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Abstract: Highly accurate supervised deep learning-based classifiers for polarimetric synthetic aper-
ture radar (PolSAR) images require large amounts of data with manual annotations. Unfortunately,
the complex echo imaging mechanism results in a high labeling cost for PolSAR images. Extracting
and transferring knowledge to utilize the existing labeled data to the fullest extent is a viable ap-
proach in such circumstances. To this end, we are introducing unsupervised deep adversarial domain
adaptation (ADA) into PolSAR image classification for the first time. In contrast to the standard
learning paradigm, in this study, the deep learning model is trained on labeled data from a source
domain and unlabeled data from a related but distinct target domain. The purpose of this is to extract
domain-invariant features and generalize them to the target domain. Although the feature transfer-
ability of ADA methods can be ensured through adversarial training to align the feature distributions
of source and target domains, improving feature discriminability remains a crucial issue. In this paper,
we propose a novel polarimetric scattering characteristics-guided adversarial network (PSCAN) for
unsupervised PolSAR image classification. Compared with classical ADA methods, we designed an
auxiliary task for PSCAN based on the polarimetric scattering characteristics-guided pseudo-label
construction. This approach utilizes the rich information contained in the PolSAR data itself, without
the need for expensive manual annotations or complex automatic labeling mechanisms. During the
training of PSCAN, the auxiliary task receives category semantic information from pseudo-labels
and helps promote the discriminability of the learned domain-invariant features, thereby enabling
the model to have a better target prediction function. The effectiveness of the proposed method was
demonstrated using data captured with different PolSAR systems in the San Francisco and Qingdao
areas. Experimental results show that the proposed method can obtain satisfactory unsupervised
classification results.

Keywords: unsupervised land cover classification; polarimetric synthetic aperture radar; deep
learning; polarimetric scattering characteristics; adversarial domain adaptation

1. Introduction

Benefiting from its ability to operate in all-weather and day-and-night conditions [1],
polarimetric synthetic aperture radar (PolSAR) image land cover classification [2] provides a
rich source of information about the earth’s surface and can be used in various fields such as
agriculture (to classify different crops and monitor their growth stages) and oceanology (to
map the distribution of sea ice and detect oil spills in the ocean) [3–5]. PolSAR classification
algorithms have developed rapidly over the past two decades. However, the complexity
and diversity of natural terrain makes it difficult to completely describe observation targets
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using existing PolSAR image representations, which brings a challenge to the land cover
classification of PolSAR images.

Feature engineering and classifier design are the two primary means of improving
PolSAR image classification. Driven by the basic scattering models [6], the polarimetric
target decomposition technique [7] emerged, resulting in a wide range of polarimetric
feature extraction methods [8–10]. Enhanced features can emphasize the essential attributes
of land cover types, making them more recognizable. The development of PolSAR clas-
sifiers can be categorized into two paths: supervised and unsupervised. In supervised
algorithms [11–13], ground truth maps with manual annotations are required to prepare
the training samples. Then, the similarity or margin between predictions and true labels
needs to be measured to learn the prediction function. Supervised methods have high accu-
racy when the training and testing data are drawn from the same distribution. However,
their drawbacks are evident: the algorithm fails when the ground truth is unavailable or
inadequate. In contrast, unsupervised approaches are more appealing because they can
be applied to a wider range of problems including those without labeled training data.
Classical unsupervised PolSAR classification primarily follows two methods. One ap-
proach is based on clustering methods, such as fuzzy C-means [14], Wishart clustering [15],
and spectral clustering [16]. The other focus is feature engineering, which aims to construct
features with physical meanings based on polarimetric scattering mechanisms, providing
discriminative information for land cover types [17]. Among them, the most renowned
method is the H/α classifier [18], which utilizes the scattering entropy and mean alpha
angle to implement unsupervised classification. However, a drawback is that only a limited
set of classical unsupervised methods preserve the category semantics in the classification
results based on the comprehension of the scattering mechanism. Therefore, most of such
methods require manual inferential prediction since no information is received from the
true labels.

The application of convolutional neural networks (CNNs) in PolSAR image clas-
sification has produced remarkable outcomes [19]. The majority of these studies have
concentrated on designing advanced network architectures for supervised learning. Al-
though a few studies have tackled the challenge of few-shot or semisupervised PolSAR
classification [20,21], to date, unsupervised CNN-based approaches have not been explored,
which is the primary focus of this paper.

For unsupervised classification problems, unsupervised domain adaptation (DA)
presents a viable solution [22]. In this context, DA involves two similar but not identical
data domains, namely source and target. There are two differences between these domains.
First, data in the source domain is labeled, while data in the target domain is unlabeled.
Second, the two domains have different data distributions. Unsupervised DA is suitable
for those applications in which machine learning algorithms are trained using labeled
source data and unlabeled target data to ensure the good generalization performance
for the testing target data [23,24]. Currently, the most prevalent technique for DA is to
enhance feature transferability by aligning the feature distributions of the source and target
domains, extracting domain-invariant features, and sharing the source classifier. Several
excellent studies have been developed based on this approach, including using CNNs as
feature encoders [24]. They have used statistical criteria [25–27] or adversarial loss [28,29]
to achieve feature alignment between source and target. Despite these achievements, some
studies have found that since the discriminability of features has not been fully taken
into account, the discriminability cannot be guaranteed when the feature transferability is
improved [30], and the source-specified classifiers may not generalize well on the target
domain. Pseudo-labeling is an effective approach for addressing this issue. It enhances
feature discriminability by aligning class-specific features from both the source and target
domains [31,32]. However, the construction of pseudo-labels is a critical issue. The methods
for generating pseudo-labels related to optical images do not consider the polarimetric
scattering mechanism of PolSAR images. This is the main focus of our research.
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Inspired by previous works, this paper introduces and applies unsupervised deep
adversarial domain adaptation (ADA) for PolSAR image classification. To the best of
our knowledge, this is the first work that investigates the effectiveness of ADA for unsu-
pervised CNN-based PolSAR classification. Additionally, a novel polarimetric scattering
characteristics-guided adversarial network (PSCAN) has been developed to leverage the
valuable information present in PolSAR images, with the aim of enhancing the generaliza-
tion performance by improving the feature discriminability. The key contributions of this
paper can be summarized as follows:

– We propose the integration of deep ADA into the PolSAR community and extend
CNN-based PolSAR classifiers to the field of unsupervised classification. Compared
to those of traditional unsupervised PolSAR classification methods, the deep features
extracted by CNNs yield better a decoupling performance. Furthermore, the transfer
of knowledge enables ADA to make predictions without requiring manual inference,
making it more suitable for application scenarios.

– We describe the design of an auxiliary task and incorporate it into the standard
adversarial adaptation network to capture category semantic information from the po-
larimetric scattering characteristics-guided pseudo-labels. This enhances the learning
of the class-wise correlations between the source and target domains.

– We propose a novel unsupervised ADA method to address the issue of insufficient
discriminability exhibited by domain-invariant features obtained through the existing
methods. Compared with the related methods [31,32], our proposed method utilizes
the polarimetric scattering characteristics of PolSAR images, i.e., Cloude–Pottier
decomposition [18,33], to construct pseudo-labels, which avoids the complex and
inefficient automatic labeling mechanisms in optical image-related methods, so it is
very simple and efficient.

We conduct extensive comparative experiments on eight transfer tasks using five
PolSAR datasets from the San Francisco and Qingdao areas. The experimental results
validate the effectiveness of our proposed method.

2. Related Work
2.1. Convolutional Neural Network

As one of the most prominent techniques in deep learning, CNNs [34] have achieved
state-of-the-art results across a variety of tasks [35]. Currently, CNN architectures are
considered mature and are often used for end-to-end feature extraction and classification (or
other tasks). Compared to traditional hand-crafted features and kernel methods, automated
feature engineering with CNNs is more powerful [36]. The capability to effectively use big
data endows CNNs with a distinct advantage over many small-sample algorithms.

In recent years, the emergence of deep learning and CNNs have significantly improved
the performance of PolSAR image classification. Zhou et al. were one of the first to use
CNNs for PolSAR image classification [19]. They proposed a normalized six-dimensional real
vector representation of PolSAR data and designed a four-layer CNN architecture. Since then,
various CNN-based PolSAR classification studies have emerged, which have improved the
performance of PolSAR image classification by utilizing novel input forms [37–39], complex-
valued operations [40], feature selection [41–43], 3D convolution [44,45], neural architecture
search [46], and generative learning [47,48]. While remarkable fully supervised results have
been achieved [49] and some efforts have been made to reduce the need for large amounts of
labeled training samples [20,21], almost all existing works still depend on annotations. Two
main reasons make it necessary to develop unsupervised CNN-based PolSAR classification
methods: First, the labeling cost of PolSAR images is relatively high. Second, the transform
of sensors, imaging modes, and conditions can significantly affect PolSAR images, which
causes the independent and identically distributed assumption of the supervised algorithm,
i.e., training and testing data drawn from the same distribution, to fail in its testing phase.
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2.2. Unsupervised Domain Adaptation

DA is a popular method of transfer learning [23] and a classical problem in machine
learning. In the context of these methods, unsupervised DA holds greater research value
than does supervised DA due to its wider applicability and stronger irreplaceability. This is
because it does not require labeled data from the target domain. Measuring the similarity
between distributions and matching different domains are critical aspects of this problem.
Several classical unsupervised DA methods attempted to find combinations of hand-
crafted features and distance metrics to reduce the domain discrepancy [50,51]. With the
rise of deep learning, some studies have combined deep features and statistical criterion-
based metrics, such as maximum mean discrepancy (MMD) [25], correlation alignment
(CORAL) [26], and KL-divergence [52]. Another group of deep feature-based approaches
employ adversarial loss [53] to reduce domain discrepancy. These methods learn domain-
invariant features through a zero-sum game between the feature encoder and the domain
discriminator [28,29], thereby enabling the source-specified classifier to achieve good
generalization performance on the target domain.

Unsupervised DA holds great potential for PolSAR image classification, as it aligns
with the application scenario of PolSAR classification. CNN-based PolSAR classifiers are
known to require a significant number of labeled training samples, which is a challenging
task in PolSAR images due to the high labeling cost. Additionally, the generalization of
CNNs in PolSAR classification is also difficult because transforms of sensors, imaging
modes, and conditions may cause considerable changes in PolSAR images. As a result,
the independent and identically distributed assumption of the algorithm is likely to be
violated, leading to test failure.

3. Methods

This section will provide implementation details. First, we will present the initial
representation of the PolSAR image data. Next, we will introduce the problem definition of
unsupervised DA. Finally, we will provide a detailed introduction to each component of
the proposed method.

As depicted in Figure 1, the proposed PSCAN model consists four parts, namely
the feature encoder, classifier, domain discriminator, and auxiliary task. During training,
the adaptation network is trained using labeled samples from the source domain and
unlabeled samples from the target domain. It is worth noting that the classifier update
relies only on the information obtained from the source domain, whereas the rest parts
leverage information from both the source and target domains. The proposed PSCAN
uses the domain discriminator to enhance the transferability and the auxiliary task to
improve the discriminability of features. The encoder learns domain-invariant and discrim-
inative features, enabling the source-specific classifier to be shared by the target domain.
After training, the validity is tested using samples from the target domain only, and the
whole map classification results are obtained based on the trained model.

Target

Source

fe
a
tu

re
s

fe
a
tu

re
s

Feature Encoder

Auxiliary
Task

Classifier

Domain
Discriminator

cls

adv

psc

Figure 1. Illustration of the proposed PSCAN. The propagation of the data from different domains is
marked by arrows of different colors.
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3.1. Representation of PolSAR Data

The study starts by acquiring two-dimensional image data using radar echo imaging.
Each individual pixel in PolSAR images can be represented by the following polarimetric
coherency matrix:

T =

T11 T12 T13
T21 T22 T23
T31 T32 T33

. (1)

The matrix T is a Hermitian matrix, with complex-valued elements except for the
diagonal ones. In numerous research works, the upper triangular elements of matrix T
have been used as the initial PolSAR data representation.

Apart from matrix T, it is also feasible to use polarimetric features as the input [37].
Specifically, to formulate roll-invariant features, the matrix T can be parameterized using
eigenvalue–eigenvector-based methods [18] as follows:

T = U

λ1 0 0
0 λ2 0
0 0 λ3

UH . (2)

Three polarimetric features, including the entropy H, mean alpha angle ᾱ, and
anisotropy Ani can be formulated as follows:

H = −
3

∑
n=1

Pn log3 Pn, ᾱ =
3

∑
n=1

Pnαn, Ani =
λ2 − λ3
λ2 + λ3

, (3)

where Pn = λn/(λ1 + λ2 + λ3), and α is related to the matrix U. Another roll-invariant
feature, i.e., total backscattering power SPAN, can be defined as following:

SPAN = 〈| SHH |2〉+ 2〈| SHV |2〉+ 〈| SVV |2〉. (4)

In this article, we adopt a 16-dimensional PolSAR initial representation, which con-
sists of the real part, imaginary part, and modulus of the polarimetric coherency matrix,
along with entropy, mean alpha angle, anisotropy, and total backscattering power. Each
dimension of the feature is normalized to the range of [0, 1] to enhance the training effi-
ciency. We apply min–max normalization to achieve this, while excluding the maximum
1% and the minimum 1% of the values in each feature to avoid the influence of outliers in
PolSAR images.

3.2. Problem Definition

We first present the problem definition before delving into the proposed method.
Similar to those of many CNN-based methods [19,37,42], the classification steps of our
approach can be summarized as follows: First, we extract pixels and their small neighbor-
hoods to generate the training and testing sets. Then, we train the model using the training
samples and subsequently feed the testing samples into the pretrained model to obtain the
predictions. However, our paper addresses the task of unsupervised DA, which introduces
a significant difference. Let X × Y denote the input space, where X represents the input
and Y denotes the label. The labeled samples from the source domain can be expressed as
Xs = {(xs

1, ys
1), · · · , (xs

ns , ys
ns)}, and the unlabeled samples from the target domain can be

expressed as Xt = {xt
1, · · · , xt

nt}. For supervised methods, their training and testing sets
are derived from Xs. On the other hand, our training set is a combination of Xs and Xt,
whereas the testing set only comprises samples from Xt. Consequently, our objective is to
learn a classifier based on the source and target domains with the least empirical risk in the
target domain.
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3.3. Feature Encoder and Classifier

The feature encoder and classifier form the foundation for performing land cover
classification of each pixel in the PolSAR image. Given that the input pixel-centric PolSAR
image patch has a relatively small spatial size, a classical convolutional architecture is
adequate to construct effective features. Figure 2 displays the detailed network architecture
that we utilized.

linear cls

fully connected
hidden node 5

conv-1

3×3×24
stride 1, pad 1

pool-1

2×2 max pool
stride 2, pad 1

R
e
L
U

B
N

conv-2

3×3×32
stride 1, pad 1

pool-2

2×2 max pool
stride 2, pad 0

R
e
L
U

B
N

conv-3

3×3×40
stride 1, pad 0

pool-3

2×2 avg pool
stride 2, pad 0

R
e
L
U

B
N

Layers of Block 1 Layers of Block 2 Layers of Block 3

Figure 2. The architecture of the feature encoder and classifier. Layers within different blocks are
represented by different colors.

The feature extraction process involves three blocks, which consist of cascaded convo-
lutional layers, ReLU activation function ( f (x) = max(0, x)), batch normalization (BN) [54],
and pooling layers. Two max-pooling layers are employed to expand the receptive field.
At the end of the network, a global average pooling layer is utilized to generate the features,
and a linear classification layer is employed to derive the predictions. The feature encoder
is denoted as f (·), and the classifier is denoted as c(·). Training them can be achieved by
optimizing the cross-entropy loss:

min
f ,c
Lcls( f , c, X) = − 1

n

n

∑
i=1

K

∑
k=1

I(k = yi) · log c( f (xi)), (5)

where I is the indicator function, n is the number of samples, and K is the number of
categories. For the task of unsupervised DA, the variables in (5) should be re-formulized as
Lcls( f , c, Xs) because samples must be labeled when back propagating their cross-entropy
loss errors. Therefore, although samples from both source and target domains can partici-
pate in the forward propagation to obtain corresponding features and predictions, f (·) and
c(·) can only receive the update information from the source domain.

3.4. Domain Discriminator

As demonstrated in the previous subsection, utilizing only the feature encoder and
classifier can lead to the production of source-specific features and predictions, which is not
conducive for unsupervised DA. To address this issue, we introduce a domain discriminator
that provides update information from the target domain to f (·), enabling the extraction of
domain-invariant features.

The concept of the domain discriminator draws heavily from the framework of gener-
ative adversarial networks (GANs) [53]. In GANs, the generator and discriminator engage
in a zero-sum game to ensure that the distribution of generated data matches that of real
data. Ganin et al. extended this problem from generation to unsupervised DA [28], where
they introduced the domain discriminator, denoted as d(·), to distinguish whether the
sample is from the source or target domain. The optimization problem for f (·) and d(·)
can be formulated as follows:

min
d

max
f
Ladv( f , d, Xs, Xt) = − 1

ns

ns

∑
i=1

log d( f (xs))− 1
nt

nt

∑
i=1

log(1− d( f (xt))). (6)

In most cases, the min–max objective function described above should be solved
iteratively [29,53]. Once the optimal d∗ has been obtained, the optimization of f can be used
to minimize the JS-divergence between f (Xs) and f (Xt), aligning the feature distributions
of the source and target domains. However, the iterative nature of this approach can
be cumbersome, and to address this issue, Ganin et al. proposed the gradient reversal
layer. This layer enables the training of the domain discriminator to support standard
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backpropagation by acting as an identity layer during forward propagation and reversing
the value of the gradient during backpropagation. With the gradient reversal layer denoted
as r(·), (6) can be expressed as follows:

min
f ,d
Ladv( f , d, Xs, Xt) = − 1

ns

ns

∑
i=1

log d(r( f (xs)))− 1
nt

nt

∑
i=1

log(1− d(r( f (xt)))). (7)

In this paper, the domain discriminator d(·) is defined as a three-layer fully connected
network with 64 hidden nodes. Outputs of the first two hidden layers are activated by
ReLU and BN, and that of the last hidden layer is activated by sigmoid.

3.5. Pseudo-Label and Auxiliary Task

Benefiting from the domain discriminator, feature transferability can be ensured. In the
context of ADA methods, a critical issue has been identified. Despite the adversarial loss
leading to domain confusion, the source-specific classifier still struggles to generalize to
the target domain. This issue is referred to as insufficient feature discriminability [30,31,55]
or negative transfer [32]. The root cause of this problem is that even though the feature
distributions of the source and target domains have been aligned, the feature extraction
process fails to acquire any category semantic information related to the target domain.
As a result, the discriminability of the obtained features cannot be guaranteed.

Recent works that focus on optical image domain adaptation and classification have
demonstrated that pseudo-labeling is an effective way for improving feature discriminability.
Some studies have employed the source-specific classifier to generate pseudo-labels for the
target data [32,56]. Others, such as Kang et al., have used clustering operations to address
this issue [31]. In general, these methods assign pseudo-labels to the samples from both the
source and target domains based on specific criteria, with the aim of aligning the features
class-wise and refining their discriminative structures. Although pseudo-labeling improves
the feature discriminability, its construction is quite challenging [57,58]. We conclude that
an effective pseudo-labeling method must satisfy the following three requirements:

– The pseudo-labels need to be arbitrary to the data source. Specifically, if a region in the
source domain is labeled as a certain class, the same region in the target domain should
also be labeled as the same class in order to ensure correct alignment of class-specific
features.

– The pseudo-labeling approach must exhibit broad generalizability. To achieve this,
the labeling process must be automated, without any manual intervention. Addition-
ally, the method should produce the expected results for all types of data, not just
specific data types. The combination of these two aspects ensures the applicability of
the algorithm.

– The pseudo-labels must strive for maximum accuracy. While pseudo-labeling can be a
powerful tool, the introduction of labeling errors can significantly reduce classification
accuracy. Therefore, it is important to minimize label noise in order to achieve optimal
performance.

Based on the aforementioned requirements, it is evident that constructing an ideal
pseudo-label requires not only unsupervised classification but also the integration of se-
mantic knowledge associated with the relevant categories. The conventional optical image
related pseudo-labeling methods cannot fulfill this requirement as they solely provide
intensity information on RGB channels and hence do not establish a corresponding re-
lationship between the intensity and land cover types. Consequently, the pseudo-labels
generated by such methods are typically initialized randomly and subsequently refined
during the training process to improve accuracy. However, this iterative approach is not
only potentially counterproductive in the early stages but also increases the complexity of
the algorithm.

In contrast, due to the special imaging mechanism of PolSAR system, the expert
knowledge of human researchers on scattering mechanisms allows different land cover
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types in PolSAR images to be described with distinct polarimetric scattering characteristics,
enabling unsupervised classification with category semantics. As PolSAR images contain
more information than does the RGB format, utilizing the characteristics derived from
PolSAR’s unique information is a more sensible approach than is relying on the pseudo-
label generation mechanisms in optical image-related methods, as previously mentioned.

Building upon the aforementioned analysis, we highlight the benefits of PolSAR
images, whereby the polarimetric scattering characteristics are employed to guide the con-
struction of pseudo-labels and are followed by the development of a customized algorithm.
These two components serve to enhance the features discriminability by leveraging the
unique properties of PolSAR image data, thereby facilitating the generalization of the deep
adaptation model. In the following contents, we elaborate upon the comprehensive design
and implementation.

Pseudo-Label Construction: This part outlines an efficient approach for generating
pseudo-labels for both source and target domains. The process can be divided into two
stages. First, we conduct unsupervised classification based on the guidance of polarimetric
scattering characteristics. Next, we refine the initial classification results to obtain superior
pseudo-labels. During the first stage, we assign categories to samples based on their
scattering mechanisms, with the assigned categories being consistent with the annotations
in the source domain. The latter stage employs a clustering method based on the Wishart
distance metric. Given the advancements in PolSAR image target decomposition and
classification, these methods have become relatively mature.

Given that the objective of this study is to investigate the integration of polarimetric
information into ADA methods, rather than improving the feature extraction process, we
employ the Cloude–Pottier target decomposition method [18,33], which is widely adopted
in the PolSAR community, to acquire polarimetric scattering characteristics. This enables
us to obtain unsupervised classification results and guide the construction of pseudo-labels.
Figure 3 displays the Cloude–Pottier decomposition result of PolSAR image data acquired
with RadarSat-2, demonstrating the representation of the three decomposition parameters
on different land cover types.
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Figure 3. Cloude–Pottier decomposition results of the RadarSat-2 PolSAR image. (a) Entropy.
(b) Alpha angle. (c) Anisotropy.

Cloude and Pottier [18] represented the random scattering mechanism in PolSAR
images using two decomposition parameters—entropy and mean alpha angle—defined
in (3) and obtained via eigenvalue decomposition of the polarimetric coherency matrix.
Entropy describes the degree of randomness in scattering. For areas with a smooth surface
such as water, surface scattering dominates, resulting in low randomness. For man-made
areas, the scattering mechanisms are mixed, leading to medium entropy. In vegetation
areas, multiple scattering mechanisms result in high scattering randomness. The value of
the mean alpha angle ranges from 0 to 90 degrees, representing the continuous change of
the main scattering mechanism of the land cover from surface scattering to double-bounce
scattering and reaching a medium value in areas described as volume scattering. Pottier
introduced anisotropy A to characterize the importance of two nondominant scattering
mechanisms, which can be used as a supplement to distinguish the scattering characteristics
of different land cover types when the value of entropy is high [33]. As depicted in Figure 3,
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the results of Cloude–Pottier decomposition enable the rough identification of the three
basic land cover types in the area: water, man-made, and vegetation. By combining entropy
and the mean alpha angle, the H/α classification hyperplane was proposed [18], as shown
in Figure 4.
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Figure 4. H/α classification hyperplane.

The polarimetric scattering characteristics are partitioned into nine regions, Z1 to Z9,
by a two-dimensional classification hyperplane based on predetermined thresholds for
entropy and alpha angle. As the scattering characteristics of the surface cannot be discerned
when H > 0.9, the high entropy surface scattering region Z3 is not an effective region on
the classification hyperplane. To further enhance this approach, a classification scheme that
incorporates anisotropy has been proposed [33], and the classification hyperplanes and
results are presented in Figure 5.
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Figure 5. Classification hyperplanes and results of H/A/α of the RadarSat-2 PolSAR image. (a) Result
of H/α hyperplane. (b) Result of H/A hyperplane. (c) Result of A/α hyperplane.

The H/A/α method can be used to obtain the classification results of fundamental
land cover types. Furthermore, more precise types can be achieved by employing other
decomposition methods [9,10]. These methods not only allow for the identification of
most land cover types in PolSAR images, but also offer a considerable degree of flexibility
and generality. This is because the classification boundaries are determined based on the
extracted physical information from the microwave scattering observations. Therefore,
the pseudo-labels constructed using these methods are insensitive to data changes and
independent of the data source. It should be noted that the selection and configuration of
unsupervised classification methods are highly adaptable. Various target decomposition
methods [8], hyperplane combinations [59], and threshold settings [60] can be utilized to
construct pseudo-labels with the guidance of polarimetric scattering characteristics.

Up to this point, the construction of pseudo-labels has been accomplished. In order
to further enhance the accuracy, we take inspiration from some existing studies [61–63]
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and compute the average value of the polarimetric coherency matrix for the pixels in each
category obtained from the initial stage results. These average values are then employed
as clustering centers for the Wishart distance-based classifier, which is used to reclassify
all pixels. This process is iterated until the algorithm converges. The purpose of this
approach is to refine and adjust the classification boundaries that were previously estab-
lished by means of thresholds, thereby avoiding the occurrence of ambiguous classification
results. Specifically, the center Tm of the mth category can be obtained by calculating the
sample mean:

Tm =
1

Nm

Nm

∑
i=1

Tm
i (8)

where Nm represents the total number of pixels contained in this category, and Tm
i is the po-

larimetric coherency matrix of the ith pixel in the mth category. The distance measurement
of classification is defined as follows:

dW(T, Tm) = ln|Tm|+ Tr((Tm)−1T) (9)

where Tr(·) represents the trace operation of matrix. Based on the distance value from each
center, each sample should be assigned to the category of the nearest cluster center. When a
sample is assigned to the ith category, the following inequality holds:

dW(T, Ti) ≤ dW(T, T j), ∀j ∈ {1, · · · , K} ‖ j 6= i. (10)

Once all the sample points have been partitioned, the center of each category should
be recalculated, and the above process should be repeated until convergence. This method
is a fusion of polarimetric scattering characteristics and Wishart clustering. The former
yields the initial classification results with category semantic information based on the
distinct scattering mechanisms, while the latter takes into account the data distribution
of the polarimetric coherency matrix. The combination not only preserves the category
semantics in the unsupervised classification results, but also optimizes the classification
boundaries to enhance the accuracy of the pseudo-labels. As a result of the aforemen-
tioned two steps, each pixel in the source and target images can be assigned a unique
label ŷ. Therefore, the source dataset Xs and the target dataset Xt can be represented
as Xs = {(xs

1, ys
1, ŷs

1), · · · , (xs
ns , ys

ns , ŷs
ns)} and Xt = {(xt

1, ŷt
1), · · · , (xt

nt , ŷt
nt)}, respectively.

Compared to pseudo-labels in related methods of optical image classification, the use of
polarimetric scattering characteristics in PolSAR image classification can directly obtain
pseudo-labels with a certain degree of accuracy. This eliminates the need for random
initialization and the iterative refinement during the model training, making it significantly
advantageous in terms of implementation difficulty and algorithmic complexity.

Utilization: Similar to previous works [31,32,56], we utilize class-wise alignment
based on the obtained polarimetric scattering characteristics and constructed pseudo-labels.
This is a straightforward approach to enhance the feature discriminability using the concept
of metric learning, which functions to maximize interclass distance and minimize intraclass
distance. Hence, we can formulate the following optimization problem:

min
f
Lmetric( f , Xs, Xt) = ∑

i,j
I(ŷs

i = ŷt
j) · S( f (xs

i ), f (xt
j))−∑

i,j
I(ŷs

i 6= ŷt
j)S( f (xs

j ), f (xt
j)), (11)

where S(·) is a similarity measurement. The specific definition of Lmetric(·) can take many
forms [64–66]. In the proposed PSCAN, we adopt a more direct approach, i.e., optimizing
the cross-entropy loss:

min
f ,caux

Lpsc( f , caux, Xs, Xt) = Lcls( f , caux, Xs) + Lcls( f , caux, Xt), (12)

where caux(·) denotes the classifier for auxiliary task, which is designed to receive the
category semantic information from polarimetric scattering characteristics-guided pseudo-
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labels. Equation (12) is also a good choice because it balances complexity and effectiveness.
Compared with (11), the cross-entropy loss is undoubtedly more convenient, owing to its
wide range of applications and ease of implementation. Additionally, it captures the inter-
class distance, which is the most important ability in improving feature discriminability.

Based on the above introduction, the objective function of PSCAN can be formulated
as follows:

min
f ,c
Lcls( f , c, Xs) + Ladv( f , d, Xs, Xt) + αLpsc( f , caux, Xs, Xt), (13)

where α is the trade-off hyperparameter. f , c, d, caux are optimization variables, but only f , c
are finally required. From (13), it is evident that the input data should initially be mapped
into a latent space by the feature encoder f . Subsequently, the feature distributions of the
source and target domains can be aligned with the precondition of ensuring discriminability
by minimizing Ladv and Lpsc. Finally, the classifier c can be learned from the source and
generalized to the target.

The three items in (13) correspond to different objectives of the proposed PSCAN,
which can be seen as an end-to-end multitask deep adaptation model. The following are
specific analyses of these tasks:

The item Lcls corresponds to the task of predicting the manual annotations of source
domain data, whose definition is same as the standard cross-entropy loss function, as shown
in (5). Note that with the learning rate of the optimizer as η, the parameter c corresponding
to the classifier in the model will be updated as follows:

c = c− η
∂Lcls( f , c, xs, ys)

∂c
. (14)

It is evident that the classifier training solely depends on the samples from the source
domain. Therefore, the trained classifier, which can generalize well on the source domain
based on the feature extractor f , forms the basis for generalization on the target domain
during testing.

The term Ladv corresponds to the task of predicting the data source, as defined in (7).
With the features extracted from the source and target data, the parameter d of the domain
discriminator can be obtained by maximizing its prediction accuracy:

d = d− η
∂Ladv( f , d, xs, xt)

∂d
. (15)

It can be observed from Equation (15) that the training of the domain discriminator
does not require any manual annotations, as the data source serves as the supervisory infor-
mation. The domain discriminator is employed to counteract the feature extractor, whereby
it predicts the data source and minimizes the probability of prediction error. Meanwhile,
the feature extractor aims to extract features that can deceive the domain discriminator;
that is, it maximizes the probability of prediction error of the domain discriminator and
aligns the feature distributions of the source and target domains. Therefore, the domain
discriminator forms the foundation of extracting domain-invariant features.

The item Lpsc corresponds to the task of predicting pseudo-labels, as defined in (12).
The update of parameter caux in the auxiliary task can be expressed as follows:

caux = caux − η
∂Lpsc( f , caux, xs, ŷs, xt, ŷt)

∂caux
. (16)

The auxiliary task in PSCAN is designed to extract category semantic information
from pseudo-labels using supervised learning. The pseudo-labels guide the auxiliary task
to mine the category semantic information. Since the discriminability of source-specific
feature extraction can be ensured by learning with manual annotations, and the true and
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pseudo-labels share the same category space, learning pseudo-labels of source and target
domains can also lead to the discriminability of target features.

4. Experiments
4.1. Study Area and Data Sources

We have selected the Golden Gate Bridge area and its surrounding regions in San
Francisco, CA, USA, as our research objects. This study area comprises both urban and sub-
urban areas, making it ideal for evaluating the generalization performance of the proposed
method. Our experiments involve PolSAR image data captured with three different sensors.
These datasets were obtained from the Institute of Electronics and Telecommunications
of Rennes (https://ietr-lab.univ-rennes1.fr/polsarpro-bio/san-francisco/ (accessed on
21 February 2023)), and the ground maps used for reference were labeled by the Intelligent
Perception and Image Understanding Laboratory [67].

ALOS-2 San Francisco: This dataset was captured by the L-band satellite-bone Pol-
SAR system ALOS-2 in March 2015. The spatial resolution is 18 m. The size of the image
is 2784× 2900. Figure 6a is the Pauli RGB map of this dataset, and Figure 6b shows the
ground truth map.

GF-3 San Francisco: This dataset was captured by the C-band satellite-bone PolSAR
system Gaofen 3 (GF-3) in September 2017. The spatial resolution is 8 m. The size of the
image is 2304× 1600. Figure 6c is the Pauli RGB map of this dataset, and Figure 6d shows
the ground truth map.

RS-2 San Francisco: This dataset was captured by the C-band satellite-bone PolSAR
system RadarSat-2 (RS-2) in April 2008. The spatial resolution is 8 m. The size of the image
is 1380× 1800. Figure 6e is the Pauli RGB map of this dataset, and Figure 6f shows the
ground truth map.

Vegetation Low-Density Urban High-Density UrbanWater  Developed

 (a) PauliRGB of ALOS-2  (c) PauliRGB of GF-3  (e) PauliRGB of RS-2 (b) GT of ALOS-2  (d) GT of GF-3  (f) GT of RS-2

Figure 6. Pauli RGB and ground truth maps of the San Francisco datasets and the color code.
(a,b) ALOS-2 San Francisco dataset. (c,d) GF-3 San Francisco dataset. (e,f) RS-2 San Francisco dataset.

In addition, we used PolSAR images from GF-3 and RS-2 near the Jiaozhou Bay
cross-sea bridge in Qingdao, Shandong, China. The details are as follows.

GF-3 Qingdao: This dataset was captured with the GF-3 in November 2017. The spa-
tial resolution is 4.73 m. The size of the image is 2100× 1600. Figure 7a is the Pauli RGB
map of this dataset, and Figure 7b shows the ground truth map.

RS-2 Qingdao: This dataset was captured with the RS-2 in September 2009. The spatial
resolution is 8 m. The size of the image is 1300× 1200. Figure 7c is the Pauli RGB map of
this dataset, and Figure 7d shows the ground truth map.

https://ietr-lab.univ-rennes1.fr/polsarpro-bio/san-francisco/
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 (a) PauliRGB of GF-3  (c) PauliRGB of RS-2 (b) GT of GF-3  (d) GT of RS-2

Vegetation UrbanWater

Figure 7. Pauli RGB and ground truth maps of the Qingdao datasets and the color code. (a,b) GF-3
Qingdao dataset. (c,d) RS-2 Qingdao dataset.

4.2. Experimental Setup

Comparison methods: To validate the significance of the proposed method, both
traditional learning methods and deep DA methods were chosen for comparison. Specifi-
cally, for traditional learning methods, we chose transfer component analysis (TCA) [50],
joint distribution alignment (JDA) [68], balanced distribution adaptation (BDA) [69], and
transfer joint matching (TJM) [70]. For deep DA methods, we chose deep adaptation net-
work (DAN) [25], deep correlation alignment (DCORAL) [71], joint adaptation network
(JAN) [27], domain adversarial neural network (DANN) [28], and conditional domain
adversarial network (CDAN) [72].

Experiment settings: Before the training start, we prepared the pixel-centric PolSAR
image patch with the size of 15× 15× 16 for each dataset. Then the training and testing
sets were obtained based on the ground truth maps in Figure 6. It needs to be pointed
out that there is no overlap between the training and testing sets. When a dataset acts as
the source domain, the label of its training set will be preserved; when it acts as the target
domain, the label of the training set will be ignored. Therefore, six transfer tasks could be
constructed based on the three datasets.

The prediction of the traditional learning methods is performed using the 1-nearest
neighbor classifier based on feature alignment. The bandwidth of Gaussian kernels in
multikernel MMD has a range of {2−3, · · · , 22}. To ensure fairness of comparison, the model
parameters of all deep DA methods were shared. We used the Adam optimizer for the
optimization of deep methods and iterated the training for 150 epochs with a batch size
of 256. The learning rate was set to a small value of 0.0001 for the stability of the adversarial
training, and the learning rate of the feature encoder was set to 0.1 of that of the other parts
for better convergence [73].

To evaluate the performance of involved adaptation methods, overall accuracy (OA),
average accuracy (AA), and kappa coefficient (KC) were chosen as the evaluation criteria.
The higher the values of OA, AA, and KC are, the better the model is.

4.3. Comparison of Results

Based on the above-mentioned settings, we conducted experiments on the existing
transfer tasks to assess the effectiveness of the proposed method. The total experimental
results are shown in Table 1, which contains the OA of the involved methods across all
transfer tasks.
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Table 1. Comparison of the overall accuracy (%) on all transfer tasks. The A, G, and R in the first
column represent the ALOS-2, GF-3, and RS-2 datasets, respectively, and the Avg means average of
the performance of each task. With A→G taken as an example, the ALOS-2 is the source domain and
GF-3 is the target domain. The best results are highlighted in bold.

San Francisco Qingdao

Method A→G A→R G→A G→R R→A R→G Avg G→R R→G Avg Total

Source-only 58.40 79.91 35.22 64.85 73.20 40.77 58.73 61.02 57.37 59.20 58.96

TCA 68.68 81.47 68.29 76.58 75.97 75.16 74.36 87.62 64.68 76.15 75.25

JDA 71.35 82.12 71.36 74.24 79.58 78.06 76.12 88.56 84.43 86.50 81.31

BDA 70.53 81.75 72.87 73.49 78.85 77.81 75.88 91.06 84.22 87.64 81.76

TJM 73.83 80.90 74.28 77.55 77.52 79.22 77.22 93.64 74.87 84.25 80.74

DAN 81.41 93.13 85.21 86.38 91.23 86.67 87.34 92.86 91.97 92.42 89.88

JAN 77.73 93.06 85.96 86.56 91.40 86.69 86.90 92.91 91.52 92.22 89.56

DCORAL 77.56 94.43 83.22 92.38 84.96 79.17 85.29 94.42 90.98 92.70 88.99

DANN 80.45 93.57 91.77 91.67 92.31 85.15 89.15 96.23 90.25 93.24 91.20

CDAN 78.72 94.33 90.82 92.28 92.24 82.36 88.46 95.36 92.38 93.87 91.16

PSCAN 82.14 93.51 91.72 92.86 93.23 88.48 90.32 97.64 94.49 96.07 93.19

The results demonstrate that the proposed PSCAN achieved the best performance in
four out of six transfer tasks on the San Francisco area, with a suboptimal performance
in one of the remaining two tasks. Therefore, as shown in the Avg column, the proposed
method exhibited the highest overall accuracy across all transfer tasks. In comparison with
traditional learning methods, there is a noticeable performance gap in the test results of
deep DA methods, highlighting the significance of deep feature adaptation. Additionally,
the performance of statistical criterion-based methods in deep DA is not as impressive
as that of the adversarial loss-based ones, which is in line with current understanding.
Moreover, the proposed PSCAN improves the overall accuracy by 1.17% as compared
to the second-best method DANN on the San Francisco area and by 2.20% as compared
to the second-best method CDAN on the Qingdao area. Considering that the models of
both methods are identical, except for the incorporation of the auxiliary task in PSCAN,
we can attribute the improvement in performance to the utilization of the polarimetric
scattering characteristics. This observation substantiates the potential of the proposed
method in achieving effective knowledge transfer, leading to satisfactory unsupervised
classification results.

Tables 2–5 present the performance of each method in the transfer task under a specific
source domain, including the accuracy of each category, AA and KC. The corresponding
whole map classification results can be seen from Figures 8–11. Based on these results, we
provide the following analysis.

In the case of the source domain being ALOS-2, we present a detailed comparison of the
experimental results of the involved methods in Table 2, and the whole map classification
results are illustrated in Figure 8. For the first task, i.e., ALOS-2→GF-3, the proposed
PSCAN achieved the best testing results. As indicated in Table 2, the proposed method
shows a certain degree of improvement compared to most of the compared methods.
Specifically, the OA and KC are 0.73% and 0.97 higher, respectively, than is the suboptimal
DAN method, and the whole map classification result of PSCAN is significantly closer to
the ground truth map. For the task of ALOS-2→RS-2, all deep DA methods demonstrate
good classification performance, and the variation between the proposed method and the
model with the highest accuracy is approximately 1%.
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Table 2. Comparison of experimental results (%) on the San Francisco area when the source domain
is set to ALOS-2. The C1 to C5 refer to different categories: Water, Vegetation, High-Density Urban,
Low-Density Urban, and Developed.

ALOS-2 → GF-3 ALOS-2 → RS-2

Method C1 C2 C3 C4 C5 AA KC C1 C2 C3 C4 C5 AA KC

Source-only 8.96 96.72 92.78 48.63 45.37 58.49 47.81 85.88 79.25 16.23 99.36 95.38 75.22 74.34
TCA 87.47 93.85 84.34 40.65 40.72 69.41 60.69 98.94 94.29 83.96 57.52 67.04 80.35 76.72
JDA 99.12 97.49 78.07 44.23 42.85 72.35 64.10 99.94 95.30 77.49 71.50 59.63 80.77 77.51
BDA 99.12 96.60 77.22 45.94 37.99 71.37 63.04 99.82 95.11 70.62 76.17 60.75 80.49 77.06
TJM 99.39 93.20 74.22 49.47 58.82 75.02 67.19 97.71 93.29 68.38 70.71 70.06 80.03 76.02
DAN 99.72 87.45 76.57 73.63 77.92 83.06 76.32 97.31 88.93 95.46 92.92 93.93 93.71 91.32
JAN 62.35 93.52 95.67 74.51 61.70 77.55 71.67 96.36 89.86 93.95 93.44 93.53 93.43 91.21

DCORAL 99.66 94.67 95.82 58.99 55.74 80.98 71.84 99.89 89.56 95.04 94.11 96.12 94.94 92.95
DANN 95.30 96.88 91.32 81.35 32.58 79.49 75.00 99.55 87.55 97.95 92.08 95.28 94.48 91.89
CDAN 82.40 92.59 96.74 65.11 68.55 81.08 73.21 99.84 90.01 96.22 92.76 95.67 94.90 92.83
PSCAN 99.67 94.78 94.71 75.89 49.77 82.96 77.29 99.97 91.52 94.34 90.91 92.27 93.80 91.78

(a)

PauliRGB

(b)

DAN DCORAL JAN DANN CDAN PSCAN

Figure 8. Comparison of the whole map classification results on the San Francisco area when the
source domain is set to ALOS-2. The circles in pink and gray represent the correct and incorrect
classification, respectively. (a) GF-3 as the target domain. (b) RS-2 as the target domain.

A comprehensive comparison of experimental results for the respective methods when
the source domain is set to GF-3 is presented in Table 3, and the whole map classification
results are illustrated in Figure 9. The highest level of accuracy during testing was attained
by the proposed PSCAN when the target domain was assigned as RS-2. This same con-
clusion can be drawn from Figure 9, where PSCAN demonstrates superior classification
results in the marked areas. For the other transfer task, PSCAN yields suboptimal testing
results but it is only about 0.1% behind the optimal result in both AA and KC. The addition
of the auxiliary task improves the classification accuracy of the baseline for Vegetation and
Low-Density Urban in the first task as well as Low-Density Urban and Developed in the
second task.

A detailed comparison of experimental results for the involved methods when the
source domain is set to RS-2 is presented in Table 4, while the whole map classification
results are illustrated in Figure 10. PSCAN outperformed the previous two methods in
this experimental setting, achieving the best results in both transfer tasks. Specifically,
for the RS-2→GF-3 task, the proposed PSCAN achieved about a 2% increase in both
AA and KC metrics. The conclusions derived from the whole map classification results
are consistent with those drawn from the testing results. As indicated in Figure 10a,
the performance of PSCAN in the two marked regions is significantly better than other
methods. Although Figure 10b shows that the classification performance of PSCAN for
water is slightly inferior, it exhibits the best classification performance for urban areas.
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Moreover, the addition of the auxiliary task improves the accuracy for Low-Density Urban
in the first task and Developed in the both tasks.

Table 3. Comparison of experimental results (%) on the San Francisco area when the source domain
is set to GF-3.

GF-3 → ALOS-2 GF-3 → RS-2

Method C1 C2 C3 C4 C5 AA KC C1 C2 C3 C4 C5 AA KC

Source-only 3.42 96.47 88.01 46.84 5.51 48.05 25.70 83.61 93.34 98.26 45.62 3.45 64.86 56.05
TCA 55.05 86.19 48.20 94.84 61.38 69.13 60.21 93.25 80.00 45.73 89.01 73.01 76.20 70.66
JDA 56.81 72.81 63.85 94.65 67.54 71.13 63.95 84.10 83.07 51.38 88.15 61.39 73.62 67.70
BDA 59.00 80.29 68.95 93.19 62.75 72.83 65.90 82.57 83.39 52.28 86.75 59.08 72.81 66.75
TJM 73.63 83.60 61.77 90.71 63.43 74.63 67.74 92.37 81.69 48.75 88.75 74.52 77.22 71.88
DAN 83.97 78.89 96.49 85.54 81.38 85.25 80.96 98.24 75.71 88.01 85.33 90.38 87.53 82.94
JAN 85.50 77.18 96.96 86.19 82.38 85.64 81.90 97.80 72.46 91.43 86.34 93.25 88.25 83.20

DCORAL 81.70 90.79 97.17 89.54 64.11 84.66 78.64 98.90 89.94 97.07 90.50 88.53 92.99 90.37
DANN 97.74 73.39 97.68 94.95 82.76 89.30 89.28 99.74 89.08 98.04 89.37 85.85 92.42 89.47
CDAN 98.61 80.92 96.53 90.27 77.86 88.84 88.05 99.16 83.65 97.23 92.34 94.90 93.46 90.28
PSCAN 99.28 77.55 93.10 95.27 80.82 89.20 89.20 98.78 86.86 93.64 93.67 94.45 93.48 90.97

(a)

PauliRGB

(b)

DAN DCORAL JAN DANN CDAN PSCAN

Figure 9. Comparison of the whole map classification results on the San Francisco area when the
source domain is set to GF-3. The circles in pink and gray represent the correct and incorrect
classification, respectively. (a) ALOS-2 as the target domain. (b) RS-2 as the target domain.

(a)

PauliRGB

(b)

DAN DCORAL JAN DANN CDAN PSCAN

Figure 10. Comparison of the whole map classification results on the San Francisco area when the
source domain is set to RS-2. (a) ALOS-2 as the target domain. (b) GF-3 as the target domain.
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Table 4. Comparison of experimental results (%) on the San Francisco area when the source domain
is set to RS-2.

RS-2 → ALOS-2 RS-2 → GF-3

Method C1 C2 C3 C4 C5 AA KC C1 C2 C3 C4 C5 AA KC

Source-only 59.69 94.40 88.30 88.26 58.70 77.87 66.88 0.17 94.85 97.46 14.33 12.23 43.81 27.76
TCA 70.48 95.47 67.30 90.02 60.35 76.72 69.92 99.73 96.54 75.69 59.09 47.77 75.77 68.81
JDA 77.68 91.01 76.80 86.08 68.28 79.97 74.40 100.00 95.94 72.02 64.69 61.34 78.80 72.48
BDA 77.26 91.87 76.13 84.43 66.97 79.33 73.49 100.00 96.24 71.34 64.38 60.81 78.56 72.16
TJM 78.38 95.18 66.97 87.49 63.66 78.34 71.86 100.00 95.53 61.73 73.00 69.46 79.94 73.91
DAN 96.00 88.20 94.79 94.31 78.09 90.28 88.61 99.71 90.33 86.93 83.62 75.70 87.26 82.94
JAN 96.80 88.93 94.29 94.32 77.51 90.37 88.83 99.72 90.41 86.88 83.68 75.66 87.27 82.96

DCORAL 80.42 91.01 96.49 91.16 74.29 86.67 80.83 99.62 93.85 94.95 63.41 58.46 82.06 73.77
DANN 98.26 88.85 94.35 96.04 77.86 91.07 90.01 97.31 96.53 88.93 82.55 60.99 85.26 81.01
CDAN 98.58 87.71 97.14 91.37 80.06 90.97 89.93 96.15 96.93 91.39 80.40 45.89 82.15 77.46
PSCAN 99.67 83.22 94.35 93.71 85.46 91.28 91.16 97.81 93.41 81.97 89.09 78.88 88.23 85.20

We present the detailed experimental results on the Qingdao area in Table 5, following
a similar approach as that for the San Francisco area. The Qingdao area contains only
two datasets, resulting in two transfer tasks: GF-3 as the source domain and RS-2 as the
target domain, or RS-2 as the source domain and GF-3 as the target domain. Our results
show that the classification performance of the method without adaptation is unsatisfactory
and has the lowest classification accuracy among all methods, regardless of the source
and target domains. However, when RS-2 is set as the target domain, the traditional
UDA methods perform well, and both BDA and TJM methods have similar classification
accuracy to the deep UDA methods. However, when GF-3 is used as the target domain,
the performance of these methods decreases significantly, which reflects the limitations
of using shallow features. In contrast, the performance of deep UDA methods remains
relatively stable in both transfer tasks, and the performance of three ADA-based methods
is higher. In comparison with other methods, the proposed method achieves the most
outstanding classification performance. When RS-2 is the target domain, the proposed
method’s evaluation criteria are 1.41%, 1.42%, and 2.12 higher than those of the second-best
DANN method. With GF-3 as the target domain, the proposed method’s evaluation criteria
are also 2.11%, 2.10%, and 3.21 higher than those of the second-best CDAN method, which
clearly demonstrates its advantages. It achieves the optimal or suboptimal accuracy in the
classification of Urban, Vegetation in both tasks. In summary, the proposed method results
in an increase of about 2% in OA and AA, and the performance improves by more than
30% compared to that before adaptation.

Table 5. Comparison of experimental results (%) on the Qingdao area. The C1 to C3 refer to different
respective categories: Urban, Vegetation, and Water.

GF-3 → RS-2 RS-2 → GF-3

Method C1 C2 C3 AA KC C1 C2 C3 AA KC

Source-only 85.53 0.00 100.00 61.84 41.90 100.00 0.00 85.45 61.82 37.40
TCA 92.73 69.55 100.00 87.43 81.38 87.52 63.64 37.39 62.85 45.41
JDA 92.56 72.98 99.71 88.42 82.74 85.21 85.18 82.32 84.23 76.14
BDA 92.15 81.45 99.52 91.04 86.53 84.76 86.95 79.39 83.70 75.75
TJM 92.73 88.49 99.90 93.71 90.44 83.07 64.01 81.08 76.05 61.88
DAN 90.03 88.89 99.81 92.91 89.29 97.46 89.66 88.76 91.96 87.87
JAN 92.37 86.69 99.91 92.99 89.37 93.95 84.93 97.59 92.15 87.21

DCORAL 90.51 99.36 93.19 94.35 91.62 89.69 85.55 99.77 91.67 86.39
DANN 90.37 98.26 99.96 96.20 94.34 81.04 91.31 99.46 90.60 85.23
CDAN 86.00 99.88 100.00 95.29 93.04 85.76 93.74 98.19 92.56 88.46
PSCAN 93.71 99.29 99.86 97.62 96.46 89.62 95.11 99.27 94.66 91.67

Figure 11 shows the whole map classification results on the Qingdao area. Similar
to the previous ones, the meanings of the results of each row and the circles are given
in the caption. From the results, it can be seen that the proposed method achieves the
best classification results on both tasks. The conclusions reflected in the classification
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maps are consistent with the quantitative results, which can verify the effectiveness of the
proposed PSCAN.

DAN DCORAL JAN DANN CDAN PSCANPauliRGB

(a)

(b)

Figure 11. Comparison of the whole map classification results on the Qingdao area. The circles in
pink and gray represent the correct and incorrect classification, respectively. (a) RS-2 as the target
domain. (b) GF-3 as the target domain.

4.4. Effect of Hyperparameter

As shown in (13), the value of hyperparameter α reflects how much the model pays
attention to the auxiliary task in the process of adversarial training. Using the Qingdao
datasets, we analyzed the influence of α on the model performance. The experimental
results are shown in Figure 12.
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Figure 12. Effect of α on classification performance of the proposed PSCAN. (a) Results when RS-2 is
the target. (b) Results when GF-3 is the target.

According to the experimental settings, we set the value of α within [0.05, 0.15, · · · ,
0.95, 1.0]. From the experimental results, it can be seen that when GF-3 is the source domain
and RS-2 is the target domain, the classification performance is poor when the α is around
0.85, and the OA changes slightly between 96.5% and 97.5% in the other times. When RS-2
is source and GF-3 is target, the performance of PSCAN is poor when the value of α is
between 0.5 and 0.75, and the change of OA is relatively stable when using other values.

4.5. Feature Visualization Results

We used the San Francisco datasets, taking ALOS-2 as the source and GF-3 as the
target to train the network. Then, principal component analysis (PCA) was used to reduce
the dimension of features extracted before and after the adaption to realize the feature
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visualization so as to verify the effectiveness of the proposed method in improving the
transferability and discriminability of features.

Feature distributions of the data under two categories of Water and Low-Density
Urban with low classification accuracy are compared in Figure 13, where the red scatter
represents the source data and the blue is the target data.

The experiment used the features corresponding to the first three principal compo-
nents extracted by PCA to form a three-dimensional space. Compared with the feature
visualization result after adaptation, the scatter points in the result before adaptation were
more distant from each other, and their spatial distribution was more dispersed, which
shows that the proposed method can effectively align the feature distribution of source and
target domains, and extract features with transferability.

Then, we compared the feature distribution of all categories of target data before
and after adaptation. By reducing the dimension of features extracted from the target
domain to two and observing the distance between categories in the two-dimensional
plane, the discriminability of the target domain features can be inferred.

As shown in Figure 14a, the samples of Water and Vegetation, High-Density Urban
and Low-Density Urban, and Vegetation and Developed have a certain degree of overlap
in spatial distribution. In contrast, the result shown in Figure 14b have better feature
discriminability, which is reflected in the samples of the Water category being far away
from the ones of other categories the fewer overlapping areas between High-Density Urban
and Low-Density Urban and between Vegetation and Developed than the result before
adaptation. These results prove the effectiveness of the proposed method in improving the
discriminability of target features.
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Figure 13. Comparison of feature distributions between the source and target data before and after
adaptation. (a) Feature distribution of Water data before adaptation. (b) Feature distribution of
water data after adaptation. (c) Feature distribution of Low-Density Urban data before adaptation.
(d) Feature distribution of low-density urban data after adaptation.
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(a) (b)

Figure 14. Comparison of the feature discriminability of target data before and after adaptation.
(a) Target feature visualization before adaptation. (b) Target feature visualization after adaptation.

4.6. Ablation Experiments

The auxiliary task for receiving the guidance from polarimetric scattering character-
istics and the domain discriminator for aligning feature distributions are two important
components as well as the keys to improvement. To verify their effectiveness, ablation
experiments were conducted. It could be observed that the performance differences of
DAN, DANN, and PSCAN can be used to verify this issue. When the hyperparameters of
these models were set the same, the DAN could be seen as lacking the domain discriminator
version of DANN, while the DANN could be seen as lacking the auxiliary task version of
the proposed PSCAN.

Specific comparison results on the two areas are summarized in Figure 15, where the
meaning of coordinate axis is consistent with that in Table 1. It can be seen that in the eight
transfer tasks, the performance of the model with polarimetric scattering characteristics
is better than or at least equal to that of the model without auxiliary task. In addition,
the domain discriminator also plays a positive role in improving the accuracy in most cases.
These observations show that the performance improvements should be attributed to the
addition of the domain discriminator and our proposed auxiliary task, which ensure the
transferability and discriminability of features, respectively. In addition, it also shows that
the proposed method has the potential to improve the adaptive networks in a plug-and-
play manner.

A→G A→R G→A G→R R→A R→G G→R R→G
0.7

0.75

0.8

0.85

0.9

0.95

1

O
v
e
ra

ll 
A

c
c
u
ra

c
y

w/o discriminator

w/o auxiliary task

the proposed

(a)

A→G A→R G→A G→R R→A R→G G→R R→G
0.7

0.75

0.8

0.85

0.9

0.95

1

K
a
p
p
a
 C

o
e
ff
ic

ie
n
t

w/o discriminator

w/o auxiliary task

the proposed

(b)

Figure 15. Comparison results of the ablation study. (a) Results of OA. (b) Results of KC.

5. Conclusions

This paper presents a novel adversarial learning approach for the unsupervised clas-
sification of PolSAR images. Its innovation is reflected in the following aspects: First,
the proposed method builds upon the unexplored deep unsupervised DA studies while
taking into account the specific characteristics of PolSAR images. Second, given that
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PolSAR data contains unique information, we designed an auxiliary task to capture the
polarimetric scattering characteristics and construct the pseudo-labels using a deep ADA
model. This enables us to align the features of the source and target domains while ensuring
both feature transferability and discriminability. Third, we propose a PSCAN method by
explicitly modeling the feature confusion process. Experimental results demonstrate that
our approach can extract domain-invariant and discriminative features and improve the
performance on the target domain classification task.

Our experiments utilized datasets from three distinct PolSAR systems covering the San
Francisco and Qingdao areas. The results demonstrate that our proposed method achieves
superior unsupervised classification performance across most transfer tasks. Furthermore,
we discuss the novelty, particularity, and applicable conditions of our approach.

While some progress has been achieved, shortcomings still exist, which are mainly
reflected in the fact that the uncertainty in the process of pseudo-label construction has not
received sufficient attention. In future work, we aim to address this issue through selective
pseudo-labeling. Moreover, several unresolved issues in the PolSAR community, includ-
ing improving the utilization of polarimetric information in the PolSAR data, exploring
multisource-based adaptation techniques, and tackling domain generalization problems
are all issues we are considering.
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