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Abstract: Remote sensing image classification (RSIC) is a classical and fundamental task in the
intelligent interpretation of remote sensing imagery, which can provide unique labeling information
for each acquired remote sensing image. Thanks to the potent global context information extraction
ability of the multi-head self-attention (MSA) mechanism, visual transformer (ViT)-based architec-
tures have shown excellent capability in natural scene image classification. However, in order to
achieve powerful RSIC performance, it is insufficient to capture global spatial information alone.
Specifically, for fine-grained target recognition tasks with high inter-class similarity, discriminative
and effective local feature representations are key to correct classification. In addition, due to the
lack of inductive biases, the powerful global spatial context representation capability of ViT requires
lengthy training procedures and large-scale pre-training data volume. To solve the above problems, a
hybrid architecture of convolution neural network (CNN) and ViT is proposed to improve the RSIC
ability, called P2FEViT, which integrates plug-and-play CNN features with ViT. In this paper, the
feature representation capabilities of CNN and ViT applying for RSIC are first analyzed. Second,
aiming to integrate the advantages of CNN and ViT, a novel approach embedding CNN features
into the ViT architecture is proposed, which can make the model synchronously capture and fuse
global context and local multimodal information to further improve the classification capability of
ViT. Third, based on the hybrid structure, only a simple cross-entropy loss is employed for model
training. The model can also have rapid and comfortable convergence with relatively less training
data than the original ViT. Finally, extensive experiments are conducted on the public and challeng-
ing remote sensing scene classification dataset of NWPU-RESISC45 (NWPU-R45) and the self-built
fine-grained target classification dataset called BIT-AFGR50. The experimental results demonstrate
that the proposed P2FEViT can effectively improve the feature description capability and obtain
outstanding image classification performance, while significantly reducing the high dependence of
ViT on large-scale pre-training data volume and accelerating the convergence speed. The code and
self-built dataset will be released at our webpages.

Keywords: remote sensing image classification; vision transformer; plug-and-play; feature embedded

1. Introduction

As the fundamental task in remote sensing image interpretation, image classification
has critical applications in many fields, such as intelligent transportation, precision agri-
culture, urban planning, military monitoring, etc. [1–5]. In recent years, there has been
a proliferation of image classification algorithms that continue to set new performance
records in natural scene datasets, such as ImageNet [6], CIFAR [7], Fashion-MNIST [8], etc.
At the algorithm level, they can be divided into two categories according to the feature
extractor. The first category is convolutional neural network (CNN)-based methods; as

Remote Sens. 2023, 15, 1773. https://doi.org/10.3390/rs15071773 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15071773
https://doi.org/10.3390/rs15071773
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7850-8766
https://doi.org/10.3390/rs15071773
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15071773?type=check_update&version=1


Remote Sens. 2023, 15, 1773 2 of 26

the basis of modern deep learning technology, classical CNN-based image classification
algorithms have continuously achieved performance breakthroughs within the last decade.
In the early period, classification networks, such as LeNet5 [9], AlexNet [10], VGG [11],
GoogleNet [12], and other simple shallow convolutional neural networks, relying on the
CNN’s ability to extract image features, far exceeded other traditional machine learning
algorithms [13–15] in classification performance. Next, with the emergence of ResNet [16]
residual networks, CNN-based image classification networks gradually developed into
deeper layers. The better feature description ability acquired by continuously deepening
the network and constructing better inter-layer connections further improved the network
generalization ability and classification performance. In recent years, CNN-based image
classification networks, such as NFNet [17], ConvNext [18], ResNest [19], etc., have still
shown excellent performance in natural scene image classification through their specifically
designed network structure.

The second category is vision transformer (ViT)-based methods [20–23]. Just as CNNs
have dominated visual representation in the last decade, the Transformer has the same
status in the field of natural language processing (NLP). In the early period of computer
vision, the Transformer was used as a feature aggregator in object detection or video
understanding to extract global context information from images. However, its performance
was not remarkable, so it has been neglected for several years. In the last two years, excellent
CNN-free Transformer classification networks, such as ViT and SWIN-Transformer [20,21],
have emerged and broken the domination of CNN on natural scene benchmarks, such
as ImageNet [6] and CIFAR [7]. After researchers realized the excellent performance of
ViT in the field of computer vision, CNN-free classification networks based on ViT and
SWIN-Transformer emerged one after another.

Unlike natural scene images, remote sensing images often have large scale and tonal
differences between the same class of objects due to different image acquisition conditions.
In addition, the objects in remote sensing scene images often present significant inter-class
similarity and intra-class differences, as shown in Figure 1. Figure 1a presents different
examples of the same categories. It can be intuitively seen that the intra-class variance is
large in remote sensing images. Figure 1b shows instance samples of different categories,
which are easily confused because of the significant inter-class similarities. In remote
sensing image classification (RSIC) tasks, better global context information representation
is essential to improve classification performance, while stronger local feature description
facilitates the network to better identify remote sensing targets with slight inter-class
variability, both of which are indispensable. These objective factors make it necessary for
the network to have better feature representation capability with the aim of achieving
satisfactory performance in the field of RSIC. Moreover, with the development of modern
optical remote sensing technology, the volume of available remote sensing images has been
increasing rapidly. However, the available labeled training data volume is still much less
than that for natural scenes. Therefore, RSIC is a demanding and challenging research topic.
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Figure 1. Instance samples in NWPU-RESISC45 dataset [24]. (a) presents different examples of the
same category. (b) presents instance examples of different categories.

As analyzed above, the research on RSIC has recently mainly focused on improving the
feature description capability of the network. To obtain better global context information
and local feature representations, researchers have tried to integrate global information
into the CNN structure through various methods [25–30]. For example, Cheng et al. [25]
specifically designed a stacking CNN architecture based on the ensemble learning method.
First, a modified multi-scale CNN is applied to capture multi-scale structural features. Then,
a hidden Markov model (HMM) is utilized to gather global information on the structural
features. The final prediction is generalized through ensemble learning of extreme gradient
boosting (XGBoost). Wang et al. [26] constructed a deformable CNN structure to make
the sampling positions adapt to the shape of targets in the remote sensing images; the
spatial-channel attention mechanisms are used to obtain a better global feature description.
A parallel CNN-based self-adaptive attention network is proposed in [27]. First, a parallel
convolutional block is applied to capture multiscale fused features. Then, a sequential
convolutional attention block is designed to obtain global context features. The global
context features are classified through a series of residual blocks with the attention mech-
anism and a fully connected (FC) layer. However, the limited effective receptive field
(ERF) of CNN restricts the performance of image classification networks. The value of
each unit in a convolutional network depends only on a region of the input, which is the
so-called receptive field. The size of the receptive field is a key issue in CNN-based image
classification methods because the output must respond to a sufficiently large region of the
image to capture enough context information for image classification or target recognition.
Once the receptive field is insufficient, the network will only focus on a limited region
which cannot represent the feature of the whole object. The receptive field can be linearly
increased by staking more layers or multiplicatively increased through pooling operations.
However, in the receptive field study for CNNs, [31] states that not all pixels in CNNs
contribute equally to the receptive field. Pixels in the central part have a larger impact
on the output receptive field. In addition, the ERF of CNNs tends to be smaller than the
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theoretical receptive field (TRF). This indicates that CNNs are more concerned with local
feature representation and are limited in their ability to extract global context information.
In addition, [32] points out that the ERF of traditional CNNs with stacking deep layers of
small convolution kernels, such as ResNet101 [16] and ResNet152 [16], is actually not large,
proving that the method of deepening the network by convolution and pooling cannot
obtain a larger ERF. For remote sensing images with complex scenes and significant target
scale variations, the restriction of ERF in CNN makes it challenging to obtain global context
information, which essentially limits its feature representation capability. Therefore, al-
though the above-mentioned researchers have tried introducing global context information
in different ways to enhance the feature representation capability of CNNs, the existing
methods still have room for enhancement due to the constrained ERF of CNNs. With the
proposal of ViT in computer vision, thanks to Transformer’s self-attention mechanism, it
can effectively capture global context information. The multi-head self-attention mecha-
nism (MSA) can map long-range relationships to multiple spaces for more potent global
contextual information representation. For example, Bazi et al. [33] directly applied the ViT
model to solve image classification in remote sensing images and proposed a series of data
augmentation strategies to expand the training data volume for ViT’s training procedure.
To fuse the channel attention to the ViT, Lv et al. [34] proposed a spatial-channel feature-
preserving ViT model, which considers both the global context information of the image
and the contribution of the different channels in the classification token. However, since ViT
only considers the relationship between patches and ignores the information inside them,
it cannot effectively model the local features, which is non-negligible for RSIC. In addition,
due to the lack of inductive bias in the Transformer, the ViT models generally depend on
a very large scale pre-training data volume to obtain better performance. In summary,
existing works on feature representation improvement are mainly concentrated in CNN
or ViT, each of which has its own advantages and shortcomings. For example, CNN can
capture local discriminative features quickly and effectively, but cannot capture global
spatial context information effectively. ViT can capture global spatial context information
through lengthy and large data training but ignores local discriminative information in
local patch tokens. Therefore, an effective feature representation approach that can combine
local discriminative features and global spatial context information needs to be further
explored to improve the performance of RSIC.

To address the limitations of existing methods in terms of feature representation,
a plug-and-play CNN feature embedded hybrid vision transformer, so-called P2FEViT, is
proposed in this paper, which fully combines the advantages of CNN and ViT without
complex specific network design. The proposed hybrid network allows embedding features
extracted from any CNN structure as a plug-and-play module into the ViT architecture.
The flexibility allows us to easily combine different CNN features with ViT structures and,
thus, create a hybrid ViT network. In addition, the plug-and-play feature provides more
experimental flexibility, thus helping to explore potential combinations of various CNN
features with ViT architectures for better RSIC performance. The fusion of ViT and CNN by
feature embedding makes full use of the local feature description capability of CNN and
the representation ability of ViT for global context information. Through complementation,
the convergence speed and generalization ability of ViT can be improved significantly.
Since inductive biases can be attached by the embedding CNN features, the hybrid network
can reduce the reliance of ViT on a very large-scale pre-training data volume to achieve
better classification performance. In this paper, we first intuitively analyze the feature
representation capabilities of CNN and ViT models. Then, the detailed structure of the
proposed P2FEViT is elaborated. Third, based on the hybrid structure, only a simple
cross-entropy loss is employed for model training, and the model can achieve state-of-
the-art (SOTA) classification performance as well as faster convergence than the original
ViT. Furthermore, we collect remote sensing images containing aircraft targets of various
scales and categories from Google Earth and construct an aircraft fine-grained recognition
dataset, BIT-AFGR50. To verify the effectiveness of the proposed method, we conducted
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extensive experiments on the publicly available remote sensing scene classification dataset,
NWPU-RESISC45 (NWPU-R45) [24], and the self-built BIT-AFGR50. The contributions can
be summarized below:

(1) A new hybrid classification architecture according to CNN and ViT is proposed for
RSIC, which can be applied to complicated remote sensing scene classification and
fine-grained target recognition tasks.

(2) To address the limitations of existing methods in terms of feature representation,
a novel approach embedding plug-and-play CNN features to ViT model is proposed,
which can make full use of the local feature description capability of CNN and
the representation ability of ViT for global context information to achieve better
classification performance, as well as to reduce the high dependence of ViT models
on large-scale pre-training data volume.

(3) Considering that a large number of datasets are constructed based on the remote
sensing scene classification task and relatively few datasets for the fine-grained target
recognition task, a new fine-grained target recognition dataset is constructed in this
paper, which contains 50 categories of aircraft targets aiming to facilitate scholars to
carry out research on fine-grained target recognition.

2. Related Work
2.1. Review of Remote Sensing Image Classification Methods

With the increase in spatial resolution of remote sensing images, RSIC tasks are gener-
ally refined into three types: pixel-level classification, also known as semantic segmentation,
target-level classification, and scene-level classification. In this paper, we refer to these three
types of tasks collectively as RSIC. Driven by realistic task requirements, RSIC has been a hot
research topic for researchers in recent decades, and many excellent RSIC algorithms have
been proposed. Thanks to the development of modern optical remote sensing technology,
much more remote sensing image data can be obtained, and data-driven deep learning-
based algorithms are gradually being recognized. As the winner of the 2012 ImageNet
image classification challenge, a convolutional neural network (CNN)-based image classifi-
cation algorithm AlexNet [10] set off a boom in research on CNN-based algorithms. Around
2015, research on CNN-based RSIC algorithms gradually made progress. Penatti et al. [35]
introduced CNNs in RSIC algorithms and evaluated the generalization capability of deep
features, which achieved the most SOTA performance on the well-known remote sensing
public dataset UC Merced [36]. It was shown that CNN can acquire higher-level image
features than traditional hand-crafted feature-based methods [37–39], and is superior in
generalization and robustness. In recent years, there have been numerous studies on CNN-
based RSIC algorithms. To improve the classification performance, researchers have mainly
focused on the following aspects, which can be summarized as feature-level, data-level,
and strategy-level. First, in order to obtain a better image feature representation capability
for the network and, thus, improve the classification performance, numerous feature-level
studies have been conducted [40–42]. For example, to improve the feature representation
and generalization ability of CNN for detailed texture features, Song et al. [40] proposed
an attention mechanism added to the CNN structure to eliminate the redundancy in CNN
features, and wavelet transform was used to extract and reconstruct the feature map, which
effectively improved the performance of RSIC. The study [41] designed a multi-scale at-
tention (MSA) module to highlight the salient features and obtain the global contextual
information representation. Shi et al. [42] proposed a multi-branch feature fusion network
to improve the feature representation capability with multi-convolution cooperation.

Second, to enhance the classification performance with the limited labeled remote
sensing image data volume, researchers have proposed a series of data-level studies [43–48].
For example, to improve the classification performance under long-tail distributed data,
Miao et al. [43] proposed a class-imbalanced pseudo-label selection approach to evaluate
the quality of unlabeled samples, which could effectively increase the available training
data volume. To combat the lack of labeled training data, the study [44] presented a



Remote Sens. 2023, 15, 1773 6 of 26

data augmentation method based on a spectral-indexed generative adversarial network
(GAN). The spectral characteristic of images was applied to data augmentation through
the spectral-indexed GAN. Zhang et al. [48] proposed an improved simple linear iterative
cluster (SLIC)-based classification method, which can increase the effectiveness of pseudo-
labeled samples. Stivaktakis et al. [45] proposed a dynamic data augmentation strategy
to expand the training data volume in each batch by an online linear transformation.
Xiao et al. [46] proposed a remote sensing image data augmentation approach based on
a neural style transfer (NST). The transferred images are applied to increase the training
data volume. In order to increase the data volume for arbitrary remote sensing datasets,
Yu et al. [47] proposed a data augmentation approach by applying linear transformations
to generate simulation data for constructing an augmented dataset, and the constructed
dataset can be used to train models with better representation capability.

Since the loss function guides the whole training procedure, proper selection of the
loss function plays a crucial role in deep-learning-based image classification methods.
For strategy-level improvement, researchers have proposed a series of studies on the loss
function [49–53]. The authors of [49] analyzed and compared different deep learning
loss functions in RSIC tasks and proposed a loss function selection scheme. To combat
the effect of the vanishing gradient problem in deeper CNNs, Bazi et al. [50] proposed
a simple yet efficient auxiliary loss function to help CNNs to converge. To improve
the classification performance without changing the network structure in the inference
procedure, Zhang et al. [51] trained the network with multi-size images and applied triplet
loss to introduce more supervision information. To achieve better classification performance
under the restriction of limited, clearly labeled remote sensing images, Zhang et al. [52]
improved the center loss to a semi-supervised form and designed a cooperative dual-branch
architecture to integrate the labeled and unlabeled samples. Wei et al. [53] presented a
marginal center loss with an adaptive margin to overcome the limitation of significant
intra-class variations in RSIC tasks. The marginal center loss can separate hard samples
and enhance the contributions of hard samples to minimize the variations in features of
intra-class targets.

In 2020s, the Google team applied Transformer to the image classification task and
proposed the ViT structure, which has demonstrated its excellent classification ability on
ImageNet. Because of the simple and outstanding structure of ViT and its potent scalability,
it has triggered subsequent related research [33,54–56]. Bazi et al. [33] directly applied the
ViT model to the RSIC task. Unlike CNN, the ViT model can obtain long-range global
context information among image patches through the self-attention mechanism. The pow-
erful feature extraction capability allows ViT to present outstanding performance in RSIC
tasks. Since then, improved ViT models have emerged in the field of RSIC. For exam-
ple, to handle the scale variation and arbitrary orientations of targets in remote sensing
images, Wang et al. [54] introduced a learnable rotation mechanism into the ViT to learn
multi-scale windows with different orientation angles for attention calculation. To enhance
the local features, Sha et al. [55] proposed a multi-instance ViT, which mainly depends
on multiple-instance learning (MIL). The framework highlights the feature response of
key local regions for RSIC. Deng et al. [56] proposed a hybrid CNN and ViT architecture
to further boost the classification ability at the decision level. The model contains two
independent branches which are constructed with CNN and ViT. Images are fed into the
parallel branches independently, and a joint loss function is developed to optimize the
classifier. To achieve better feature representation capability, several specific-designed
CNN-ViT hybrid networks, such as container [57] and CoAtNet [58], have been studied in
natural scene image classification. In this paper, we propose a hybrid CNN-ViT structure
focused on feature-level improvement for RSIC. The goal of our method is to fully combine
the advantages of CNN and ViT in feature representation, as well as to avoid a complex
specific network design.
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2.2. Remote Sensing Image Classification Benchmarks

Datasets play a crucial role in the development of RSIC algorithms. As optical remote
sensing technology develops, the volume of remote sensing images has grown significantly,
which makes it possible to construct large-scale RSIC datasets. In the past decade, many
remote sensing scene image classification datasets have been constructed and made public
by researchers to facilitate the study of RSIC algorithms. In 2010, Yang et al. constructed
UC-Merced [36], a dataset for land use classification, which contains 21 categories of targets,
such as aircraft, beaches, and buildings, each containing 100 images. It is a milestone
for promoting the development of RSIC. In the same year, Wuhan University established
a 19-category remote sensing scene classification dataset called WHU-RS19 [59], which
further enriched the available datasets in RSIC. In 2015, RSSCN7 [60] was established which
contains seven typical remote sensing scenes. The AID dataset [61] is a large-scale scene
classification dataset released by Wuhan University in 2017. By collecting images from
Google Earth, the researchers constructed a large-scale aerial image dataset consisting of 30
remote-sensing scene categories, such as airports, bridges, harbors, etc. The well-known
NWPU-RESISC45 dataset (NWPU-R45) [24] was constructed and published by North-
western Polytechnic University in 2017. It contains 45 scene classes with 700 instances
per class. The NWPU-R45 collects images from over 100 regions and countries with a
total of 31,500 instances. In 2021, a large-scale scene classification dataset containing one
million aerial images was established, which is the so-called Million-AID [62], including
51 categories and more than 1 million sample instances. With the spatial resolution of re-
mote sensing images significantly improved, constructing fine-grained image classification
datasets becomes possible. Fine-grained recognition datasets play important roles in the
study of network structures with stronger classification capabilities. In 2021, a fine-grained
ship target recognition dataset, FGSCR-42 [63], was released by Beihang university. It cov-
ers 42 categories of ship targets, and the dataset contains 9320 images, adding a large-scale
usable data volume to the field of fine-grained target recognition. FAIR1M [64] is another
novel benchmark dataset established in 2021, which contains more than 1 million instances
and more than 40,000 images for fine-grained target recognition. Due to the relatively
more difficult fine-grained category labeling for aircraft targets, there are few existing
fine-grained target recognition datasets for remote-sensing aircraft targets. Consequently,
to facilitate the technology development in this area, we constructed a fine-grained aircraft
recognition dataset containing more than 10,000 images with 50 categories in this paper.

3. Materials and Methods
3.1. Analysis on the CNN and ViT

Before introducing the method proposed in this paper, we will first analyze the feature
representation capabilities of CNN and ViT. Reviewing the performance of ViT and CNN
models on the natural scene image classification dataset, ImageNet [6], we find that ViT
models tend to have poor classification performance if they are not pre-trained on a larger
dataset. In practice, ViT models generally need to be pre-trained on JFT-300M [65], 300 times
larger than the ImageNet dataset, to obtain better performance on ImageNet [6]. When
the training data volume is limited, the ViT model usually performs worse than ResNet
with the same size. To verify whether the same phenomenon exists in the RSIC task, we
conducted experiments on the RSIC dataset NWPU-R45 [24]. Figure 2 represents the top-1
accuracy of ViT-S/16 and ResNet50 under different initialization conditions.

We partitioned the NWPU-R45 dataset [24] into three parts 10%, 20% and 70%, where
10% of data was used as pre-training data, 20% as training data, and 70% as testing data.
In Figure 2, lines (a) and (b) present the top-1 classification accuracy of ResNet50 and
ViT-S/16 fine-tuned from ImageNet [6] pre-trained weights. Lines (c) and (d) illustrate
the top-1 accuracy of ResNet50 and ViT-S/16 fine-tuned from 10% NWPU-R45 [24] pre-
trained weights. Lines (e) and (f) present the classification accuracy of ResNet50 and
ViT-S/16 trained from scratch. We performed 100 epoch training iterations for ViT-S/16
and ResNet50. The experimental results clearly show that ViT tends to require more
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training data than CNN models to achieve excellent classification performance, which can
also be summarized that ViT has a heavy reliance on the amount of pre-trained data. This
is because Transformer does not have the inductive bias in CNNs to help models rapidly
converge. There are two types of inductive biases in CNNs. One is locality, which refers to
the property that neighboring regions on an image have similar properties. The other is
translation equivariance, which can be expressed as Equation (1), where f and g denote the
translation operation and the convolution operation, respectively.

f (g(x)) = g( f (x)) (1)

These two inductive biases in CNNs are essentially assumptions of prior knowledge.
Therefore, unlike ViT, CNN requires relatively less data to learn a reasonably good model.
In addition, since ViT uses patch embedding, it can only model the relationship between
different patches, while ignoring the internal information of patches. This is advantageous
for acquiring global spatial contextual semantic relationships, which is beneficial for classi-
fication, but requires a large amount of data-driven establishment. However, CNN-based
methods have limited receptive fields due to the size of the convolutional kernel and
cannot model the long-range global information well. The attention maps of the last layer
in ResNet50 and ViT-S/16 are obtained by grad-cam [66]. As shown in Figure 3, it seen
intuitively that CNN is much less capable of acquiring global information than ViT.

Figure 2. Top1 accuracy of ViT-S/16 and ResNet50 under different initialization.

Figure 3. Original images in NWPU-R45 [24] and their attention maps in CNN and ViT. (a)∼(d) refer
to four different airport scenes in the dataset.
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3.2. Review of Vision Transformer

ViT is a vanilla Transformer-based architecture [67], which has attracted much interest
in recent years by showing SOTA performance in computer vision. Initially, the Transformer
is used to solve natural language processing (NLP) problems using an encoder-decoder
architecture with the ability to process sequential data in parallel, without relying on any
recursive network. The core of the Transformer model is the self-attention mechanism,
which is used to obtain the relationship between sequence elements. In recent years, Trans-
former has been found to be equally suitable for dealing with computer vision problems.
The ViT is proposed to extend traditional Transformers to image classification. Specifically,
ViT uses Transformer’s encoder module to classify images by mapping them to semantic
labels after being partitioned into a sequence of image patches. Unlike the traditional CNN
architecture, ViT focuses on different regions of the image through the attention mechanism
and integrates the description of global features. As shown in Figure 4, the ViT architecture
consists of a patch embedding module, an encoder, and a head classifier.

Figure 4. The original Vision Transformer architecture.

First, as shown in Figure 4b, the input image with a size of c × h × w, where c refers
to the input channels, h refers to the height of the image, and w refers to the width, will
be partitioned into a sequence of 2D patches. Each patch has a dimension of c × p × p,
and the length of the sequence is n, where n = h × w/p2 and p refers to the size of each
image patch, typically set as 16 or 32. Then, each patch is flattened by a linear projection
and mapped to dimension D (Xn

pE). The author then prepends a learnable class embedding
(cls_token) to the flattened patches (Z0

0 = Xclass). As shown in Figure 4a, the cls_token is
the 0th token prepended to the embedded patch sequence. The cls_token is completely
randomly initialized and independent of the image information, so the learning tendency
for a particular token in the sequence can be avoided. Then, as the image changes from a
two-dimensional to a one-dimensional patch sequence, the spatial position information
is lost. In addition, the internal operations in Transformer are positional independent.
To retain positional information, standard learnable 1D position embeddings (Epos) are
added to the patch embedding. Finally, the embedded feature Z0 (Equation (2)) is then
fed into the Transformer encoder, as shown in Figure 4c. In Equation (2), z0 refers to the
concatenated tokens. C is the number of channels, P is the patch size, and D is the output
dimensions of the trainable linear projection.

Z0 = [Xclass; X1
pE; X2

pE; · · · ; XN
p E] + Epos, E ∈ R(P2·C)×D, Epos ∈ R(N+1)×D (2)
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As shown in Figure 4c, each Transformer encoder consists of a multi-head self-attention
(MSA) [20] and a multi-layer perception (MLP) (Equations (3) and (4)). LN represents the
layernorm operation which is applied before every block; the stream output zl in the
transformer encoder can be described as the following formulas, where L is the number of
encoders in the sequence:

Z
′
l = MSA(LN(zl−1)) + zl−1, l = 1...L (3)

Zl = MLP(LN(z
′
l)) + z

′
l , l = 1...L (4)

3.3. Plug-and-Play CNN Feature Embedded Hybrid Vision Transformer

As analyzed above, both CNN and ViT have certain shortcomings in feature represen-
tation. Generally, CNNs have poor capabilities to extract global context information due to
the limited ERF, while ViT focuses on modeling the relationship between image patches
and ignores the information within the patches. The self-attention mechanism makes ViT
specialize in obtaining better global feature descriptions but is inferior to CNN for local
feature representation. In addition, although the ViT structure can set up the global context
information remarkably well, ViT models usually require extra data for pre-training to
achieve fast convergence and obtain better performance. This is partly due to the structure
of the Transformer itself, which lacks the inductive biases in CNNs, and partly due to the
use of completely random initialization of the cls_token that is independent of the image
information. The authors intended to address the Transformer’s tendency to learn for a
particular image patch by a completely random initialization of cls_token, but it would
cause the ViT to rely on a large amount of extra data pre-training before it could converge.
This causes the training overhead of ViTs to be much higher than CNNs in practical ap-
plications. To solve the above problems, a plug-and-play CNN feature embedded hybrid
vision transformer (P2FEViT) is proposed in this paper, as shown in Figure 5.

The overall structure of P2FEViT is shown in Figure 5a. The input images are first fed
in parallel to the patch embedding module and a CNN network. Unlike ViT, CNN gradually
expands the receptive field by stacking convolution and pooling, and local features are
described more richly. Consequently, we design a plug-and-play embedding module to
introduce CNN features into the ViT structure to enhance the local feature representation.
Notably, CNN features as a plug-and-play module can be obtained from any CNN structure,
adding flexibility to our proposed network structure. The CNN-extracted features are fed
into two parallel branches. In the first branch, the CNN-extracted features are fed into the
CBlock, as shown in Figure 5b. It is designed to add 2D-attention information through
depth-wise convolution and smoothly blend CNN features with ViT. The output feature
of CBlock is mapped to the same dimension as the ViT embedded dimension through
depth-wise convolution and then flattened. The flattened features are used as the extra
learnable embedding (Xclass) and prepended to the embedded patches in ViT, as shown in
Equation (5). In Equation (5), Ker refers to the 2-d depth-wise convolution, and i refers to
the CNN-extracted features.

Xclass = Ker7×7(CBlock(i)), Xclass ∈ R1×D (5)

In the other branch, the CNN-extracted feature is first up-sampled to the same size as
the image patches in ViT. Then, the depth-wise convolution is used to adjust the output
dimension. The output feature is applied as the position embedding (Epos, Equation (6))
and added to the patch embeddings in ViT (Equation (7)). Finally, the embedded feature
sequence Z0 can be obtained according to Equation (7).

Epos = Ker3×3(Upsample(i)), Epos ∈ RN×D (6)

Z0 = {Xclass; [(X1
pE; X2

pE; · · · ; XN
p E) + Epos]}, E ∈ R(P2·C)×D (7)
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Since CNN focuses more on the description of local information and ViT focuses more
on the integration of global features, the features can be complementary by combining two
different feature descriptions of CNN and ViT. In addition, the authors of ViT proposed
that the purpose of initializing the cls_token completely randomly is to enable each token
to obtain the same learning tendency and, therefore, set the cls_token to be independent of
image features. However, in our approach, embedding tokens based on the CNN extracted
features are added to the ViT structure as the cls_token and position embedding. The design
objectives are as follows: First, the cls_token is derived from CNN-extracted features, which
describes the overall features of the input image rather than the features corresponding
to a certain patch and, thus, does not cause excessive learning propensity for a specific
token. Second, the cls_token is based on a CNN description of the image features rather
than a completely random initialization, so that inductive biases can be introduced and
the Transformer encoder can converge faster as well as reduce training costs. In addition,
the position embedding is based on the CNN-extracted features instead of a randomly
initialized vector, which is more conducive to rapid convergence. The hybrid embedded
feature is then fed into the Transformer encoder to model the global context information.
Third, the feature-embedded ViT can be constructed by any two existing CNN and ViT
models. The newly constructed model does not need to be pre-trained on a very large
image classification dataset, such as JFT-300M [65]. Fast convergence can be achieved by
directly using the pre-trained models of the sub-networks. Our plug-and-play network
construction approach can save a lot of training costs in practical applications.

Figure 5. The network architecture of the proposed P2FEViT. (a) refers to the overall architecture of
our method, and (b) refers to the detailed structure of the CBlock.
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3.4. Head Classifier

To obtain the final RSIC results, we cascade a head classifier with the Transformer
encoder. As shown in Figure 5a, the hybrid feature of the Transformer encoder’s output and
CNN-extracted feature (ZCNN) is fed into the fully connected (FC) layer and softmax layer
in the head classifier after layer normalization to obtain the final classification confidence p
(Equations (8) and (9)). Z0

l is the output state of cls_token at the Lth encoder.

y = LN(z0
l + ZCNN) (8)

p = so f tmax(FC(y)) (9)

In addition, we use the cross-entropy function as the training loss function of our
network, as shown in Equation (10), where ci is the ith element of ground-truth for category
c. pi is the predicted classification confidence, and N is the total number of categories.

LCE = −
N

∑
i=1

cilog(pi) (10)

4. Experiments and Analysis
4.1. Establishment of BIT-AFGR50

To construct a challenging aircraft fine-grained recognition dataset, we collected a large
amount of optical remote sensing data from Google Earth. The collected images contain
50 categories of aircraft targets with various resolutions. At the same time, a large amount
of historical image data from airports was collected to enrich the aircraft category diversity.
In addition, the fine-grained aircraft category was annotated by professionals to ensure anno-
tation accuracy. The original BIT-AFGR50 contains 36,278 image instances with 50 categories,
and the original resolution were maintained for each category of aircraft instance.

Considering the realistic existence of each category of aircraft targets, the number
of each category in the originally constructed dataset was unbalanced where a long-tail
distribution exists. The instance number distribution of each category is shown in Figure 6.
To more intuitively verify the effectiveness of the proposed hybrid network in terms of
feature representation, we balanced the dataset to remove the effect of long-tail distribution
on classifier training. We constructed the balanced classification dataset by means of
data augmentation methods, such as random flipping, rotation, brightness adjustment,
random sampling, etc. In the balanced BIT-AFGR50, the number of aircraft categories
remained at 50, and the total sample instances were 12,500, of which each category had
a sample of 250 aircraft instances. The balanced dataset is more suitable for academic
research on deep learning-based methods, as it contains enough images with balanced
and sufficient sample instances of each category. The variation in image instances between
the original and balanced BIT-AFGR dataset is shown in Figure 6. The proposed BIT-
AFGR50 can compensate for the current lack of datasets in fine-grained aircraft recognition.
A comparison of our proposed BIT-AFGR50 with other publicly available optical remote
sensing classification datasets is shown in the following table. Both the original and the
balanced dataset will be available at https://github.com/wgqqgw/BIT-KTYG-AFGR (
accessed on 25 March 2023). The relationship between the realistic category name (e.g.,
F/A-18) and its annotation (A33) in the dataset will be published on our website as well.
Figure 7 shows examples of aircraft targets in BIT-AFGR50. In addition, we provide several
official train-test data partition schemes, such as train:test = 1:9, train:test = 2:8, etc. Both
specific dataset partition schemes are available on our website for researchers to use in
different tasks. Comparisons among publicly available optical RSIC datasets are shown in
Table 1.

https://github.com/wgqqgw/BIT-KTYG-AFGR
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Figure 6. Instance count distribution in original and balanced BIT-AFGR50.

Figure 7. Examples of aircraft targets in BIT-AFGR50.

Table 1. Comparisons among publicly available optical RSIC datasets.

Dataset Categories Images Image Width

NWPU-R45 [24] 45 31,500 256
UC Merced Land-Use [36] 21 2100 256
Aerial Image Dataset [61] 30 10,000 600

FGSCR-42 [63] 42 9320 50∼1500

BIT-AFGR50 1 50 12,500 128
1 BIT-AFGR50 refers to the balanced version.
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4.2. Datasets

To validate the effectiveness of our proposed P2FEViT, we conducted a series of
experiments on several remote sensing classification datasets. The details of the datasets
used are as follows:

NWPU-RESISC45 (NWPU-R45) [24]: The NWPU-R45 dataset contains 31,500 images
with 45 classes of remote sensing scene targets, each containing 700 samples. The size of
each image instance is fixed at 256 × 256, and the spatial resolution ranges from 0.2 to
30 m. We adopt 10% and 20% training ratios in our experiments based on the common
practice in the remote sensing image classification literature [25,34,56,68–72]. Since using
a smaller training set is a challenging scenario, it allows us to test the robustness and
generalization capabilities of our proposed method. Additionally, a limited training set is
a realistic representation of the scarcity of labeled data often faced in real-world remote
sensing applications. Consequently, we randomly selected 10% and 20% samples as the
training data for experiments. Samples of NWPU-R45 are shown in Figure 8.

Figure 8. Instance samples in NWPU-R45.

BIT-AFGR50: The BIT-AFGR50 dataset contains 12,500 images of 50 classes of aircraft
targets, each containing 250 image instances. The size of each image instance is fixed
at 128 × 128, and the spatial resolution ranges from 0.5 to 1 m. Three data partitioning
schemes are adopted to further explore the generalization capability and robustness of
our method. We randomly selected 10%, 20%, and 30% of the images as training data to
conduct experiments, respectively. The rest 90%, 80%, and 70% were used as test data to
evaluate the RSIC performance .

4.3. Experiment Setup

In our experiments, we selected two typical CNN structures, the classical ResNet50
and EfficientNet, to obtain the embedded features. The embedded CNN feature was fused
with typical ViT structures to construct our plug-and-play P2FEViT. In the training phase,
all training samples were normalized to 224 × 224 RGB images. AdamW was adopted
as the network update optimizer in 400 epochs. The batch size, weight decay, and decay
epoch were set to 160, 0.05, and 30, respectively. The initial learning rate was set to 0.0005,
and a cosine policy approach was used for a 5-epoch warm-up. The GPU resources used
were two blocks of TITAN RTX.
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4.4. Evaluation Metrics

In the experiments, the overall accuracy (OA) and confusion matrix (CM) were applied
to evaluate the classification performance. The details are as follows:

(1) OA: overall accuracy (OA) is defined as the ratio of correctly classified and total
samples. It can be calculated as follows:

OA =
1
N

N

∑
i

f (i) (11)

where N represents the total number of image samples in the dataset. f (i) refers to
the classification accuracy of the ith sample. If correctly classified, then f (i) equals 1
and vice versa 0. In addition, the OA on each remote sensing classification dataset is
the average of five repeated runs.

(2) CM: The confusion matrix is a standard format for image classification accuracy
evaluation and consists of a matrix with N rows and N columns, where N denotes
the total number of categories. The columns in the confusion matrix represent the
predicted categories, and the total number of each column represents the total number
of images predicted for that category. The rows indicate the ground truth attribution
category, and the total number of each row indicates the total number of images
belonging to that category in the test set. The confusion matrix is mainly used to
visually compare the classification prediction results with the ground truth values.

4.5. Performance Evaluation and Ablation Studies

To evaluate the classification performance of the proposed P2FEViT, comparison
experiments against several SOTA classification methods were conducted on NWPU-
R45 [24]. As shown in Table 2, the proposed P2FEViT achieved the highest OA of 94.97%
and 95.85%, with 10% and 20% training ratios, respectively. As shown in Table 2, our
P2FEViT achieved the optimal classification overall accuracy (OA) on the NWPU-R45
dataset [24]. When dealing with the NWPU-R45 remote sensing scene classification
dataset, we need to obtain both global contextual information to describe larger scene
targets, and also to consider local features to cope with the potent inter-class similarity
and intra-class variability. SDAResNet [68] proposed a dual saliency attention residual
network to set up both channel and spatial information for RSIC. SCCov [69] applied the
skip-connections to integrate multi-scale features, which is beneficial to address the large-
scale variance in RSIC. ACNet [71] designed a CNN-based attention-consistent network to
explore the global features from remote-sensing images. Constrained by CNN’s limited
receptive field, they are still not able to obtain extensive enough global information. A
self-attention mechanism is used in [25,34,56,68] to capture the global context information.
The GLANet [68] applied the attention mechanism to obtain global information using
a squeeze-excitation module. Lv et al. [34] integrate a channel attention module with
the MSA to model global information as well as considering the channel attention in the
cls_token. Cheng et al. [25] obtain global context information through a series of hidden
Markov models. However, the methods focus more on the relationship between sequenced
patches and ignore the local information inside them.

Compared with the recent SOTA RSIC methods, the overall accuracy of our method
P2FEViT(ViT-B/EfficientB0) is 1.29%, 0.34% higher than study [25] under the condition
of 10% and 20% training ratios, respectively. In addition, the classification performance
of our proposed P2FEViT is improved compared with that of its sub-network plug-ins.
For example, the overall accuracy of P2FEViT(ViT-B/ResNet50) is 0.79% and 1.52% higher
than its sub-network ViT-B/16 and ResNet50, respectively.

The confusion matrixes (CM) of our proposed P2FEViT (P2FEViT (ViT-B/EffcientB0)
and P2FEViT (VT-B/ResNet50)) on the NWPU-R45 [24] at 20% training ratio are shown
in Figures 9 and 10. It can intuitively show the classification performance of our mehtod.
The diagonal line indicates the percentage correctly classified.
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Table 2. Overall accuracy (OA) of comparison SOTA methods under different training ratios on the
NWPU-R45 dataset.

Method 10% Training Ratio 20% Training Ratio Year, Publication

ResNet50 [16] 92.40 ± 0.07 94.22 ± 0.20 2016, CVPR
EfficientNet-B0 [73] 91.79 ± 0.19 94.71 ± 0.13 2019, ICML
EfficientNet-B1 [73] 91.84 ± 0.18 94.36 ± 0.14 2019, ICML
EfficientNet-B2 [73] 92.17 ± 0.12 94.65 ± 0.16 2019, ICML
EfficientNet-B3 [73] 93.23 ± 0.17 95.03 ± 0.17 2019, ICML

GLANet [68] 91.03 ± 0.18 93.45 ± 0.17 2019, IEEE Access
SCCov [69] 89.30 ± 0.35 91.10 ± 0.25 2019, IEEE TNNLS

ViT-S/16 [20] 92.48 ± 0.11 94.17 ± 0.05 2020, ICLR
ViT-B/16 [20] 93.25 ± 0.08 94.95 ± 0.07 2020, ICLR

SDAResNet50 [70] 89.40 92.28 2020, IEEE Access
ACNet [71] 91.09 ± 0.13 92.42 ± 0.16 2021, IEEE JSTARS
Li et al. [72] 92.11 ± 0.06 94.00 ± 0.13 2021, Remote Sensing
SCViT [34] 92.72 ± 0.04 94.66 ± 0.10 2021, IEEE TGRS

Cheng et al. [25] 93.43 ± 0.25 95.51 ± 0.21 2022, Remote Sensing
CTNet(ResNet34) [56] 93.86 ± 0.22 95.49 ± 0.12 2022, IEEE GRSL

CTNet(MobileNet_v2) [56] 93.90 ± 0.14 95.40 ± 0.15 2022, IEEE GRSL

P2FEViT (ViT-S 1 /ResNet50) 93.43 ± 0.12 94.79 ± 0.08

ours

P2FEViT (ViT-S 1 /EfficientB0) 93.52 ± 0.11 95.41 ± 0.12
P2FEViT (ViT-S 1/EfficientB1) 93.54 ± 0.08 95.31 ± 0.13
P2FEViT (ViT-S 1 /EfficientB2) 94.65 ± 0.10 95.38 ± 0.12
P2FEViT (ViT-S 1 /EfficientB3) 94.43 ± 0.09 95.24 ± 0.18
P2FEViT(ViT-B 1 /EfficientB0) 94.72 ± 0.04 95.85 ± 0.15
P2FEViT(ViT-B 1/ResNet50) 94.97 ± 0.13 95.74 ± 0.19

1 All the ViT models are applied with patch size 16.

Figure 9. Confusion matrix of our P2FEViT (ViT-B/EffcientB0) on NWPU-R45 (train:test = 2:8).
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Figure 10. Confusion matrix of our P2FEViT (ViT-B/ResNet50) on NWPU-R45 (train:test = 2:8).

For the 45 classes in the NWPU-R45 [24], most of them obtained classification accuracy
above 90%. For P2FEViT (ViT-B/EffcientB0), the accuracy of 36 categories was more
than 95%, while only “palace” and “wetland” were less accurate. The accuracy rates
for these two pair of categories were as low as 81% and 84%, respectively. Because of
the potent intra-class variation and little inter-class difference, as shown in Figure 11,
the targets in category “palace” and “wetland” were easily classified into “church” and
“lake”. For P2FEViT (ViT-B/ResNet50), the accuracy of 33 categories was more than 95%.
The classification results show that different structures of CNNs focus differently on feature
description. For example, the accuracy of “wetland” in P2FEViT (ViT-B/ResNet50) is
much higher than that in P2FEViT (ViT-B/EffcientB0), but the “medium_residential” is
more confused. Consequently, our plug-and-play architecture can be constructed with the
practical application’s requirements to create an optimal structure for that task.

As analyzed in this paper, the proposed P2FEViT makes full use of the complementary
feature descriptions of CNN and ViT by embedding the CNN-extracted features into the ViT
model. The CNN-extracted features can lead to fast convergence of ViT through introducing
the inductive biases, as well as enhancing the local feature description, thus improving
the classification performance. To demonstrate the outstanding feature representation
capability in our proposed method, a series of ablation studies were carried out on the
remote sensing fine-grained dataset, BIT-AFGR50. As shown in Table 3, we conducted
experiments on the classical CNN classification network and ViT model on BIT-AFGR50
with a 20% training ratio first. When processing the BIT-AFGR50 dataset, the stronger
inter-class similarity of the targets in the fine-grained recognition task requires the network
to have more powerful feature representation capabilities. For the hybrid P2FEViT, the fine-
grained recognition task focuses more on better integrating the CNN description of local
features into the ViT model to obtain the optimal feature representation capability.
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Figure 11. Samples of different categories with high inter-class similarities in NWPU-R45.

Table 3. Overall accuracy (OA) and training epoch of comparison methods with the different initial
state on the BIT-AFGR50 dataset .

Method
Initial State

OA Training Epoch
Pretrained Scratch

ResNet50 [16] X 94.01 ± 0.17 400
EfficientNet-B0 [73] X 91.94 ± 0.07 400
EfficientNet-B1 [73] X 92.90 ± 0.12 400
EfficientNet-B2 [73] X 92.96 ± 0.09 400
EfficientNet-B3 [73] X 94.03 ± 0.06 400

ViT-S/16 [20] X 92.82 ± 0.11 400
ViT-B/16 [20] X 94.91 ± 0.13 400

P2FEViT 1 X 92.94 ± 0.13 150
P2FEViT 2 X 93.04 ± 0.11 90
P2FEViT 3 X 95.02 ± 0.08 200

P2FEViT 1 X 94.78 ± 0.15 400
P2FEViT 2 X 95.46 ± 0.17 400
P2FEViT 3 X 95.22 ± 0.13 400

ResNet50 [16] X 58.29 ± 0.17 400
EfficientNet-B3 [73] X 47.55 ± 0.17 400

ViT-S/16 [20] X 56.79 ± 0.11 400
ViT-B/16 [20] X 67.07 ± 0.13 400

P2FEViT 2 X 57.53 ± 0.11 220
P2FEViT 2 X 67.18 ± 0.15 280
P2FEViT 2 X 74.92 ± 0.13 400

P2FEViT 1 X 57.24 ± 0.05 180
P2FEViT 1 X 67.57 ± 0.11 250
P2FEViT 1 X 76.80 ± 0.17 400

1 refers to the P2FEViT (ViT-S/ResNet50), and the ViT-S is applied with patch size 16. 2 refers to the P2FEViT
(ViT-S/EfficientB3), and the ViT-S is applied with patch size 16. 3 refers to the P2FEViT (ViT-B/EfficientB3), and
the ViT-B is applied with patch size 16.

As a result, the hybrid P2FEViT (ViT-S/EfficientB3) obtains an optimal classification
result of 95.46%. Compared with its CNN/ViT sub-networks, the classification performance
is improved by 1.45% and 2.64%, respectively. In addition, we further explore the effect of
the proposed hybrid model on the convergence of ViT. As shown in Figure 12 and Table 3,
the hybrid P2FEViT can obtain the same classification performance as the original ViT model
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in much fewer iteration epochs. For example, as shown in Table 3, the proposed hybrid ViT
model constructed by fusing two plug-and-play CNN features with ViT-S/16 trained 150
and 90 epochs, respectively, can obtain the same verification accuracy as the original ViT-
S/16 trained 400 epochs. In addition, the overall accuracy of P2FEViT (ViT-B/EfficientB3)
with 200 training epochs is comparable to that of ViT-B/16 with 400 training epochs.
Figure 12a shows the overall accuracy of classical CNN/ViT and our proposed P2FEViT fine-
tuned with the ImageNet [6] pre-trained weights. Figure 12b shows the overall accuracy
of the above methods trained from scratch. It can be intuitively seen that, due to the
complementary global-local feature representation in the proposed model, the classification
performance can be significantly improved at the same iteration epoch. Furthermore,
the proposed P2FEViT is able to converge faster than the original ViT model and obtain
better performance when we do not have the conditions to pre-train on a large amount of
additional data.

To further explore the feature generalization capability and robustness of the proposed
method, we also conducted experiments with 10% and 30% training ratios on BIT-AFGR50.
As shown in Table 4, compared with other CNN and ViT models, our proposed P2FEViT
hybrid model, constructed by the above CNN and ViT models, can improve the overall
accuracy by at least 0.75%, 0.55%, and 0.52% at 10%, 20%, and 30% training ratios, respec-
tively. The overall accuracy growth decreased as the training sample ratio increased from
10% to 30%. This observation could be attributed to the fact that, with larger training sets,
the models become better at capturing the underlying data distribution, and the additional
benefits provided by our method may become less pronounced. This phenomenon is not
necessarily an anomaly, but more likely reflects a general trend in real-world application
scenarios. The performance of various methods tends to improve as the number of training
samples increases, leading to a decrease in relative performance improvement. For meth-
ods that improve classification accuracy by enhancing the network’s feature description
capability, the performance improvement may be more pronounced when there is less
training data. When there is less training data, it may be difficult for the model to capture
the underlying distribution of the data, so the performance improvement achieved by
enhancing the feature description capability of the network can be significant. In addition,
our method still demonstrates a performance improvement with a 30% training ratio,
although the improvement is smaller than that observed at a 10% training ratio.

(a) (b)

Figure 12. Overall accuracy on BIT-AFGR50 under different initialization conditions. (a) fine-tuned
with ImageNet pre-trained weights. (b) trained from scratch.
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Table 4. RSIC performance under different training ratios on BIT-AFGR50.

Method 10% Training Ratio 20% Training Ratio 30% Training Ratio

EfficientNet-B0 [73] 81.61 ± 0.13 91.94 ± 0.07 94.93 ± 0.03
EfficientNet-B1 [73] 82.21 ± 0.12 92.90 ± 0.12 95.27 ± 0.10
EfficientNet-B2 [73] 84.28 ± 0.19 92.96 ± 0.09 95.29 ± 0.05
EfficientNet-B3 [73] 84.98 ± 0.03 94.03 ± 0.06 96.11 ± 0.05

ResNet50 [16] 86.65 ± 0.13 94.01 ± 0.17 96.20 ± 0.09
ViT-S/16 [20] 84.72 ± 0.16 92.82 ± 0.11 95.36 ± 0.08
ViT-B/16 [20] 88.55 ± 0.17 94.91 ± 0.13 96.75 ± 0.08

P2FEViT (ViT-S 1/EfficientB3) 88.50 ± 0.11 95.46 ± 0.17 97.22 ± 0.08
P2FEViT (ViT-S 1/ResNet50) 89.30 ± 0.07 94.78 ± 0.15 97.12 ± 0.09

P2FEViT (ViT-B 1/EfficientB3) 89.24 ± 0.10 95.22 ± 0.13 97.27 ± 0.15
1 All the ViT models are applied with patch size 16.

Figures 13 and 14 illustrate our method’s confusion matrixes (CM) on the BIT-AFGR50
dataset with a 20% training ratio. Figure 13 illustrates the CM of our P2FEViT
(ViT-S/EfficientB3) on BIT-AFGR50. A total of 47 aircraft categories out of the total 50 cate-
gories in the BIT-AFGR50 dataset achieved an accuracy higher than 90%, and 34 categories
obtained the classification top-1 accuracy higher than 95%. Some categories, such as “A10”,
“A24”, “A30” and “A34”, achieved outstanding classification performance higher than 98%.

Figure 13. Confusion matrix of our P2FEViT (ViT-S/EfficientB3) on BIT-AFGR50 (train:test = 2:8).

Figure 14 illustrates the CM of our P2FEViT (ViT-S/ResNet50). A total of 43 out of
the total 50 categories in the BIT-AFGR50 dataset achieved an accuracy higher than 90%
and 32 of them obtained the top-1 accuracy higher than 95%. The most confusing category
of our method in BIT-AFGR50 is “A33”. As shown in Figure 7, the “A33” aircraft targets
refer to the “F/A-18” category with relatively low spatial resolution. In addition, the “A33”
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targets have high inter-class similarity to other fighter aircraft categories, which is difficult
to distinguish correctly either by manual classification or deep learning. To verify the
improvement in representation capability in our method, we also statistically analysed the
top-1 accuracy of the most confused categories in the CNN/ViT sub-networks. Compared
with our P2FEViT (ViT-S/EfficientB3), the accuracy of “A33” in ViT-S/16 was 68% and only
20 out of 50 total categories achieved accuracy higher than 95%, which is far inferior to
our method. For the other sub-network EfficientNet-B3, the most confused category “A33”
obtained the same top-1 accuracy with our method, but only 30 categories out of the total
50 categories obtained accuracy higher than 95%, which is not as good as our P2FEViT
(ViT-S/EfficientB3).

Figure 14. Confusion matrix of our P2FEViT (ViT-S/ResNet50) on BIT-AFGR50 (train:test = 2:8).

5. Discussion

To demonstrate the effectiveness of P2FEViT, we compared the classification perfor-
mance of ViT-S/16 with our method on the NWPU-R45 [24] and BIT-AFGR50 datasets,
respectively. The experimental results are shown in Tables 2 and 3. Compared with the ViT
model, our proposed method showed significant improvement in both classification perfor-
mance and convergence speed. Specifically, compared with the SOTA methods study [25,56]
in RSIC, the accuracy was improved by 1.07% and 0.34% in the NWPU-R45 [24], with a
training ratio of 10% and 20%, respectively. In the BIT-AFGR50 dataset, the training ratio
was 20% and the plug-and-play hybrid ViT model’s accuracy was improved by 2.64% and
1.45% compared with the original ViT and CNN models.

At the same time, the training convergence speed was improved by 2∼3 times. To
further explore the feature representation capability and robustness of our method, we
also conducted experiments under different training ratios on the BIT-AFGR50 dataset.
Although the overall accuracy growth decreased with increase in training data, our method
still demonstrated performance improvements with all the training ratios.
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In summary, the proposed P2FEViT with CNN-ViT feature fusion can achieve com-
plementary features extracted by CNN and ViT, while avoiding the heavy dependence on
a large amount of extra data for ViT-based model pre-training. The global-local features
extracted by P2FEViT make the overall feature description more comprehensive so that
the classification accuracy can be improved. To clearly compare the original ViT and the
proposed method, we used feature maps of different methods for visualization through
Grad-CAM [66]. The feature maps were obtained to display the regions with attention in
the image.

The original image, attention maps of CNN, ViT and our P2FEViT(ViT-S/ResNet50)
are shown in Figure 15, respectively. The original images are from the NWPU-R45 dataset
for airplane, bridge, roundabout, tennis-court and runway. It can be intuitively seen from
the figures that the attention of ViT can cover more global context information, whereas the
attention on the local continuous regions is weak. The CNN model focuses more on the
local feature description, but there is a lack of global context information. The proposed
method can take into account both global and local features and construct a local-global
complementary feature map.

Figure 15. Attention maps of ViT-S/16, ResNet50 and our P2FEViT (VIT-S/ResNet50).

Furthermore, we separately visualized the features of proposed P2FEViT(ViT-S/EfficientB3)
and its sub-network ViT-S/16 and EfficientNet-B3 by t-SNE [74], which can map the
distances of features in different categories into a 2-D space. The test images were from
the fine-grained target recognition dataset, BIT-AFGR50. In Figure 16, we can clearly see
that the proposed P2FEViT can reduce intra-class diversity as well as inter-class similarity.
In the feature space, the proposed hybrid structure can obtain more distinguished features
in different categories. Consequently, the proposed P2FEViT can significantly improve the
classification performance of ViT on remote sensing images.
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(a) P2FEViT (V iT-S/ EfficientB3). (b) ViT-S/16.

(c) EfficientNet-B3.

Figure 16. Two-dimensional scatterplots of high-dimensional features on the BIT-AFGR50 dataset
(training ratio = 20%). (a) P2FEViT (V iT-S/ EfficientB3). (b) ViT-S/16. (c) EfficientNet-B3.

6. Conclusions

In this paper, we have proposed a plug-and-play CNN-feature embedded hybrid
Vision Transformer (P2FEViT). Unlike the original ViT model, the proposed P2FEViT
embeds the CNN extracted features as embedded tokens into the ViT structure. The ViT
model with strong global feature description capability is combined with the CNN model,
which can be more adept at extracting local features. The local-global fusion strategy
can help the hybrid network to learn features from different perspectives and achieve
complementarity. In addition, we have established a remote sensing aircraft fine-grained
recognition dataset, BIT-AFGR50, which is a comprehensive multi-class publicly available
aircraft target fine-grained recognition dataset. The proposed method has been evaluated
on two public remote-sensing image classification datasets, NWPU-R45, and BIT AFGR-50.
The experimental results showed that our proposed method can build feature-embedded
hybrid ViT structures from arbitrary ViT and CNN models by the method in this paper,
which can effectively improve the convergence speed and classification performance. Our
future work will further explore the approach to improve the performance of the ViT model
and achieve lightweight computation.
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