)

where k ∈ [−M/2, M/2) and l ∈ [−M/2, M/2) represent the centroid frequency index
and chirp frequency index, respectively. α ∈ N∗ and β ∈ N∗ denote the zoom factors of the
centroid frequency and chirp rate, respectively.

In order to clarify the role of the ZDCFT, we analyze the first three cases in the previous
subsection one by one.
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Inserting Equation (8) into Equation (15), we obtain

ZZDCFT(k, l) = σ
1√
M

M/2−1

∑
m=−M/2

W(l−l0/β)m2

Ml
W(k−k0/α)m

Mk
, (16)

where Ml = M2/β and Mk = M/α are the new implied periods of ZZDCFT(k, l) in the k
and l domains, respectively.

For case 1, i.e., |k0| < M/2 and |l0| < M/2, we should just take α = β = 1. Then,
the ZDCFT degenerates into the MDCFT. The peak of the theoretical two-dimensional
spectrum is located at (k0, l0).

For case 2, i.e., |k0| ≥ M/2 and |l0| < M/2, we know that |l0| < M/2, so β is taken as
1. Since |k0| ≥ M/2 exceeds the estimation scope, we should take the appropriate α (α > 1)
to extend the estimation scope of k0, i.e.,

[−M
2

α,
M
2

α). (17)

In other words, it is to make k0/α lie within the computational range of k, i.e., k0/α ∈
[−M/2, M/2). However, the ensuing problem is that |ZMDCFT(k, l)| would generate α
peaks in the k domain. This is because the length of the computational interval in the
k-domain is α times longer than its implied period by the zoom operation, i.e., M/Mk = α.
Therefore, with β = 1, Equation (16) can be rewritten as follows

ZZDCFT(k, l) = σ
1√
M

M/2−1

∑
m=−M/2

W(l−l0)m2

Ml
W(k−k0/α−FMk)m

Mk
, (18)

where F ∈ Z, Ml = M2, and Mk = M/α. It can be seen from Equation (18) that these α
peaks are located at 

k̂ = k0/α + FMk
l̂ = l0
k̂ ∈ [−M/2, M/2)
l̂ ∈ [−M/2, M/2)
F ∈ Z

. (19)

When F = 0, we can obtain the correct digital centroid frequency and chirp rate, i.e.,
(k̂0, l̂0) = (αk̂, l̂).

Example 1. Figure 1 illustrates the role of the zoom factor of the centroid frequency α. The
simulation parameters of the LFM signal are: µ0 = 45 Hz/s, f0 = 630 Hz, fr = 400 Hz, and
M = 800. Then, we can get k0 = f0M/ fr = 1260 and l0 = µ0M2/ f 2

r = 180. It can be seen
that k0 is out of the estimation scope while l0 is not. Therefore, we choose α = 4 and β = 1, which
means that four peaks would be observed in the two-dimensional spectrum, of which the true peak
is located at (315, 180). With the help of the new implied period Mk = M/α = 200, we can
also derive the theoretical x-coordinate of one of the false peaks according to Equation (19), i.e.,
−85 = 315− 2× 200. The value of the y-coordinate is the same as the true peak. The result of
MDCFT is given in Figure 1a. It can be seen that, although there is a peak in the two-dimensional
spectrum, the x-coordinate of this peak is the folded digital centroid frequency, i.e., k′0 = −340.
Figure 1b shows the result of ZDCFT, which is in agreement with the theory.
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Figure 1. Simulation results of Example 1. (a) The result of MDCFT. (b) The result of ZDCFT
(α = 4, β = 1).

For case 3, i.e., M/2 ≤ |l0| < M2/2, as in case 2, we should select a suitable β (β > 1)
to make |l0/β| lie within M/2. To put it another way, the estimation scope of l0 is extended
by β, i.e.,

[−M
2

β,
M
2

β). (20)

Note that, it is sufficient that β is less than M according to Equation (20) and that |l0| is
less than M2/2. Thus, unlike the analysis in case 2, the length of the computational interval
in the l domain is still less than its new implied period, i.e., M < Ml = M2/β, s.t. β < M.
From another perspective, the computational range of l is a subset of [−Ml/2, Ml/2), i.e.,
[−M/2, M/2) ⊂ [−Ml/2, Ml/2), which implies that |ZMDCFT(k, l)| would generate only
one peak in the l domain, independent of β. Considering k0, Equation (16) is rewritten
as follows

ZZDCFT(k, l) = σ
1√
M

M/2−1

∑
m=−M/2

W(l−l0/β)m2

Ml
W(k−k0/α−FMk)m

Mk
, (21)

where Ml = M2/β, and Mk = M/α. From Equation (21), we can see that in the two-
dimensional spectrum, there are still α peaks, which appear at

k̂ = k0/α + FMk
l̂ = l0/β

k̂ ∈ [−M/2, M/2)
l̂ ∈ [−M/2, M/2)
F ∈ Z

. (22)

When F = 0, we can obtain the correct digital centroid frequency and chirp rate, i.e.,
(k̂0, l̂0) = (αk̂, βl̂).

Example 2. In Figure 2, we show the joint action of the zoom factors α and β. The simulation
parameters for the LFM signal are set as: µ0 = 145 Hz/s, f0 = 630 Hz, fr = 400 Hz, and
M = 800. Then, both k0 and l0 are out of the estimation scopes, i.e., k0 = 1260 > M/2 = 400
and l0 = 580 > M/2. At this point, we have that α equals 4 and β equals 2, which indicates
that there would be four peaks along the k-dimension and one peak along the l-dimension, in the
two-dimensional spectrum. The true peak should be formed at (315, 290) in the two-dimensional
spectrum. Similar to Example 1, the location of one of the three false peaks should appear at (−85,
290), based on Equation (22). Figure 2a shows the correct result of ZDCFT, in accordance with the
theoretical analysis. For comparison, Figure 2b,c display the wrong results of ZDCFT, when α = 1
and β = 2 and when α = 4 and β = 1, respectively. It is evident that the former (α = 1, β = 2)
is blurred in the Doppler domain, while the latter (α = 4, β = 1) is invalid because the chirp rate
cannot be correctly estimated.
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Figure 2. Simulation results of Example 2. (a) The correct result of ZDCFT (α = 4, β = 2). (b) The
blurred result of ZDCFT (α = 1, β = 2). (c) The invalid result of ZDCFT (α = 4, β = 1).

Remark 1. The zoom factors for α and β should be as small as possible, with the guarantee that the
estimation ranges contain k0 and l0 [39]. The reason for this is that the spatial resolutions in the k
and l domains are proportional to α and β, respectively, i.e., ρk = α/M and ρl = β/M2.

3.3. Scale ZDCFT

The previous subsection shows that ZDCFT can obtain correct parameter estimations,
regardless of whether the centroid frequency and chirp rate of the LFM signal exceed
the estimation scopes of MDCFT. For the two-dimensional radar echo signal in the range
frequency-slow time domain, it is an LFM signal in the slow-time dimension with a certain
range frequency cell. Therefore, we can use the ZDCFT to estimate the velocity and
acceleration of the maneuvering target. However, we may obtain different values of the
velocity and acceleration for different range frequency cells via ZDCFT. Considering this
problem, we propose the scale ZDCFT method (SZDCFT).

The discretized form of Equation (6), for the slow-time variable ηm, is as follows

Sc( f , m) = σ3 exp
[
−j2πψ( f )

(
2R0

λ
+

2v0

λ
Trm +

a0

λ
T2

r m2
)]

= σ4W
−ψ( f )

(
K0m+

L0
M m2

)
M ,

(23)

where σ4 = σ3 exp
(
−j 4π

λ ψ( f )R0

)
denotes the complex amplitude of the signal.

K0 = − 2v0
λ MTr and L0 = − a0

λ M2T2
r represent the digital centroid frequency and chirp

rate of the target, respectively. ψ( f ) = 1 + f / fc is the scale factor.
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Then, the SZDCFT of Equation (23) is defined as

SSZDCFT( f , k, l) = SZDCFT[Sc( f , m)]

=
1√
M

M/2−1

∑
m=−M/2

Sc( f , m)W
ψ( f )(αkm+β l

M m2)
M

= σ4
1√
M

M/2−1

∑
m=−M/2

W(l−L0/β)m2

Ml f
W

(k−K0/α−FMk f )m
Mk f

,

(24)

where Ml f =
M2

βψ( f ) and Mk f =
M

αψ( f ) denote the implied periods of SSZDCFT( f , k, l) in the l
and k domains associated with the range frequency, respectively.

Similarly, in the two-dimensional spectrum, we can observe from Equation (24) that
there are α peaks, which are situated at

k̂ = K0/α + FMk f
l̂ = L0/β

k̂ ∈ [−M/2, M/2)
l̂ ∈ [−M/2, M/2)
F ∈ Z

. (25)

In Equation (25), the true peaks will appear at the location of (K0/α, L0/β) when
F = 0, which are irrespective of the range frequency. Therefore, it can be seen that the
SZDCFT can neutralize the effect of the range frequency.

Example 3. Figure 3 simulates the results of SZDCFT for two different scale factors, ψ1 = 1.01
and ψ2 = 0.99. The parameters of the LFM signal are the same as in Example 2. Correspondingly,
the zoom factors of the centroid frequency α, and chirp rate β, are equal to 4 and 2, respectively. In
the two-dimensional spectrum, the true peak would be formed at (315, 290). The results of SZDCFT
for the scale factors ψ1 and ψ2, are depicted in Figure 3a,b, respectively, which are consistent with
the theoretical derivation. As a comparison, Figure 3c,d show the parameter estimations via ZDCFT,
in which it can be seen that the coordinates of the peak are coupled to the scale factors.

Remark 2. It should be noted that the selection criteria for the values of α and β, are the same as
that of the ZDCFT. This is because, although the existence of the scale factor ψ( f ) could make the
implied periods of the SZDCFT different from those of the ZDCFT, fortunately, for the narrowband
radar system, there are f � fc and ψ( f ) ≈ 1. Therefore, when judging whether the parameters to
be estimated exceed the estimation scopes of SZDCFT, the changes in the implied periods caused by
the scale factor ψ( f ) can be ignored.

Here, we give more specific selection criteria for the values of α and β, combined with
the target motion parameters.

The velocity of the maneuvering target can be written as

v0 = Nambvamb + vres, (26)

where Namb and vamb = λ f r
2 are the ambiguity integers and blind speed, respectively.

|vres| < vamb/2 is the unambiguous velocity.
When the target’s velocity is not ambiguous, i.e., Namb = 0 and |v0| = |vres| < vamb/2,

then we have |K0| =
∣∣∣ 2vres

λ MTr

∣∣∣ < M/2. Evidently, α is taken as 1.

When the target’s velocity is ambiguous, i.e., Namb 6= 0, we have K0 = − 2v0
λ MTr =

−Namb M − K′0, where K′0 = 2vres
λ MTr ∈ (−M/2, M/2). This is similar to Equation (11).

Therefore, in practical applications, we usually determine α according to the velocity scope
of interest. For example, we assume that the velocity scope of interest is [−vmax, vmax]. Then,
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we can obtain the maximum value of K0 as K0,max = 2vmax
λ MTr. According to Equation (25),

in order to ensure that K0,max can be estimated, α should satisfy the following inequality{
α ≥

⌈
4vmax

λ fr

⌉
α ∈ N∗

, (27)

where d·e is the ceiling operation. In order to have a better estimation accuracy of the
velocity, we generally take α =

⌈
4vmax

λ fr

⌉
.

Similar to the analysis of velocity, for the acceleration of the maneuvering target a0,
we assume that the acceleration scope of interest is [−amax, amax]. Then, we can also obtain
the maximum value of L0,max, i.e., L0,max = amax

λ M2T2
r . Similarly, based on Equation (25),

we can also obtain the constraint of β as follows{ ⌈
2amax M

λ f 2
r

⌉
≤ β < M

β ∈ N∗
. (28)

From the analysis of β in the previous subsection, it can be known that the SZDCFT
would only produce one peak in the l domain under the constraint of β < M. Here, we
default to the acceleration being unambiguous, which is often the case in practice.

Figure 3. Simulation results of Example 3. (a) The result of SZDCFT (ψ1 = 1.01). (b) The result of
SZDCFT (ψ2 = 0.99). (c) The result of ZDCFT (ψ1 = 1.01). (d) The result of ZDCFT (ψ2 = 0.99).

3.4. Product Operation and Coherent Integration

The SZDCFT uncouples the slow time and range frequency, and extends the param-
eter estimation scope. However, we are unable to identify the true peak when there are
multiple peaks in the k domain. To solve this problem, we propose the product SZDCFT
method (PSZDCFT).
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By re-examining Equations (24) and (25), we can find that: (1) For different range fre-
quency cells, SSZDCFT( f , k, l) has different implied periods in the k domain (Mk f =

M
αψ( f ) ),

which means that when there are multiple peaks, the interval between peaks in the two-
dimensional spectrum varies with the change in the range frequency. (2) The true peak
position is always constant in the two-dimensional spectrum, i.e., (K0/α, L0/β), while the
positions of the false peaks are changed with the range frequency. The comparison between
Figure 3a,b supports the above assertions very well.

Therefore, it naturally occurs to us to perform a product operation on the SZDCFT
results for all range frequency cells, which can curb the false peaks and heighten the true
peak. Then, the PSZDCFT method is defined as

SPSZDCFT(k, l) = Product[SSZDCFT( f ,k,l)]

=
B/2

∏
f=−B/2

SSZDCFT( f , k, l)

≈ σPSZDCFT · δ(k− K0/α), l = L0/β,

(29)

where σPSZDCFT is the amplitude of accumulation.
From Equation (29), it can be seen that there will be only true peak in the two-

dimensional spectrum, while the false peaks are eliminated. Then, based on the peak
location, we can obtain the velocity and acceleration of the maneuvering target as follows

(kmax, lmax) = arg max(k,l)|Product{SZDCFT[Sc( f , m)]}|
v̂0 = − αλ frkmax

2M

â0 = − βλ f 2
r lmax

M2

. (30)

After obtaining the estimated velocity and acceleration of the maneuvering target, we
can construct the phase compensation function to eliminate the RCM and DFCM, i.e.,

HPCF( f , ηm) = exp
(

j
4π

c
f v̂0ηm

)
exp

(
j
2π

c
( f + fc)â0η2

m

)
. (31)

Finally, we can achieve the coherent integration by applying the IFFT and FFT with
respect to f and ηm.

SCI
(
t̂, fηm

)
= FFTηm

{
IFFT f [Sc( f , ηm) · HPCF( f , ηm)]

}
= σCI sinc

[
B
(

t̂− 2R0

c

)]
× sinc

[
CPI

(
fηm +

2vres

λ

)]
,

(32)

where σCI and CPI denote the amplitude and coherent processing interval, respectively.
fηm is the folded Doppler frequency with respect to ηm.

4. Analysis of the Proposed Method
4.1. PSZDCFT for Multi-Targets

The SZDCFT is a linear transform, which can avert the interference of cross terms.
Therefore, for multi-target scenarios, the proposed approach is still applicable. It should
be noted that the product operation may annihilate the weak target when there are sig-
nificant differences in the echo amplitudes between targets. Fortunately, the “CLEAN”
technique [40] can be used, to remove the strong target effect.
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4.2. Implementation of SZDCFT

The SZDCFT of Sc( f , m) can be rewritten as follows

SSZDCFT( f , k, l) =
1√
M

M/2−1

∑
m=−M/2

Sc( f , m)W
ψ( f )

(
αkm+β l

M2 m2
)

M

=
1√
M

M/2−1

∑
m=−M/2

[
Sc( f , m)W

ψ( f )β l
M2 m2

M

]
× exp

(
−j

2π

M
ψ( f )αkm

)
.

(33)

Equation (33) shows that, for each fixed l, SSZDCFT( f , k, l) is the scaled Fourier trans-

form (SFT) of the signal
[

Sc( f , m)W
ψ( f )β l

M2 m2

M

]
. As we know, the SFT can be efficiently

implemented by FFT-based chirp-z transform (CZT).
Assuming a discrete signal x(n), n = −N/2, . . . , N/2− 1, the SFT of x(n) is defined

as follows

X(ξk) =
N/2−1

∑
n=−N/2

x(n) exp
(
−j

2π

N
ξnk
)

=
N/2−1

∑
n=−N/2

x(n)W̃nk,

(34)

where k = −N/2, . . . N/2 − 1 and W̃ = exp
(
−j 2π

N ξ
)
. ξ is the scale factor. Then, the

Bluestein equation is applied here, i.e.,

nk =
1
2

[
n2 + k2 − (n− k)2

]
. (35)

Inserting Equation (35) into Equation (34), one obtains

X(ξk) =
N/2−1

∑
n=−N/2

x(n)W̃nk

= W̃
k2
2

N/2−1

∑
n=−N/2

[
x(n)W̃

n2
2

]
W̃
−(k−n)2

2

= W̃
k2
2

{[
x(n)W̃

n2
2

]
~ W̃−

n2
2

}
,

(36)

where ~ represents convolution. Figure 4 illustrates the calculation process of Equation (36).
Thus, the SFT of N points can be efficiently realized by complex multiplication, FFT and
IFFT, which requires a computational load of O(3Nlog2N).

Figure 4. The calculation process of CZT using FFT.

4.3. Computational Complexity

The computational complexities of GRFT, RLVD, ACCF, PC-TRT, FAF-LVD, and the
proposed method, are analyzed and compared in this subsection. Suppose M, N, Nv,
and Na represent the number of pulses, range cells, searching velocity, and searching
acceleration, respectively.
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The GRFT accomplishes coherent integration through a three-dimensional parameter
search. Thus, its computational load is about O(NNvNa M).

The RLVD firstly obtains the target trajectory through a three-dimensional search,
which requires a computational cost of O(NNvNa), and then accomplishes coherent integra-
tion via LVD, with a computational cost of O(3M2log2M). Therefore, its total computational
complexity is O(3NNvNa M2log2M).

For the ACCF method, it uses an adjacent cross-correlation operation to correct the
RCM and eliminate the DFCM, which requires a computational cost of O(2MNlog2N).
Then, the computational cost required to achieve coherent integration is O(MN(log2M +
log2N)). Hence, its total computational cost is about O(MN(3log2N + log2M).

As for PC-TRT, it decouples the slow time and range frequency by constructing the
phase compensation function with the searched velocity, and performing the time reversal
transform, and finally realizes coherent integration using IFFT and FFT. Therefore, its
computational cost is about O(Nv MNlog2(MN)).

The main calculations of FAF-LVD contain second-order KT O(4MNlog2M), FAF
O(MNlog2N), CZT-based SFT O(3MNlog2M), phase compensation O(MNlog2N), and
LVD O(3M2log2M). Therefore, its total computational burden is about O(3M2log2M +
MN(7log2M + 2log2N)).

For each fixed range cell of the proposed method, the computational costs required
by the SZDCFT operation and the product operation are O(M2 + 3M2log2M) and O(M2),
respectively. Therefore, the overall computational load of the PSZDCFT, is in the order of
O(NM2(2 + 3log2M)).

Table 1 shows the computational complexities of the above methods. We assume that
N = Nv = Na = M. Then, Figure 5 depicts the computational complexity curves. The
RLVD and GRFT take up too much time and are not conducive to real-time processing.
It can be seen that although the computational complexity of PC-TRT remains of the
same order of magnitude as that of the present method, i.e., O(M3log2M), the PC-TRT
has an inferior detection performance under the condition of low SNR, which is due to
the fact that the TRT operation loses the bulk of the signal energy. The FAF-LVD and
ACCF obtain the lowest computational loads via the correlation operation, but there are
also noticeable drops in the anti-noise performance. Hence, it can be inferred that the
proposed method accomplishes a better compromise between computational burden and
anti-noise performance.

Figure 5. Computational complexity curves.
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Table 1. Computational complexity comparison.

Methods Computational Complexity

GRFT O(Nv Na MN)
RLVD O(3NNv Na M2log2 M)
ACCF O(MN(2log2N + log2 M))

PC-TRT O(Nv MNlog2(MN))
FAF-LVD O(3M2log2 M + MN(7log2 M + 2log2N))
Proposed O(NM2(2 + 3log2 M))

4.4. Procedure of the Proposed Method

The flow chart of the proposed method is shown in Figure 6 and its main procedures
are described in the following subsection.

Step 1: Perform PC on the received baseband signal sr(t̂, ηm), then employ the FFT
along the range dimension, to obtain Sc( f , ηm).

Step 2: For a fixed range frequency f , apply the SZDCFT on Sc( f , ηm), to obtain
SSZDCFT( f , k, l).

Step 3: Determine the scope of the next range frequency, f . If f ∈ [−B/2, B/2], execute
step 2. If f /∈ [−B/2, B/2], execute product operation, to obtain SPSZDCFT(k, l).

Step 4: Estimate the target’s velocity and acceleration according to Equation (30), and
then construct the phase compensation function based on Equation (31).

Step 5: Perform the IFFT and FFT along the range dimension and slow-time dimension,
respectively, to accomplish coherent integration.

Figure 6. The flowchart of the proposed method.

5. Numerical Results

In this section, the validity and reliability of the presented method are verified by
numerical simulations, with the use of the Matlab numerical software; the radar system
parameters are listed in Table 2.

5.1. Coherent Integration for a Single Target

Figure 7 illustrates the coherent integration ability for a single target , where the
motion parameters of the target are: initial range cell number n0 = 451st, radial velocity
v0 = 120 m/s, and radial acceleration a0 = 45 m/s2. The input SNR after PC is 20 dB.
Based on Equations (27) and (28), we take α = 4 and β = 2, to extend the estimation
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scopes of velocity and acceleration to [−150, 150) m/s and [−75, 75) m/s2, respectively.
Figure 7a displays the target motion trajectory after PC. It is apparent that serious RCM
occurs to the target, due to the high velocity and acceleration. Figure 7b provides the
result of MDCFT when f = −4 MHz. It can be seen that the MDCFT fails because
the motion parameters exceed the estimation scopes of MDCFT. Figure 7c,d show the
results of SZDCFT when f = ±4 MHz. It can be observed that there are four peaks
in each two-dimensional spectrum diagram. The true peak positions are the same, i.e.,
(v̂0, â0) = (120, 45), while the false peak positions are interlaced. The result of PSZDCFT
is depicted in Figure 7e. As predicted, the false peaks are removed, while the true peak
is reinforced and recognized. Then, based on the location of the true peak, we obtain
the estimated velocity v̂0 and acceleration â0 as being 120 m/s and 45 m/s2, respectively.
Finally, the estimated parameters are used to construct a phase compensation function, to
eliminate the RCM and DFCM, and then the target energy can be well focused, in Figure 7f.

Figure 7. Coherent integration for a single target at SNR = 20 dB. (a) The result of PC. (b) The result
of MDCFT at f = −4 MHz. (c) The result of SZDCFT at f = −4 MHz. (d) The result of SZDCFT at
f = 4 MHz. (e) The result of PSZDCFT. (f) The result of coherent integration.
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Table 2. Simulation parameters of radar.

Carrier frequency, fc 1 GHz
Bandwidth, B 10 MHz

Sample frequency, fs 20 MHz
Pulse repetition frequency, PRF 500 Hz

Pulse duration, Tp 20 µs
Number of pulses, M 1000

Figure 8 intuitively demonstrates the excellent ability of the product operation with
respect to focusing energy and estimating parameters, in a low SNR environment. The input
SNR is −8 dB after PC. Other parameters are identical to those in Figure 7. Figure 8a shows
the result after PC, from which it can be observed that the target trajectory is completely
annihilated in the noise. Figure 8b provides the result of SZDCFT at f = 0 MHz. It can
be noticed that the peak is not visible, which is not favorable for parameter estimation.
In this regard, we perform a product operation for the SZDCFT results along the range
frequency cells, to accumulate the signal energy dispersed in different range frequency
cells, which is illustrated in Figure 8c. Comparing Figure 7c,d and Figure 8b, it is easy
to see that the product operation still has a remarkable parameter estimation ability in
the low SNR environment, which is also confirmed in Section 5.4. On this basis, coherent
integration can naturally also be accomplished well, in Figure 8d.

Figure 8. The role of product operation in a low SNR environment (a) The result of PC. (b) The result
of SZDCFT at f = 0 MHz. (c) The result of PSZDCFT. (d) The result of coherent integration.
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5.2. Coherent Integration for Multi-Targets

We also evaluate the coherent integration capability of the presented approach for
multiple targets in Figure 9. The motion parameters of the three maneuvering targets are
given in Table 3. Again, after PC, the input SNR is 20 dB. Similarly, depending on the motion
parameters of the three maneuvering targets, we choose α = 4 and β = 2. Three curved
trajectories can be observed in Figure 9a, which indicates that the three targets undergo
severe RCMs. Figure 9b,c depict the results of SZDCFT when f = ±4 MHz. We can find
that after performing the SZDCFT operation, the true peak positions are independent of
the range frequency, while the false peak positions are coupled with the range frequency.
Then, we perform a product operation on the results of SZDCFT for all range frequency
cells, to obtain three spikes, shown in Figure 9d. Based on the three peak locations, we
obtain the motion parameters of targets A, B, and C, i.e., v̂A = 120 m/s, âA = 45 m/s2,
v̂B = −108 m/s, âB = −30 m/s2, v̂C = 117 m/s, and âC = 42 m/s2. Finally, the coherent
integration results for targets A, B, and C are provided in Figure 9e,f,g, respectively.

Table 3. Motion parameters of three maneuvering targets.

Motion Parameters Target A Target B Target C

Initial range cell
number 451st 476st 501st

Radial velocity 120 m/s −108 m/s 117 m/s
Radial acceleration 45 m/s2 −30 m/s2 42 m/s2

SNR (after PC) 20 dB 20 dB 20 dB

5.3. Detection Performance

In this section, we evaluate the target detection capability of the presented method
through Monte Carlo experiments. As a comparison, five other representative methods,
i.e., RLVD, GRFT, FAF-LVD, PC-TRT, and ACCF, are also simulated. The constant false
alarm rate (CFAR) technique, with false alarm rate Pf a = 10−6, is used. The input SNR after
PC varies from −25 to 10 dB, with a step of 1 dB. For each SNR value, 500 independent
simulations are run. Figure 10 depicts the detection probability curves.

It can be seen that the GRFT has the best detection performance, thanks to the multidi-
mensional parameter search. The RLVD achieves a detection performance close to GRFT’s,
again attributed to the parameter search and excellent LVD operation. Using GRFT as
a baseline, the proposed method suffers an SNR loss of about 3 dB, when the detection
probability pd = 0.9. This is because the proposed method estimates the parameters by the
product operation, which introduces more random errors compared with GRFT, which is
based on the maximum likelihood estimation (MLE), in an extremely low SNR environment.
For a clearer explanation, Figure 11 offers the results of parameter estimation for the two
methods at an extremely low SNR, of −12 dB. The simulation parameters are the same
as those in Figure 7. Figure 11a gives the results of the proposed method by the product
operation. It can be seen that at extremely low SNRs, multiple randomly distributed peaks
appear in the plot after the product operation, due to the influence of noise, which dete-
riorates the parameter estimation performance. As a contrast, the results of GRFT, based
on the MLE, is displayed in Figure 11b. Fortunately, due to the fact that the proposed
approach is a linear transform with no energy loss, it can be observed from Figure 10 that
the method has a superior anti-noise performance at low SNRs, compared with FAF-LVD,
PC-TRT, and ACCF. Therefore, considering the processing time and detection performance,
we can deduce that the presented approach is more applicable for maneuvering targets in
low SNR environments.
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Figure 9. Coherent integration for multi-targets. (a) The result of PC. (b) The result of SZDCFT at
f = −4 MHz. (c) The result of SZDCFT at f = 4 MHz. (d) The result of PSZDCFT. (e) The result of
coherent integration for target A. (f) The result of coherent integration for target B. (g) The result of
coherent integration for target C.
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Figure 10. Detection probability curves of different methods.

Figure 11. The results of parameter estimation for the proposed method and GRFT at SNR = −12 dB.
(a) The result of of parameter estimation for the proposed method. (b) The result of of parameter
estimation for GRFT.

5.4. Parameter Estimation Performance

In this section, we evaluate the parameter estimation performance of GRFT, FAF-
LVD, PC-TRT, and the presented method, by Monte Carlo experiments. For the sake of
comparison, the ranges of the estimated motion parameters by the four approaches are
set to be identical. The input SNR after PC varies from −25 to 10 dB, in steps of 1 dB. For
each SNR value, 500 independent experiments are carried out. The root mean square error
(RMSE) is used as the evaluation criterion. The RMSE curves for velocity and acceleration
are plotted in Figure 12.

The GRFT is demonstrated to have optimal parameter estimation performance, owing
to the MLE. The presented method has a performance loss of about 3 dB compared to
GRFT, due to the product operation. The PC-TRT has the worst RMSE, because it only uses
one time slice for nonlinear correlation, which loses much signal energy. Although the
FAF-LVD can reduce the energy loss through a variable latency, its RMSE is dramatically
increased when the SNR is less than −5 dB, compared to the presented method. Thus, the
presented approach acquires a better equilibrium between computational cost, detection
performance, and parameter estimation.
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Figure 12. Parameter estimation performance of different methods. (a) RMSE of velocity estimation.
(b) RMSE of acceleration estimation.

6. Conclusions

In this paper, a new coherent integration method, based on PSZDCFT, is proposed for
maneuvering targets, which effectively addresses the RCM and DFCM. For maneuvering
targets with velocity ambiguity and excessive acceleration, the proposed method introduces
a zoom operation into MDCFT, to extend its parameter estimation ranges, and it is inter-
esting to note that this operation is also suitable for uniform motion targets with velocity
ambiguity. Considering the coupling of range frequency and slow time, the scale operation
is combined with ZDCFT to decouple, which not only obtains the correct parameter esti-
mates, but also paves the way for the product operation, excluding false peaks. Naturally,
the product operation is employed along the range frequency, which can inhibit false peaks
and accumulate energy dispersed in different range cells. Finally, by constructing the phase
compensation function with the estimated parameters, coherent integration is achieved.
The computational complexity analysis shows that the computational cost of the proposed
method is comparatively small, thanks to its fast implementation using the CZT-based SFT.
Intensive numerical simulation results demonstrate that the proposed method is robust in a
low SNR environment, due to the fact that the proposed method is a linear transform with
no energy loss and no cross terms for multiple targets. Therefore, the proposed method
obtains a superior equilibrium between computational complexity and detection perfor-
mance, and is more suitable for maneuvering target detection in comparison with most
current methods.
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