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Abstract: A better understanding of the relationship between land surface temperature (LST) and
its influencing factors is important to the livable, healthy, and sustainable development of cities.
In this study, we focused on the potential effect of human daily activities on LST from a short-
term perspective. Beijing was selected as a case city, and Weibo check-in data were employed to
measure the intensity of human daily activities. MODIS data were analyzed and used for urban LST
measurement. We adopted spatial autocorrelation analysis, Pearson correlation analysis, and spatial
autoregressive model to explore the influence mechanism of LST, and the study was performed at
both the pixel scale and subdistrict scale. The results show that there is a significant and positive
spatial autocorrelation between LSTs, and urban landscape components are strong explainers of LST.
A significant and positive effect of human daily activities on LST is captured at night, and this effect
can last and accumulate over a few hours. The variables of land use functions and building forms
show varying impacts on LST from daytime to nighttime. Moreover, the comparison between results
at different scales indicates that the relationships between LST and some explainers are sensitive to
the study scale. The current study enriches the literature on LST and offers meaningful and practical
suggestions for the monitoring, early warning, and management of urban thermal environment with
remote sensing technology and spatial big data sources.

Keywords: land surface temperature; MODIS; human daily activities; Weibo Check-in; spatial
autoregressive model; spatial big data; Beijing

1. Introduction

In the past few years, more cities around the world have suffered the shock of extreme
high temperature in summer [1–3]. Climate change is well-known as one of the main causes
of global warming. In addition, the surface urban heat island (SUHI) effect further amplifies
the influence intensity and trend of high temperature in cities. SUHI has been observed as
a familiar phenomenon that the surface temperature in urban areas is higher than that in
surrounding suburbs or rural areas [4–6]. SUHI exerts negative and harmful influences on
the urban ecological environment and residents’ health [7–11]. Things become worse when
extreme heatwaves with a temperature higher than 36 ◦C last a long time in summer [12].
It leads to the decline of people’s physical and mental abilities, and even death for some
sensitive patients [12,13]. Therefore, it is of significance to investigate the variation pattern
of UHI and its influencing factors for urban designers, planners, and policymakers. The
findings could provide useful information and practical insights for urban healthy and
sustainable development.

Land surface temperature (LST) is commonly used to measure the intensity of the
SUHI effect [14–21]. Most previous studies focused on the effects of urban landscape
factors on LST [15,22–24], such as the proportion of impervious surface and vegetation,
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the configuration of buildings, and the urban layout. It is generally agreed that more
vegetation or adding green infrastructure would lower the SUHI effectively [25–28]. Nev-
ertheless, the cost of carrying out large-scale afforestation or building renewal on the
already-existed urban landscape is usually enormous, especially in populous and facility-
dense areas [21,29,30]. For this reason, it is necessary to propose and implement some more
flexible and practical measures to alleviate the UHI effect.

On the other hand, studies also found that the intensity of human activities also casts
strong, albeit fluctuating, influence on urban LST [31,32]. The impact of human activities on
urban LST exists in both long-term and short-term. In the long run, human activities change
the composition and configuration of the urban landscape dramatically. The impervious
surface of buildings, roads, and other urban facilities increases radiation absorption and
heat storage in urban areas, which is the leading cause of the SUHI effect [8,33,34]. From a
short-term perspective, people’s daily activities in cities rely heavily on the use of electrical
appliances and vehicles. These activities are under less scrutiny for their effects on the
UHI effects. In this study, we argue that if we can take effective measures to reduce the
production of waste heat accompanied by people’s daily activities, it will be beneficial to
the strategies of urban heat mitigation. However, there is a lack of studies revealing how
short-term human daily activities affect the LST in the daytime and nighttime. Moreover,
there are two issues in existing studies that motivate the present study. On one hand, the
heat does not stop conducting and fluxing at the boundary of data collecting units, and
this leads to the spatial spillover effect of LST. This means that the LST of a certain area is
not only affected by the determinants but also influenced by the LST of its surrounding
areas [21,35,36]. However, traditional ordinary least square regression, which was widely
employed in most of the previous studies, often does not take into consideration this
spatial spillover effect [12–14,16,30,33,34,37]. This might result in misunderstanding and
inefficiency to improve the urban thermal environment. On the other hand, pixels or
grids are often used as the research unit due to the popularity of remote-sensing raster
data [13,22,34,38,39]. Though they are fine scales to use to carry out studies, the practicality
of their results is limited for administrative agencies. The basic unit for urban management
and construction is the administrative unit, such as the community, street, or district. The
difference between the scales of research affects the results and conclusions of LST studies,
which is worthy of further investigation.

For these matters, the objectives of the present study were threefold: (1) We intended
to construct a more integrated theoretical framework of LST by incorporating advanced
remote-sensing-data-acquisition strategies through analyzing MODIS data, and the influ-
ence of human daily activities into the mechanism analysis. (2) We intended to depict
LST patterns in daytime and nighttime and explore the impact of human daily activities
on LST by employing spatial autoregressive models for both temporal periods. (3) We
intended to analyze the similarities and differences of the results between the pixel scale
and the administrative unit scale to provide practical urban-heat-island-effect-mitigation
strategies. To this end, Beijing, one of the highly urbanized cities in China, is selected as a
case city in this study. We collected MODIS remote-sensing products and Weibo check-in
data to calculate LST and the intensity of residents’ daily activities. We also collected LST
influencing factors from multisource spatial big data, including point of interest (POI) data,
building contour vector data, road network data, and 1km population and GDP grid data.
We categorized the GIS vector data and gridded population and GDP data as spatial big
data because of the spatial (1 km) and temporal (day and night) resolutions in the study.
The remainder of this paper is organized in the sections below. Section 2 reviews the
relevant works on the literature of LST, focusing on the diverse effects of its determinants.
In Section 3, the data and methods of the current study are introduced. We also present
the workflow of the study in this section. Following the results and analysis in Section 4,
we discuss the implications, limitations, and future work in Section 4 and conclude the
findings of the study in Section 6.



Remote Sens. 2023, 15, 1783 3 of 30

2. Literature Review
2.1. Urban Heat Island Effect and Land Surface Temperature

One of the most prominent features of urban climate is the urban heat island (UHI)
effect. People discovered a long time ago that the thermal environment of urban areas is
different from that of rural areas. In 1958, Manley [40] proposed the climatic term, “urban
heat island”, for the first time to describe this abnormal phenomenon. With the rapid
development of global urbanization, understanding UHI is attached to great importance in
the urban design, construction, and management. In recent decades, heat waves usually
enhance the intensity of UHI effect in megacities and raise widespread concerns about
effective measures to attenuate the high temperature [6,41,42]. To some extent, the UHI
effect in winter might be beneficial in energy saving, especially for some megacities in
high-latitude countries [15,43]. However, rising temperature due to UHI effect leads to
changes of local ecological environment and natural habitat for other species, which causes
problems to urban livability. UHI not only brings pollutants to the air and water [44,45] and
poses threats to urban biodiversity [46,47], but it also increases the health risks to urban
residents [3,48] and raises environmental justice issues [17,49].

To understand the UHI effect, we must first measure this effect. Empirically, there are
two types of indicators to quantitatively measure UHI effect: land surface temperature (LST)
and air temperature [13,50–52]. While LST is not the same as near-surface air temperature,
the two are closely related [53–55]. Air temperature is usually obtained from a fixed
and limited number of meteorological stations, leading to a relatively weak ability to
portray the temperature of continuous spatial sphere. LST is much more convenient
to be collected across the a large area thanks to the rapid progress of remote-sensing
technologies [19]. As a result, LST from multiple remote-sensing sources, such as Landsat
TM satellite image [19,50,56,57], ASTER products [17], MODIS products [8,21,42,58], and
others [59], has been widely adopted in recent studies.

Portraying the spatiotemporal patterns and trends of LST is one of the domains of
LST studies [8,12,18,60]. On the one hand, LSTs show obvious differences across geo-
graphical locations regarding the background climates of research areas [50,61,62]. An LST
study based on 32 major cities in China reveals that the annual mean urban–suburban
temperature difference varies greatly from 0.01 ◦C to 1.87 ◦C in the daytime [33]. This
spatial heterogeneity of LST is also verified in another study. Wang, Hessen, Samset, and
Stordal [42] found that global LST is rising faster since 2001, though LST increase varies in
different climatic regions. On the other hand, LSTs also show an obvious characteristic of
temporal variation. The patterns of LST have been depicted and compared from different
temporal perspectives, such as diurnal, seasonal, yearly, and even decadal change; large
temporal fluctuations, especially seasonal fluctuations of LST, are also reported in many
studies [14,18,42,57,58,61].

2.2. Influencing Factors of Land Surface Temperature

Another important topic of LST studies is to explore the influencing factors and their
impacts on LST. The urban thermal environment is affected by a variety of factors, which
can be summarized into four categories: urban landscape components, land-use functions,
building forms, and socioeconomical conditions (especially daily human activities).

Urban landscapes include natural landscapes (forests, grassland, shrublands, wetlands,
and water bodies) and artificial landscapes (roads, buildings, and other urban facilities).
In the process of urbanization, natural landscapes have been converted dramatically into
artificial landscapes [12,63]. Compared with vegetation and water, artificial landscapes,
which are composed of cement, brick, asphalt, and metal, have a higher heat absorption
rate and smaller specific heat capacity. Thus, the changes in land surface composition,
especially the ratio of vegetation to impervious surface, modify the urban landscape and
result in higher LSTs [22,41,64]. Expanding the area of vegetation and water bodies in the
urban area has become a practical measure in urban high-temperature alleviation [29,63].
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Different functions of urban land use also have varying impacts on the urban LST.
Various land-use functions in a city provide specific urban facilities for human activities.
Generally, business, office, and residence areas are characterized by skyscrapers, apart-
ments, and townhomes, while green spaces are mainly composed of forests, grasslands,
and lakes. This means that the capacities of diverse land-use functions in heat absorp-
tion and emission are different [58,64]. For example, Mohan et al. [65] assessed the UHI
intensity of Delhi and observed the highest UHI in highly commercial areas. Wu, Yao,
Zhuang, and Ren [37] revealed similar LST patterns in Beijing. Yao et al. [66] found that the
impacts of commercial, industrial, recreational, and residential zones on UHI show obvious
seasonal variations.

Urban landscape configuration also has a significant impact on urban LST. For our
current study, however, since we focused only on a relatively small and densely populated
area in Central Beijing, we represent urban landscape configuration with urban buildings
because they are dominant in this current study area’s urban landscape. In addition to
the influence of building materials, urban high temperature can be partly attributed to
building forms. The geometric properties of buildings, i.e., the height, width, area, and
volume, are closely related to the absorption of solar radiation and the flux of air. Many
studies have found that denser and taller buildings in a street tend to absorb and store
more heat, and they are less likely to release heat into the air due to the urban canyon
effect [19,25,36,64,67]. The influence of buildings on LST can also come from residents’
activities or energy usage [10,53].

Socioeconomical conditions indicate the development level of a city, which is usually
expressed in terms of population density and gross domestic product (GDP). Anthropogenic
heat is the byproduct of socioeconomic development in a city. Some studies have found that
a higher population density and higher GDP lead to a greater consumption of electricity
and fossil energy, thus making them the main drivers of urban LST [13,21,30]. The effects
of socioeconomical conditions on LST can be seen as the mediation of collective and long-
term human activities. From a more macroscopic point of view, city sizes [4,6] and urban
patterns [50] have also been shown to be important determinants of LST.

The conclusions of many previous studies provide positive strategies for mitigating
high temperatures in cities, including urban greening, urban layout design, and land-use
policies [29,50]. However, to date, few studies have explored the impact of short-term
human daily activities on LST. As we previously argued, the transformation of urban
landscape and land-use functions, the construction of buildings, and the development of
urban economy take place in the progress of urbanization. Their effects on LST can be
seen as the consequences of long-term human activities. On the contrary, human daily
activities are diverse and instantaneous in urban areas. In this study, we refer to human
daily activities as what urban residents experience and participate in during a 24-h period.
They include home-based and work-based activities, commuting, shopping, dining out,
and other leisure activities that happen in one day. Their changes in space and time are
highly related to the use of electrical appliances and vehicles, resulting in complex LST
patterns. The short-term effect of daily activities on LST performs at the hourly level and it
is usually masked by the long-term activities. In the context of the rapid urbanization, it is
important to explore and capture this short-term effect of daily activities for urban heat
alleviation and energy management. This also provides a micromanagement strategy to
mitigate the long-term urban heat island effect.

Based on these investigations, we summarize possible influencing factors of LST from
different perspectives and present the mechanism diagram in Figure 1. Climatic factors
(e.g., solar radiation, precipitation, and wind) and geographical factors (e.g., elevation,
topography, and seaboard) might serve as the ultimate driving forces that define the
spatiotemporal patterns of LST. These factors are less influenced by human activities, and
their impacts are relatively stable over a long time. As for the influences of human activities,
we can investigate them from a long-term perspective and a short-term perspective. The
first three of the four categories of influencing factors mentioned above are essentially
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the result of urbanization, which can be seen as the long-term human activities. Their
effects on the LST change with the development of urbanization, such as urban sprawl
and renewal. The influence of human daily activities on LST, by contrast, is short-lived
due to fast-changing urban lifestyles. In the current study, we incorporated human daily
activities into the analytical framework of LST in order to have a better understanding of
the dynamics of LST in urban areas.
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3. Data and Methods
3.1. Study Area

Beijing is located in the north of the North China Plain (115◦41′E–117◦50′E, 39◦44′N–
41◦05′N), with an area of 16,410 km2. Beijing has a warm, temperate, semi-humid, and
semi-arid monsoon climate. According to the data of the Beijing Statistical Yearbook in
2020, the average air temperature in Beijing is 13.8 ◦C. Beijing’s annual extreme maximum
temperature and minimum air temperature are 37.8 ◦C and −12.8 ◦C, respectively. Annual
precipitation in Beijing is 527.1 mm, with a characteristic of main rainfall in the summer
and autumn seasons. The resident population of Beijing in 2020 was 21.89 million, of which
more than 19 million live in highly urbanized areas. The rapid urbanization since the
1980s leads to a quick sprawl of built-up area in Beijing, which increases from 1182 km2 in
2004 to 1469 km2 in 2019 (Figure 2). The impervious surfaces have replaced the vegetation
and croplands in large areas, resulting in a severe UHI effect [26,37]. In 2019, the number
of extreme high-temperature days in the whole year was 16 days, which was more than
that in normal years (12.3 days). The central urban area of Beijing is the most populous and
GDP-dense area; thus, it is an ideal case area for UHI and LST studies [22,23,25,66]. For the
current study, we collected data for 135 subdistricts, namely street or town, in the central
urban area of Beijing to investigate LST at the administrative unit level (Figure 2).
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3.2. MODIS Data for LST

Accurately measuring LST was one of the key tasks for the current study. As aforemen-
tioned, while air temperatures were traditionally used to measure the urban heat island
effect and used in meteorological and climatic studies, LST has a better spatial and temporal
consistency to represent the urban thermal landscape. In addition, LST and air temperature
are closely related [31,68,69].

There are various remote-sensing images from multifarious satellites that can be used
to extract LST data. In the present study, we adopted the Moderate Resolution Imaging
Spectroradiometer (MODIS) product MOD11A1 (MODIS/Terra Land Surface Tempera-
ture/Emissivity Daily L3 Global 1 km SIN Grid) and MYD11A1 Version 6 datasets to
calculate LST since, of the 36 spectral bands on board MODIS sensor, 20 spectral bands are
used to measure brightness temperature in both infrared and visible parts of the electro-
magnetic spectrum. Although its spatial resolution is not as good as that of Landsat and
other remote-sensing data, MODIS datasets provide “per-pixel Land Surface Temperature
and Emissivity (LST&E) with a pixel size of 1000 meters (m). The product is produced daily
in 5-minute temporal increments of satellite acquisition using the generalized split-window
algorithm,” which makes the product an ideal source for LST data acquisition for our
current study with minimal processing and comparably high accuracy [70]. This is because
our study focuses on short-term human activities’ impact on LST. The impact of human
daily activities on LST is assumed to be short-lived; hence, the high temporal resolution of
the LST data was more important than spatial resolution in the current study.

MODIS datasets are available freely on the website https://ladsweb.nascom.nasa.gov/
search, accessed on 8 February 2023 (under “Land/Land Surface Temperature & Emissivity”
category), and a detailed introduction can be found at https://lpdaac.usgs.gov/products/
mod11a1v061/, accessed on 8 February 2023. For land-surface-temperature extraction, the
Two-Channel Algorithm radiative transfer model with bands 31 (thermal infrared band for
brightness temperature measurement) and 32 (visible/near infrared band for reflectance)
was used. After the Two-Channel Algorithm, advanced machine learning algorithms
(including regression, kriging, and neural network algorithms) combined atmospheric
profiles, surface types, zenith angle of the pixel view, observation time, and other ancillary
data to fine-tune the LST and produce the final product that we used in our study. While
the MODIS calculation of the LST considered multiple factors already, LST is affected more

https://ladsweb.nascom.nasa.gov/search
https://ladsweb.nascom.nasa.gov/search
https://lpdaac.usgs.gov/products/mod11a1v061/
https://lpdaac.usgs.gov/products/mod11a1v061/
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so by natural and urban landscape factors in summer and winter [16,21]; the effect of
human daily activities might not be as silent in these seasons. In order to investigate human
activities’ influence on urban LST, we chose the autumn season and selected MODIS images
on 24 September 2014 for our daily investigation. During this season, the influence of
human activities on LST is often more silent than during the summer/winter times, when
the urban landscape and vegetation coverage might make human activities’ influence on
LST less detectable. For our study area, we used the MOD11A1 and MYD11A1 datasets
to extract daytime LST (from 10:36 to 11:54 am) and nighttime LST (from 1:54 to 3:06 am),
respectively. We chose these two time slots to extract the daytime and nighttime LST
because these two periods are when the LST changes might be most influenced by the
change of human activities. The daytime period is right after the city “wakes up.” People
commuted to work; offices were in full operation. The nighttime period is when the city
“goes to sleep.” Most people went to bed, and nighttime businesses closed. During these
two periods, the changes of human activities’ influence on LST are most silent. After
spatial extraction and zonal computation, the LSTs of more than 1500 pixels and the
135 subdistricts are acquired and stored in a shapefile (administrative units) and a raster
image (pixel level).

3.3. Spatial Big Data to Account for Human Activities

The measurement of human daily activities is another key source of data in this study.
It used to be rather difficult, if not impossible, to capture the movement and aggregation
of urban dwellers in the span of a day, or even if the data were recorded, they tended
to be too chaotic and noise-burden for meaningful analysis. With the widespread use
of smartphones, social media applications such as Twitter, Facebook, and Sina Weibo
have emerged as enormous platforms for people to share their daily lives and activities.
Advanced machine learning, meta-information extraction, and text-analysis algorithms are
able to effectively organize and analyze these types of data now [71–75]. People’s location
information can be obtained easily after their authorization. These digital footprints are
a good representative of human daily activities [76–78]. In this study, we collected the
check-in data from Sina Weibo, the largest microblogging platform in China, to measure
the number of active people at any given place and time (the data might be restricted for
certain uses outside Mainland China; however, though similar data types, such as the
geotagged Twitter data and Facebook posts that are widely available can be utilized for this
type of research). Sina Weibo check-in data records the exact time, location (in geographic
coordinates), and content of the Weibo (mini blog) when the user logged in. It is often
regarded as a valuable resource for businesses and governmental organizations, for urban
planning and design purposes. The location information was found to be reliable and is
often used when referring to locational-based analyses [79–81]. As a matter of fact, during
our preliminary exploration of the data, when the check-in data were overlaid with the road
network map, a majority of them were on either side of the road, suggesting high locational
accuracy for the current study. Even without content analysis, the location information
of large numbers of users alone provides a strong indication of human gathering and
spreading, an indication of the intensity of human activities. Moreover, the intensity of
these active people is generally accompanied by heat emissions due to increased electrical
appliance usage, concentrated vehicle usages, and even the mere gathering of large number
of people, which play an important role in affecting urban LST in areas with heightened
concentration. In our preliminary analysis, we created a spatial distribution (dot density
map) of the check-in data, hoping to establish a visual link between the density of check-in
and the variation of urban LST in the study area. The visual link, however, is less than ideal,
partly because the daytime and nighttime urban LST do not vary greatly, partly because
the check-in data are lumped together for the entire day (24 September 2014). To further
investigate the daily pattern of how human behavior influences urban LST, we divided the
check-in data of 24 September 2014, into 12 2-h slots to capture the temporal cumulative
effect of human daily activities and how these accumulative activities impact urban LST.
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We denoted the 2-h slots with the starting and ending time following a military clocking
setting; for example, CI_1012 denotes the number of check-ins released from 10:00 am to
12:00 noon. Worth noting here is that human activities’ impact on urban LST has a delayed
effect [31,32]. To reflect this delayed effect, we use only the check-in data from 4:00 to 12:00
(CI46, CI68, CI810, and CI1012) as the influencing factors on urban daytime LST, while
using the check-in data from 18:00 to 02:00 (CI1820, CI2022, CI2224, and CI2402) as the
influencing factor on urban nighttime LST.

The land-cover map used in the present study was downloaded from the website http:
//data.ess.tsinghua.edu.cn/, accessed on 8 February 2023 [82]. It has a 10 m resolution and
11 level-1 land-cover types. Based on the thermal characteristics of the 11 level-1 land-cover
types, we further summarize different land-cover types into 4 categories (i.e., vegetation,
built-up land, water body, and other lands). After that, the proportion of each land-
cover category, which was frequently used in previous studies [83–85], is calculated to
represent the land-cover composition to control how land-cover types impact on urban
LST. In addition, the normalized difference vegetation index (NDVI) is also obtained
to portray vegetation coverage. The NDVI is derived from another MODIS product,
MOD13Q1 (downloaded from https://ladsweb.modaps.eosdis.nasa.gov/search, accessed
on 8 February 2023), following standard calculation with the near-infrared and red bands.

Point of interest (POI) was another data source used for this study. It belongs to
emerging internet map data and contains the location information of various urban facilities
and infrastructures. Due to its good explanatory power regarding land-use functions, it
has been employed in many studies [76,80]. We collected 249,829 pieces of POIs in Beijing
central districts from Baidu Map (maps.baidu.com; the POI data might be restricted for
certain uses outside Mainland China. Similar POI data, such as the ones created from
OpenStreetMap [86], is also used for detecting land function patterns). The raw POI
data contain many different types. For the purpose of the current study, we followed
previous practices [76,80,87] and grouped them into 3 categories based on their thermal
characteristics to control the influence of land use functions on urban LST. These include
consumption-related POI (CPOI), which includes POI of catering services, shopping service,
recreation and entertainment; office-related POI (OPOI), which includes POI of corporate
business, financial service, scientific research and education, medical and health, and
government and administration; and vehicle-related POI (VPOI), which includes gas
stations, car depot, and parking lots.

Building-form data are extracted from building-contour-vector data. A total of
487,687 pieces of building data in 2022 in the study area were downloaded from https:
//data.yunshudu.com/index.html, accessed on 18 December 2022. Through spatial over-
lay and calculation, we produced four indicators of building forms, e.g., average building
area (Ave_Area), total building area (Sum_Area), average building volume (Ave_Volume),
and total building volume (Sum_Volume), of each pixel and subdistrict to control the
influence of urban construction on the urban LST.

Socioeconomical conditions at finer scales are difficult to obtain from traditional
statistics. Fortunately, 1km grid population and GDP data (http://www.resdc.cn, accessed
on 18 December 2022) in 2015 meet the requirement of indicator extraction at relatively
flexible scales. The total resident population (Population), total GDP (GDP), and per capita
GDP (PGDP) are computed at the pixel scale and subdistrict scale, respectively. Moreover,
we extracted road network data from Open Street Map (OSM) in 2019 and calculated the
length of road network (RoadLength) for each pixel and subdistrict. These datasets were
used to control for the general socioeconomic background of the city on the urban LST.
While we do realize that the data were not collected in the same year. We contend that the
urban landscape’s influence on urban LST remains relatively stable, since the central areas
of Beijing were already highly developed, and changes of urban landscape over the years
(2014–2020) might cause negligible changes regarding its influence on the urban LST.

http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
https://ladsweb.modaps.eosdis.nasa.gov/search
https://data.yunshudu.com/index.html
https://data.yunshudu.com/index.html
http://www.resdc.cn
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3.4. Methods

Figure 3 illustrates the processing flow and methods used in the study; three methods
are employed to analyze the patterns of LST and model the relationship between LST and
its influencing factors: spatial autocorrelation analysis, Pearson correlation analysis, and
spatial autoregressive model.
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Spatial autocorrelation analysis: Considering the conduction and flux of heat in
space, the LSTs between adjacent areas are highly related to one another. Moran’s Index
is widely adopted in studies [19,34,66] to test if the LSTs in different spatial locations are
clustered, dispersed, or randomly distributed over the study area. Specifically, the global
Moran’s Index determines the existence and intensity of spatial autocorrelation overall,
while the local Moran’s Index is used to detect the location of significant clusters (local
groups) or outliers (local anomaly). They are calculated as follows [88]:

I =
n ∑n

i=1 ∑n
j 6=i wij(xi − x)

(
xj − x

)
∑n

i=1(xi − x)2 ∑n
i=1 ∑n

j 6=i wij
(1)

Ii =
(n− 1)(xi − x)

∑n
j 6=i

(
xj − x

) n

∑
j 6=i

wij
(
xj − x

)
(2)

where x refers to the observed LST values, and wij is the spatial weight between two
spatial units, i and j, in the spatial matrix W, which is an n*n matrix that defines the spatial
neighborhood among spatial units. For detecting spatial autocorrelation, the binary weights
(1 being neighbor, and 0 being non-neighbor) are often sufficient and are usually row-
standardized for better interpretation and calculation [89]. By using the Moran’s scatterplot
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that is derived from the global Moran’s Index formula [88], we can also distinguish four
types of LSTs’ local spatial associations: clusters of high values (high–high), clusters of
low values (low–low), outliers with high value (high–low), and outliers with low value
(low–high). More details of Moran’s Index can be found in Anselin [89].

Pearson correlation analysis: To have an initial evaluation of each influencing factor’s
impact on the urban LST, and also to perform preliminary data exploration for the ensuing
regression analysis, we conducted a pairwise Pearson correlation analysis to measure
the linearity and strength of correlation between LST and its influencing factors. While
the correlation analysis only analyzes the relationships between two variables without
considering other influential factors, the results from correlation analysis provide an initial
evaluation of the strength of relationships between the two variables in question; it has been
a common practice in LST studies [16,25,66]. The values of Pearson correlation coefficient
range from −1 to 1, where a value closer to 1 (−1) indicates a stronger positive (negative)
correlation, and 0 indicates no correlation between the LST and the identified factors.

Spatial autoregressive model: In the traditional ordinary least square (OLS) model,
regression residuals are assumed to be independent. However, when a regression analysis
was conducted using data collected over geographical spaces, the inherent spatial auto-
correlation of geographical observations was highly likely to violate the assumption of
residual independence [90]. It is likely to derive distorted or even wrong conclusions if we
employ an OLS model to analyze spatial data [89,91]. In this study, we employed spatial
autoregressive models to explore the impacts of influencing factors on LST due to potential
spatial autocorrelation existing in the regular regression model’s residuals. According to
where the spatial autocorrelation of the residuals is believed to be from, two types of spatial
autoregressive models, i.e., spatial lag model (SLM) and spatial error model (SEM), are
often considered in empirical studies [63,89,92]. The former adds spatially autocorrelated
dependent variable to the traditional ordinary least square (OLS) model, which believes the
dependent variable’s spatial autocorrelation is the primary cause for the residuals’ spatial
autocorrelation; and the latter takes into account the spatial autocorrelation of random er-
rors, believing that the residuals’ spatial autocorrelation is from the spatial autocorrelation
of latent covariates. SLM and SEM can be expressed as follows:

SLM : y = ρWy + βX + µ (3)

SEM : y = βX + ε, ε = λWε+ µ (4)

where y and X refer to the explained variable and explanatory variables matrix (i.e., LST
and its influencing factors in this study), respectively; ρ is the coefficient of Wy, indicating
the spatial lag of the dependent variable; λ is the coefficient of Wε, measuring the spatial
autocorrelation of the latent covariates; and µ represents a well-behaved error term with
a mean zero. Since often the sources of the residuals’ spatial autocorrelation are usually
weakly identifiable, in empirical studies, the Lagrange Multiplier (LM) or robust LM
diagnostic tests are used for model selection [91]. In practice, the model that has a significant
but smaller p-value of the (robust) LM statistics (less chance to make a type-I error) often is
a more suitable alternative [89]. In addition, the Akaike Information Criterion (AIC) is used
to compare the goodness-of-fit of models. The model with a smaller AIC is considered to
be the better fit for the data [92].

4. Results
4.1. Spatiotemporal Patterns of LST

Table 1 shows the mean, minimum, maximum, range, standard deviation, and global
Moran’s Index of LST in the central area of Beijing. By analyzing the statistics, we can make
several interesting observations. Firstly, the difference of LST in the daytime is always
greater than that at night at both the pixel scale and subdistrict scale. The range of LST
in the daytime is 1.33 ◦C and 0.54 ◦C, respectively, while, at nighttime, it falls to 0.71 ◦C
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and 0.42 ◦C. These small ranges of land surface temperature within 24 h are expected
during this time of the year. The results also suggest the LST information derived from the
MODIS products is relatively stable and free from potential outliers’ influence. Secondly,
the LSTs at a larger scale tend to have a smaller variation. The standard deviation of LSTs
at the subdistrict scale is 0.084 ◦C, both in the day and at night, which is smaller than that
at the pixel scale, i.e., 0.152 ◦C and 0.120 ◦C. It can also be reflected by the comparison
between the ranges at different scales. These two observations are expected from a physical
thermal perspective for the most impervious urban surface. Energy fluctuation is more
varied during daytime than nighttime, and the difference is more acute when measured at
finer scale in cities. Thirdly, there is always a significantly positive spatial autocorrelation
in LSTs, regardless of the pixel scale or the subdistrict scale. The values of the global
Moran’s Index range from 0.491 to 0.836, and they are all significant at the 99% confidence
level. The spatial autocorrelation of LST can be attributed to heat flow in space [63]. If
there is a difference in LST, heat conduction and flux from a high-LST area to surrounding
low-LST areas will make the LSTs of adjacent areas tend to be the same, naturally causing
the heighted global spatial autocorrelation pattern.

Table 1. Statistics of LST.

Scale Time Mean
(◦C)

Min
(◦C)

Max
(◦C)

Range
(◦C)

SD
(◦C) Global Moran’s Index

Pixel Daytime 29.96 28.98 30.31 1.33 0.152 0.836 ***
Nighttime 28.88 28.36 29.07 0.71 0.120 0.491 ***

Subdistrict Daytime 29.99 29.62 30.16 0.54 0.084 0.669 ***
Nighttime 28.96 28.63 29.05 0.42 0.084 0.817 ***

Note: *** indicates that the value is significant at 99% confidence level.

Another interesting finding from Table 1 is that the global Moran’s Index at the pixel
scale decreases at night, while the index at the subdistrict level at night is greater than that
in the daytime. Combined with the distribution patterns of LST shown in Figures 4 and 5,
we can have a better understanding of this interesting phenomenon. At the pixel scale,
the clusters of similar LSTs are common in the central districts of Beijing in the daytime,
except for the northwest of the Haidian District. During the nighttime, the decrease of
LSTs in core urban area weakens the clusters of similar LSTs and leads to a smaller global
Moran’s Index. However, the data aggregation process makes the indexes at the subdistrict
scale trend in the opposite direction. In the daytime, after averaging the pixels’ LSTs to
subdistricts, the number of similar LST clusters is reduced at the subdistrict scale, and it
is reflected in a smaller global Moran’s Index. When it turns to the night, data averaging
eliminates the original difference of pixel-scale LSTs, making the spatial autocorrelation
stronger at the subdistrict scale. Comparing Figure 4 with Figure 5, it is obvious that the
distribution of subdistrict-scale LSTs at night shows a more agglomerated pattern than that
at the pixel scale. This result also suggests that the Modifiable Areal Unit Problem that is
common in geographic analysis needs to be treated carefully. Different conclusions might
be drawn because of different scales of analysis. The result also justifies our investigation
of the influencing factors of LST at these two scales and with human activities, which have
distinctive day and night patterns.
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In order to reveal more details of LST’s spatial autocorrelation, the results of the
local Moran’s Index at the pixel scale and subdistrict scale are mapped in Figures 6 and 7,
respectively. Among the four types of local spatial autocorrelation, clusters of high LSTs
(high–high) and clusters of low LSTs (low–low) are the dominant types in the central urban
area of Beijing. Outliers with high LSTs (high–low) and outliers with low LSTs (low–high)
are scattered only in a few areas in the daytime. These patterns are similar in both the
pixel-level and district-level analysis. The LST distribution patterns vary from daytime to
nighttime. In the daytime, high values of LST are mainly in the south areas, and low LSTs
are distributed in the northwest area and several subdistricts in the northeast of Chaoyang
District. At night, high LSTs are mainly in the central areas, and low LSTs mainly appear
in the west and northeast areas. The distribution of LST shows a typical center–periphery
pattern, and the temperature decreases from the center to the periphery. These patterns
agree well with the human activities’ distribution pattern in Beijing’s central area during
daytime and nighttime. The southern districts of the Central Beijing area are some of the
busiest areas in Beijing during the daytime because many of the tourist sites and central
governmental departments are located there. Traffic and people flows are high during the
daytime, generating much energy that increases the urban LST. The central and northern
parts of the Central Beijing area are where many of the nightlife facilities (bars, restaurants,
and shopping malls) concentrate, which attracts many LST-increasing traffic and people
flows during the nighttime. This exploratory spatial analysis is able to reveal a clear daily
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LST shifting pattern that is related closely to the intensity of human activities, providing an
empirical background for the ensuing influencing factors’ investigation.
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4.2. Results of Pearson Correlation Analysis

By drawing scatter plots and conducting simple univariate regressions, we determined
the relationships between the daytime LST and nighttime LST (shown in Figure 8). Al-
though the local spatial cluster patterns of LSTs show a notable change from daytime to
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nighttime (Figures 6 and 7), there is still a statistically positive correlation between them.
At the pixel scale, 33% of the variation of nighttime LSTs can be explained by the daytime
LST. When the daytime LST changes by 1 ◦C, it leads to an average LST change of 0.425 ◦C
at night. The explanatory power of the daytime LST to the variation of the nighttime LST is
weakened at the subdistrict scale (R2 = 0.27), while the influencing factor between them
becomes stronger (β = 0.519). This again suggests a modifiable areal unit problem (MAUP)
problem. Coarser resolution at the subdistrict level aggregates the temperature variation,
which causes a lower correlation between the daytime and nighttime temperatures and
a bigger change for one degree of daytime temperature to nighttime temperature. The
result further suggests that daily temperature changes are sensitive to scale effects, but
more importantly, averaging land surface temperatures (LSTs) over longer periods could
potentially mask subtle, but important influencing factors that have immediate effects,
yet are often averaged; hence, they are ignored in long-term investigations, such as the
daily human activities that fluctuate quickly over a day but smooth out in the long run.
Our research intends to capture such factors’ impact on urban LST for better planning
purposes, more efficient urban management plans, better urban environments, and a more
sustainable urban future.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 32 
 

 

 
Figure 8. Relationships between the daytime LST and the nighttime LST. 

According to the review in Section 2, we divide the LST’s influencing factors into five 
groups: (a) urban landscape components (NDVI, Vegetation, BuiltupLand, Water, and 
Others), (b) land-use functions (CPOI, OPOI, and VPOI), (c) building forms (Ave_Area, 
Sum_Area, Ave_Volume, and Sum_Volume), (d) socioeconomical conditions (Population, 
GDP, PGDP, and RoadLength), and (e) short-term human daily activities (CI_1012, 
CI_810, CI_68, and CI_46 in the day and CI_2402, CI_2224, CI_2022, and CI_1820 at night). 
The results of the Pearson correlation analysis between LST and these factors are plotted 
in Figures 9–18. 

At the pixel scale (Figures 9–13), significantly positive correlations between most in-
fluencing factors and the LST are found, except for several variables of urban landscape 
components. Among all the variables, the proportion of built-up land (BuiltupLand) has 
the largest positive coefficient (daytime, 0.75; and nighttime, 0.73), and the proportion of 
vegetation (Vegetation) shows the strongest negative correlation (daytime, −0.80; and 

Figure 8. Relationships between the daytime LST and the nighttime LST.



Remote Sens. 2023, 15, 1783 15 of 30

According to the review in Section 2, we divide the LST’s influencing factors into
five groups: (a) urban landscape components (NDVI, Vegetation, BuiltupLand, Water, and
Others), (b) land-use functions (CPOI, OPOI, and VPOI), (c) building forms (Ave_Area,
Sum_Area, Ave_Volume, and Sum_Volume), (d) socioeconomical conditions (Population,
GDP, PGDP, and RoadLength), and (e) short-term human daily activities (CI_1012, CI_810,
CI_68, and CI_46 in the day and CI_2402, CI_2224, CI_2022, and CI_1820 at night). The
results of the Pearson correlation analysis between LST and these factors are plotted in
Figures 9–18.
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At the pixel scale (Figures 9–13), significantly positive correlations between most
influencing factors and the LST are found, except for several variables of urban landscape
components. Among all the variables, the proportion of built-up land (BuiltupLand) has
the largest positive coefficient (daytime, 0.75; and nighttime, 0.73), and the proportion
of vegetation (Vegetation) shows the strongest negative correlation (daytime, −0.80; and
nighttime, −0.63). The correlation coefficients of the variables in groups (b)–(e) are rela-
tively small. This indicates that urban landscape components have a strong influence on
urban LST, which is consistent with the conclusions of many previous studies [12,50,66]. By
comparing daytime and nighttime coefficients, we find a general decrease in the absolute
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values of coefficients in group (a). For instance, the absolute value of NDVI’s coefficient
decreases from 0.71 (daytime) to 0.61 (nighttime). On the contrary, the coefficients of all
other variables in groups (b)–(e) show an obvious increase. For example, the coefficient
of total building volume (Sum_Volume) increases from 0.41 in the day to 0.74 at night.
These results signify that the impacts of urban landscape components on LST weakens at
night while explanatory power of other variables become stronger. As for the variables of
human daily activities, the correlation coefficients range from 0.12 to 0.18 in the daytime
and 0.35 to 0.52 at night. This great increase suggests that, after solar radiation disappears
at night, human activities become one of the crucial sources of heat production that in-
creases urban LST. Moreover, there is also a significant correlation between the variables
within each group. The correlation coefficient between NDVI and vegetation is 0.73 in
group (a), and the population and GDP in group (d) have a strong correlation coefficient
(0.92). Since NDVI and vegetation cover practically refer to the same thing, this is not
surprising. The population and GDP are also strongly related in Central Beijing. These
strong correlations suggest potential multicollinearity if all influencing factors are included
without careful scrutiny.

At the subdistrict scale (Figures 14–18), some different findings emerge. In group (a),
the proportion of built-up land (BuiltupLand) shows a nonsignificant correlation with LST
in the daytime, while it turns to a significantly negative coefficient at night. In groups (b)
and (c), the relationships between nighttime LST and vehicle-related POI (VPOI), total area
of buildings (Sum_Area), average volume of buildings (Ave_Volume), and total volume of
buildings (Sum_Volume) are statistically nonsignificant. In groups (d) and (e), GDP, road
length, and all human daily activities are nonsignificant in the daytime. These correlations,
which are different from that at the pixel scale, might be attributed to the following two
reasons. The first possible explanation is that the relationship between LST and several
explainers is sensitive to the research scale—a typical MAUP. In a specific region, a coarser
scale aggregates and potentially masks relationships between LST and its influencing
factors. This is also very important when analyzing influencing factors for urban LST
since it has scale sensitivity. As a result, the above relationships become nonsignificant
and even turn in the opposite direction. Another possible reason is that the thermal
characteristics of some explainers vary at different scales and times. The specific heat
capacity is an important property that determines the temperature variation of different
materials. Due to a low specific heat capacity, impervious surface absorbs solar radiation
fast in the daytime, leading to a quick rise in temperature. Meanwhile, after sunset, the
temperature of impervious surface drops faster compared to water or vegetation [34]. This
cooling effect of impervious surface at night might be vague and weak at the small scale,
especially in the case of interference from other materials. With the expansion of the study
scale, this effect is gradually revealed and shows a significant correlation with the LST
at night. The nighttime positive coefficients of built-up land (BuiltupLand), average area
of buildings (Ave_Area), and road length (RoadLength) might be partly attributed to the
superposition of this scale effect and cooling effect.

4.3. Results of Empirical Regressions

Due to the possible multicollinearity problem, as we witnessed above, not all the
explanatory variables that appear in the Pearson correlation analysis are used in the
empirical models. As a matter of fact, since it is suspected that check-ins are potentially
related with the size of population, we employ the stepwise regression method to filter
explanatory variables until their variance inflation factors (VIFs) are less than 10. The tests
suggest that while there is some type of correlation between check-ins and the size of the
resident population, the VIF value of the two in the final regression model is less than 5;
hence, they are both included in the final model. In addition, we also consulted previous
theoretical studies [8,19,36] when choosing which particular variables to be included in the
final model to avoid a data-driven study. The amount of impervious surface (road, and
building area and volume) [93,94], vegetation coverage (NDVI) [95,96], and places that
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attract many people and traffic flows (consumer and office places) [94] are often factors that
are cited in studying urban land surface temperatures. After these initial primary analyses,
our final model of the relationship between LST and its influencing factors can be expressed
as follows:

LST = β0 + β1NDVI + β2lnCPOI + β3lnOPOI + β4lnAveArea + β5lnAveVolume + β6lnPopulation
+β7lnRoadLength + β8lnCI

(5)

where LST refers to the values of LST, and CI denotes the number of check-ins. In this study,
we build 12 models to investigate the impacts of human daily activities on LST at different
scales and times. Models 1-6 use the pixel-scale data, while Models 7-12 use the subdistrict-
scale data. In Models 1-3 and Models 7-9, the LSTs in the daytime are used as the outcome
variables and other models use the nighttime LSTs. The check-ins in the daytime from 10:00
to 12:00 (CI_1012), from 8:00 to 12:00 (CI_0812), and from 06:00 to 12:00 (CI_0612); and the
check-ins at night from 24:00 to 2:00 (CI_2402), from 22:00 to 2:00 (CI_2202), and from 20:00
to 2:00 (CI_2002) are used as explanatory variables to explore the potential cumulative
effects of human daily activities. All explanatory variables are transformed by the natural
logarithm, except NDVI, to eliminate the influence of their dimensions and to keep the
function as linear as possible. The model is first estimated with ordinary least squares. As
with all spatial data, the spatial autocorrelation of the ordinary least squares’ residuals is
tested via the Lagrange Multiplier test [97,98]. The test results clearly suggest that there is a
significant spatial autocorrelation of the ordinary least squares model’s residuals. To avoid
misleading model results, spatial autoregressive models are more appropriate alternatives
to the ordinary least squares model. As discussed in the methodology section, there are
usually two forms of spatial autoregressive models, the spatial lag and spatial error model,
depending on where the source of the spatial autocorrelation of the ordinary least squares
model’s residuals is. All the analyses and tests are conducted in the statistical software
platform R [99] with the packages spdep [100] and spatialreg [101]. The analyses were
performed on a PC laptop with Intel Core i5 8th CPU and 8 GB of memory.

In order to determine which spatial autoregressive model is more suitable, Lagrange
Multiplier tests are again used, and the results are reported in Table 2. It is seen that RLMlag
statistics are always greater and have lower p-values than RLMerr statistics, indicating that
spatial lag model (SLM) tends to be a better choice. Therefore, Models 1–12 are estimated
based on a SLM specification and their regression results are reported in Tables 3 and 4.

Table 2. Results of Lagrange Multiplier tests.

Scale Time RLMerr p-Value RLMlag p-Value

Pixel Daytime 9.4714 0.0021 113.07 <2 × 10−16

Nighttime 8.6131 0.0033 139.64 <2 × 10−16

Subdistrict Daytime 3.2102 0.0732 33.027 9.088 × 10−9

Nighttime 1.5385 0.2148 57.436 3.497 × 10−14
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Table 3. Results of SLM at pixel scale.

Variables
Daytime Nighttime

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

(Intercept) 7.0452 *** 7.0034 *** 6.9712 *** 3.4061 *** 3.4828 *** 3.5009 ***
(0.6710) (0.6690) (0.6679) (0.4422) (0.4439) (0.4452)

NDVI −0.1833 *** −0.1826 *** −0.1823 *** −0.00004 −0.0006 −0.0012
(0.0228) (0.0228) (0.0228) (0.0122) (0.0120) (−0.0120)

CPOI −0.0005 −0.0006 −0.0006 0.0029 *** 0.0024 ** 0.0023 **
(0.0021) (0.0021) (0.0021) (0.0011) (0.0011) (0.0011)

OPOI 0.0022 0.0022 0.0021 0.0002 −0.00008 −0.0001
(0.0022) (0.0022) (0.0022) (0.0012) (0.0012) (−0.0012)

Ave_Area 0.0394 *** 0.0392 *** 0.0393 *** −0.0042 −0.0032 −0.0032
(0.0062) (0.0062) (0.0062) (0.0031) (0.0031) (−0.0031)

Ave_Volume −0.0285 *** −0.0283 *** −0.0283 *** 0.0028 0.0021 0.0021
(0.0039) (0.0039) (0.0039) (0.0019) (0.0019) (0.0019)

Population 0.0067 0.0068 0.0066 0.0089 *** 0.0087 *** 0.0082 **
(0.0044) (0.0044) (0.0044) (0.0027) (0.0026) (0.0026)

RoadLength 0.0190 *** 0.0190 *** 0.0190 *** 0.0032 0.0032 0.0030
(0.0026) (0.0026) (0.0026) (0.0022) (0.0021) (0.0021)

CI_1012/2402 −0.0041 ** 0.0030 **
(0.0022) (0.0014)

CI_0812/2202 −0.0032 0.0045 ***
(0.0021) (0.0011)

CI_0612/2002 −0.0027 0.0044 ***
(0.0021) (0.0011)

w * LST 0.7605 *** 0.7618 *** 0.7629 *** 0.8779 *** 0.8753 *** 0.8749 ***
(0.0226) (0.0225) (0.0224) (0.0157) (0.0157) (0.0157)

Model comparison
AIC −2291.3 −2290.2 −2289.5 −2770.9 −2781.9 −2782.2

AIC for lm −1747.9 −1744.1 −1741.2 −1913.8 −1919.9 −1921.5

Note: *, **, and *** indicate significant at 0.1, 0.05, and 0.01 level, respectively.

Table 4. Results of SLM at subdistrict scale.

Variables
Daytime Nighttime

Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

(Intercept) 9.7291 *** 9.7386 *** 9.7444 *** 6.5270 *** 6.8181 *** 7.0980 ***
(1.4727) (1.4776) (1.4830) (1.3862) (1.4308) (1.4579)

NDVI −0.6753 *** −0.6773 *** −0.6783 *** −0.1108 ** −0.0885* −0.0944 *
(0.0686) (0.0686) (0.0686) (0.0504) (0.0492) (0.0488)

CPOI −0.0167 ** −0.0174 ** −0.0177 ** 0.0103 0.0094 0.0088
(0.0077) (0.0077) (0.0077) (0.0065) (0.0065) (0.0064)

OPOI 0.0119 * 0.0118 * 0.0115 * −0.010 * −0.0089 * −0.0096 *
(0.0063) (0.0063) (0.0063) (0.0052) (0.0052) (0.0052)

Ave_Area 0.0427 ** 0.0433 ** 0.0434 ** −0.0222 −0.0258 * −0.0275 *
(0.0180) (0.0180) (0.0181) (0.0153) (0.0152) (0.0151)

Ave_Volume −0.0389 *** −0.0396 *** −0.0397 *** 0.0238 ** 0.0249 *** 0.0260 **
(0.0111) (0.0111) (0.0111) (0.0093) (0.0092) (0.0091)

Population −0.0168 *** −0.0165 *** −0.0164 *** −0.0046 −0.0060 −0.0059
(0.0062) (0.0062) (0.0062) (0.0054) (0.0052) (0.0052)

RoadLength 0.0299 *** 0.0299 ** 0.0300 *** −0.0124 −0.0112 −0.0106
(0.0094) (0.0094) (0.0094) (0.0083) (0.0081) (0.0080)

CI_1012/2402 −0.0032 0.0134 ***
(0.0036) (0.0034)

CI_0812/2202 −0.0023 0.0146 ***
(0.0038) (0.0034)

CI_0612/2002 −0.0015 0.0159 ***
(0.0041) (0.0034)

w * LST 0.6836 *** 0.6834 *** 0.6832 *** 0.7794 *** 0.7688 *** 0.7588 ***
(0.0487) (0.0488) (0.0490) (0.0469) (0.0484) (0.0494)

Model comparison
AIC −512.11 −511.69 −511.47 −554.40 −556.64 −559.75

AIC for lm −413.65 −413.64 −414.01 −454.83 −460.29 −465.55

Note: *, **, and *** indicate significant at 0.1, 0.05, and 0.01 level, respectively.

After analyzing the results presented in the tables above, we extracted several mean-
ingful findings that we would like to share. First, SLM performs better than traditional OLS
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estimation, and the LST has a significant spatial spillover effect. By comparing the AICs in
the last two rows of Tables 3 and 4, we can see that all AICs for spatial models (−2782.2 to
−2291.3 at pixel scale and −559.75 to −512.11 at subdistrict scale) are much smaller than
the AICs for nonspatial models (−1921.5 to−1747.9 at pixel scale and−465.55 to−413.65 at
subdistrict scale). According to the criteria proposed by Anselin [89], smaller AICs indicate
that SLM fit the data better for all models. The coefficients of spatially lagged dependent
variable (w*LST) range from 0.6832 to 0.8779 and are always statistically significant at
the 0.01 level. Not surprisingly, this suggests that the LST in a specific region is heavily
influenced by the LST of adjacent regions. However, the spatial spillover effect of LST
was often ignored in previous global empirical studies [12–14,16,17,21,30,33,34,37]. This
study validates the better applicability of the spatial model than conventional nonspatial
models in LST studies. Additionally, this finding can also provide inspiration for relevant
policy making. The inefficiency of a cooling measure in a specific region is likely to be
the result of the influence of surrounding high temperature. Hence, it is necessary to
take global and systematic measures to improve urban thermal environment and mitigate
high temperatures.

Second, a significantly positive effect of human daily activities on LST is captured
at night, and this effect may accumulate over a few hours. All coefficients of check-ins
(CIs) are statistically nonsignificant in the daytime, except for one coefficient at the pixel
scale. In contrast, all nighttime coefficients of check-ins (CIs) are significantly positive at the
0.01 level. This finding is consistent with the research of Peng, Jia, Liu, Li, and Wu [16]; and
Jia and Zhao [21]. Both research teams found that the influences of explainers on LST vary
with the change of temperature from daytime to nighttime. The difference of the effect of
human daily activities between daytime and nighttime is possibly caused by two reasons:
the global difference between daytime LST and nighttime LST and the change of main heat
source after sunset. During the daytime, the impact of human daily activities on urban LST
is comparably weak, which is easily eclipsed by other strong explainers, such as NDVI,
reflectance of the impervious surface, and concrete rooftops. After sunset, human-related
heat emissions from traffic, catering, and electric appliances become determinant heat
sources for LST. Therefore, the contribution of human daily activities to LST is stronger
and more statistically significant at night. The values of coefficients indicate that when the
number of check-ins increase by 1%, the nighttime LST increases by 0.0030 ◦C to 0.0159 ◦C.
Additionally, we find that the coefficient of CI_2402, which is collected from 24:00 to 2:00, is
the smallest among three different time slots. CI_2202 (0.0045) and CI_2002 (0.0159) show
the strongest impacts on LST at pixel scale and subdistrict scale, respectively. This suggests
that the LST at a specific time is likely to be affected not only by the human activities
occurred at that time but also by the lagged and cumulative influence of human activities
within a few hours. Check-ins are often posted by consumers before dinner to share their
lives or get discounts from the restaurants. Meanwhile, their influence on temperature
mainly relies on the process of consumption.

Third, the modeled results also suggest that the impacts of various LST explainers
exhibit notable variations between daytime and nighttime. NDVI exerts a negative effect
on LST, but at the pixel level, NDVI is nonsignificant during nighttime. Qiao et al. [102]
suggest that this abnormal relationship might be due to the absence of plant transpiration
at nighttime, reducing vegetation cover’s cooling effects. The coefficients of consumption-
related POI (CPOI) are negative in the day, and they turn to positive at night, which is
opposite in variation to office-related POI (OPOI). In fact, since there is practically no mate-
rial difference among various land-use functions, the difference of their effects on urban LST
essentially comes from the residents’ daily activities at different times. During the daytime,
offices are the main places where people work and socialize. After work, people usually go
to restaurants, shopping malls, and bars, leading to a surge in anthropogenic heat emissions
in those places. Similarly, the coefficients of average area (Ave_Area) and average volume
(Ave_Volume) of buildings change reversely from daytime to nighttime. A building with a
larger area means a faster absorption and dissipation of heat, and larger-volume buildings
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usually have higher heights. Solar radiation during the daytime is obstructed by high-rise
buildings, resulting in a shadow effect. Meanwhile, at night, high-rise buildings block the
heat dispersion in the vertical direction [62]. Population shows a significant and positive
effect on LST at pixel level during night, while its impact on LST at the subdistrict level
is significantly negative during the daytime. These results are consistent with previous
studies, such as in [8,13]. These studies, however, do not provide in-depth discussions on
why such phenomena were observed. From our investigation in the field and consultation
with local meteorologists, we contend that since the distances between workplaces and
residence places in Beijing are generally far, population data derived from statistic grid data
might not indicate true human activities during the daytime. These population data might
reflect more about the information of residence places. Therefore, its negative impact on
daytime LST is unexpected at the larger scale. As for the effect of road length (RoadLength)
on LST, it is significantly positive during the daytime but turns to nonsignificant at night.
This can be ascribed to the small specific heat capacity of cement and the intensity of traffic
during the daytime but reduced at night.

Fourth, the various factors’ impact on urban LST has a strong MAUP, in that different
effects (even opposite effects) are observed at the pixel and subdistrict levels. For instance,
from Tables 3 and 4, it is observed that the absolute values of the coefficients of CI in
Models 4–6 are smaller than those in Models 10–12. Check-ins are relatively sparse at the
pixel level, so its effect is weak. By summing them up to a larger scale, collective human
activities can produce a scale effect, turning it into a strong explanatory variable. The
variation of resolution or scale might lead to different effects of one variable, and this
scale sensitivity has been investigated and discussed in relevant studies [50,63]. Our study
adds new evidence to this interesting and meaningful finding. It is important to recognize
this finding for policy making. Human activities’ influence on urban LST is particularly
scale-sensitive since the influence of human activities is a collective influence. Only when
there is a higher concentration of a larger number of human beings will the human activities’
influence on urban LST show significant effects, both statistically and practically. This
finding, while unsurprising, was seldom discussed in previous studies; however, it poses
an important indication for sustainable urban planning and management. Our modeled
results with two different scales suggest that to reduce the potential urban heat island effect
in megacities such as Beijing or other large cities in China and beyond, urban planners need
to strategically allocate and build up a variety of different land-use functions within the
limited space; interweave impervious surfaces with parks, green spaces, and waterbodies;
avoid too densely distributed monotonic building types; and balance between convenience,
accessibility, and anthropogenic heat production.

5. Discussion
5.1. Implications for Urban Sustainable Development

The current study contributes to the studies of everyday urbanism [103,104]. The
results of the current study add to the knowledge and provide detailed strategies for urban
planners and managers to build a greener and more sustainable city. First, the significant
spatial autocorrelation of LST shows that LST is affected by both the local factors and
the factors of surrounding areas. The thermal environment of surrounding regions is an
important factor when carrying out cooling measures to alleviate high temperatures in
hot spot regions during heat waves. The implementation and effect evaluation of heat-
alleviation measures also need to be strategically designed based on appropriate scales.
This means that the cooling measures to alleviate high temperatures should be coordinated
from a global rather than a local perspective. For example, the cooling effect of a single and
small vegetation is very limited, while the warming effect of the expansion of an impervious
surface is relatively great. A reasonable spatial layout of built-up lands, vegetations, and
water bodies in cities is necessary for mitigating SUHI.

Second, social-media big data become an increasingly important source to depict and
understand human activities, including the intensity, trend, and other hard-to-acquire
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characteristics from traditional sources. Our study demonstrates that it can be applied to
produce strategies to micromanage urban land surface temperature. Although a significant
impact of human daily activities on LST during the daytime is not present from our model,
likely because of the prevalence of urban land configuration’s influence, human activities
at nighttime projects impact on urban land surface temperature. Using social media data,
we have the capacity to predict the changes of land surface temperature particularly after
sundown. When we combine traditional meteorological data, remote-sensing data, and
social-media big data, the management of urban micro meteorological conditions will be
more timely, accurate, and efficient.

Third, human daily activities have a significant positive influence on LST at night.
After sunset, the heat generated by human activities becomes one of the main sources of
urban LST. The accompanying energy-consumption activities, such as gasoline, natural
gas, and electricity, can be easily captured by social-media big data. This will facilitate
the management of energy supply and consumption. The flexibility of energy and elec-
tricity supply can also be improved according to the tides and trends of human activities
after sunset, thus providing strategies to alleviate energy-supply pressure and reducing
unnecessary energy consumption.

5.2. Limitation and Future Work

This study proposes a new idea for LST studies: to explore the impact of human daily
activities on LST from a short-term perspective. While we are able to produce evidence
that short-term human daily activities have a positive influence on urban land surface at
night, we are not able to establish a relationship during the daytime primarily because
urban LST is strongly related to urban land configurations (large amount of impervious
surface) during the daytime. Landscape configuration factors, such as the density and index
of patch, edge, and shape, are significant explainers of LST [17,20,105], but they are not
included in the current study. It will be one of our concerns to take landscape configuration
factors into LST studies in future work. In addition, this study uses data from only one
day in autumn to establish the linkage between short-term human activities and urban
LST. While our initial consideration is to avoid the extreme summer or winter weather
to mask human activities’ influences on urban LST, it might merit further investigations
using different days in different seasons, such as summer and winter, to see whether the
conclusions presented in the current study still hold. Moreover, the mechanism of the
impact of different variables on urban LST is complex; it is highly likely that different
intensities of human activities in different places might project different influences on
urban LST. This means that the influence degree of LST’s factors may vary greatly across
the study area, especially at different scales. The model presented in the current study
(spatial autoregressive model) assumes the influence is the same at all pixels/subdistrict,
and while this might hold true for smaller areas as in the current study, it might not be
tenable when we investigate a city with a more complex land-cover composition and more
varied land-use categories. Therefore, further investigation into the spatial heterogeneity of
mechanism will be needed.

6. Conclusions

In this study, we specifically investigated human daily activities’ influence on urban
LST and re-examined the relationship between LST and its influencing factors at a two-hour
interval basis on one autumn day. Our study yields several important and novel findings
for future LST studies and guidance for sustainable urban planning and management.
First, check-in data serve as a good proxy for human daily activities [79,81,86,106,107].
In some previous studies [13,19,33], grid population data or nighttime light data are
used to represent the activities of urban residents. However, these data are static and
make it difficult to capture people’s real-time dynamics or short-term activities that are
often masked out during long-term studies. Check-ins released by users can be easily
obtained at any time. The flexibility and timeliness of check-in data coincide with the



Remote Sens. 2023, 15, 1783 26 of 30

characteristics of human daily activities better than gridded estimation. Second, the spatial
patterns of LST in Central Beijing varies from daytime to nighttime. In the daytime,
the high clusters of LST are mainly distributed in the south, while the nighttime LST
shows a typical characteristic of the center–periphery decline pattern. There is a high
correlation between daytime LST and nighttime LST, though. Third, from a short-term
perspective, human daily activities have been found to affect LST significantly after sunset,
and its impacts may last and accumulate over a few hours. Along with human daily
activities, waste heat produced by traffic and electric appliances increases rapidly. During
the daytime, urban landscape components are strong explainers of LST because of their
thermal properties; hence, the effect of human activities is veiled. Meanwhile, at night,
anthropogenic activities and induced heat emissions become the main provider of heat,
leading to an increase of LST. For urban managers, the use of check-in data can bring
new ideas to the monitoring and early warning for extreme heat. The flexibility of energy
and electricity supply can also be improved according to the tides and trends of human
daily activities, thus alleviating energy-supply pressure and reducing unnecessary energy
consumption that might contribute to an elevated land-surface temperature. Fourth, scale
sensitivity and the cumulative effect are recommended to be taken into consideration when
modeling LST and its influencing factors and making UHI mitigation policies. The results
from this study suggest that the impacts of influencing factors on LST at the pixel scale
and subdistrict scale are different. The thermal environment of surrounding regions is
an important factor when carrying out cooling measures to alleviate high temperature in
hot-spot regions. The implementation and effect evaluation of heat-alleviation measures
also need to be strategically designed based on appropriate scales.

Urbanization in China has been undergoing a rapid development in recent decades.
High-temperature management is commonly concerned in the construction of a livable,
healthy, and sustainable city [8,20,61]. As one of the most urbanized cities in China,
Beijing’s experience in urban construction and management is often learned and referenced
by other cities. The current study highlights the impact of short-term human daily activities
on LST and provides insightful and practical conclusions for dealing with a high urban
temperature. We expect the study to enrich other LST studies and bring about a better
understanding of LST management for sustainable urban development in the future.
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