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Abstract: The wide application and rapid development of satellite remote sensing technology have
put higher requirements on remote sensing image segmentation methods. Because of its characteris-
tics of large image size, large data volume, and complex segmentation background, not only are the
traditional image segmentation methods difficult to apply effectively, but the image segmentation
methods based on deep learning are faced with the problem of extremely unbalanced data between
categories. In order to solve this problem, first of all, according to the existing effective sample theory,
the effective sample calculation method in the context of semantic segmentation is firstly proposed in
the highly unbalanced dataset. Then, a dynamic weighting method based on the effective sample
concept is proposed, which can be applied to the semantic segmentation of remote sensing images.
Finally, the applicability of this method to different loss functions and different network structures is
verified on the self-built Landsat8-OLI remote sensing image-based tri-classified forest fire burning
area dataset and the LoveDA dataset, which is for land-cover semantic segmentation. It has been
concluded that this weighting algorithm can enhance the minimal-class segmentation accuracy while
ensuring that the overall segmentation performance in multi-class segmentation tasks is verified in
two different semantic segmentation tasks, including the land use and land cover (LULC) and the
forest fire burning area segmentation In addition, this proposed method significantly improves the
recall of forest fire burning area segmentation by as much as about 30%, which is of great reference
value for forest fire research based on remote sensing images.

Keywords: remote sensing; segmentation; imbalanced dataset; dynamic weighting; effective sample

1. Introduction

With the advancement of satellite launch technology in recent years, satellite remote
sensing has reduced the costs in addition to its own advantages of wide coverage and fast
response time, making it more widely applied in various areas. In order to detect spatial
information changes in remote sensing images, it is necessary to classify and interpret the
images, and remote sensing image segmentation plays a critical role in this task due to the
low spatial resolution of satellite images [1]. Remote sensing image segmentation in the
past five years has been applied in forestry [2], hydrology [3], environmental protection [4],
and meteorology [5–8]. These studies stress that the segmentation performance will greatly
influence the final interpretation results [9]. Therefore, it is particularly significant to
concentrate on remote sensing image segmentation methods.

Traditional image segmentation methods can be divided into threshold-based segmen-
tation methods, edge-based segmentation methods, region-based segmentation methods,
and graph-based segmentation methods [7]. Threshold-based segmentation methods usu-
ally set thresholds according to the results of band operations or common feature indexes
in the image, and then classify the pixels into the appropriate categories [10]. Edge-based
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segmentation methods often detect changes in image grayscale values and feature indexes,
which are manifestations of discontinuities in the local features of the image, resulting
in edges between different regions in the image [11]. In the framework of mathematical
morphology theory, watershed transformation is a method that is often used for edge
segmentation [12]. This algorithm treats two-dimensional images as the elevation data
and determines region boundaries by simulating the process of flooding. As for region-
based segmentation algorithms, they focus on the similarity within regions to distinguish
different regions. The region growing method [13] starts with the selection of seed pix-
els, joins neighboring pixels according to the similarity criterion, and conducts iteration
until the entire region is formed. The region segmentation and merging algorithm first
segments the image into multiple sub-regions and then merges the image according to
the properties of the sub-regions [14,15]. The graph-based segmentation method maps the
image as a weighted, undirected graph. In the graph, the weights on each edge indicate the
differences between pixels, and the segmentation of the image is achieved by cutting and
removing specific edges. The principle of segmentation is to maximize similarity within
the subgraphs and minimize similarity between the subgraphs [16,17]. A mixture of the
above methods can also be used, such as extracting initial segments using an edge algo-
rithm and merging similar segments using a region-based algorithm [18], which achieves
the purpose of considering both the boundary information between regions and internal
spatial information.

In traditional remote sensing image segmentation, the standardized spectral indica-
tors, such as the Normalized Difference Water Index (NDWI), the Normalized Different
Vegetation Index (NDVI), the Normalized Difference Built-up Index (NDBI) and so on, are
usually utilized as the feature data based on different indicator combinations and threshold
ranges for different target detections. However, remote sensing images have multispectral
channels, rich data, and complex backgrounds, and the segmentation effectiveness of
traditional remote sensing image segmentation methods will be limited due to the lack of
better utilization of these features to further develop remote sensing information.

Semantic segmentation methods based on deep learning classify images pixel by pixel
and achieve a better performance in natural image segmentation. The basic framework
for many semantic segmentation studies drew on the experience of Long. et al. (2014).
They proposed the full convolutional network (FCN) [19], a network framework that
combines classification architectures, such as AlexNet, VGG-16, and GoogLeNet, which can
be trained end-to-end for any size input image and can efficiently make dense predictions
for per-pixel tasks such as semantic segmentation. The Deeplab series based on FCN,
unveiled by Chen L.C.et al., tackles problems of encoding multi-scale information and
sharpening segmented output by pooling techniques or filters. Deeplab-v1 improved the
segmentation localization accuracy by adding a fully connected conditional random field
(CRF) [20], but it was more computationally expensive until Deeplab-v2 adopted a new
atrous convolution for sampling and used the residual network, Resnet, as a downsampling
structure to increase the model fitting ability [21]. Deeplab-v3 developed the use of atrous
convolution and improved the atrous spatial pyramid pooling (ASPP) module to enhance
the ability to capture context [22]. Integrating the advantages of the previous Deeplab,
v3+ applies Xception as a new backbone network to make overall predictions based on
multiple scales of the same image and to improve feature resolution [23]. Another multi-
scale and pyramid network-based model, PSPNet [24], proposed and added a pyramid
pooling module to the FCN framework to improve the segmentation performance for
contextually complex scenes and small targets as well as the convergence speed of the
model. In addition to the FCN-based model, the U-Net series is also an encoder–decoder
architecture for semantic segmentation. U-Net [25] solved the problem of training small
datasets by encoding–decoding U-shaped structures and extended the research of many
models with good segmentation effects, such as UNet++, Attention U-Net, etc. SegNet
follows the U-shaped structure and adds the max-pooling operation, which reduces the



Remote Sens. 2023, 15, 1768 3 of 21

number of parameters for end-to-end training and can be more easily merged into other
U-shaped structures [26].

The semantic segmentation method based on deep learning can well fit the character-
istics of remote sensing image segmentation tasks with large data volume and complex
backgrounds, but compared with the natural ones, remote sensing images have a larger
image size and the proportion of targets to be segmented is smaller, which brings about the
foreground–background imbalance problem. In addition, the scale difference of different
categories of targets in remote sensing images is huge, which brings the problem of inter-
category imbalance of the foreground–foreground. The two imbalances mentioned above
will make the deep neural network more advantageous to segment the target categories
with more pixels, thus weakening the segmentation ability for the categories with few
pixels, which finally degrades the segmentation accuracy of the model and causes the
information interpretation failure of remote sensing images.

To address this problem, there is currently some related research in the field of remote
sensing image segmentation. A combined sampling method was proposed to solve the
class imbalance problem of feature segmentation in the Tibetan plateau region from the
perspective of sample resampling [27]. The Deeplab-v3+ model was put forward, which
encodes multi-scale contextual information by coarse convolution to enhance the effect
of unbalanced data segmentation [6]. A new variant of the Dice loss named Tanimoto
was presented, which speeds up the convergence of training and performs well with
severely unbalanced aerial datasets [28]. Audrey et al. (2020) demonstrated that tree
species classification using parametric algorithms by combining Canopy Height Model
(CHM) data, spectral data, and height data fused with non-parametric classification is
applicable to unbalanced binary classifications. A novel synthetic minority oversampling
technique-based rotation forest algorithm for the classification of imbalanced hyperspectral
image data was also proposed [29].

In the study of natural images, the problem of extreme imbalance in the sample data
is usually found in a variety of task scenarios in target detection, image classification, and
instance segmentation [30–32]. Ref. [33] proposed that the classification performance due
to class imbalance will deteriorate with the increasing ratio between the majority and
the minority classes. To solve this problem, common methods of deep learning can be
classified into three categories: class-rebalancing, information enhancement, and module
improvement [30]. Re-weighting methods rebalance the categories by adjusting the loss
values of different categories during training [34]. Ref. [35] applied a two-stage training
model, where the weights of a larger number of categories were reduced in the second
stage based on sample gradient changes. Ref. [36] trained an a priori model in the first
stage and reweighted the whole model in the second stage using the Kullback–Leibler
divergence. The two-stage reweighting approach has more room for adjustment, but it
is slower and not beneficial for model deployment and application. The balanced meta-
softmax [37] optimizes the model classification performance by learning the optimal sample
distribution parameters on a balanced metadata set. The label distribution disentangling
(LADE) method introduces a label distribution separation loss, meaning that a balanced
distribution is separated from an unbalanced dataset, which allows the model to be adapted
to an arbitrary test class distribution when the test label frequency is available [38]. Meta-
Weight-Net [38] designs a functional mapping from training losses to sample weights,
followed by multiple iterations of weight computation and classifier updates. Guided by a
small number of unbiased metadata, the parameters of the weighting function could be
fine-tuned and updated in parallel with the learning process of the classifier.

Notwithstanding the effectiveness of these methodologies using existing balanced
datasets, the imbalance of remote sensing images is inherent in every image, making it
difficult to build a suitable balanced dataset. The Dual Focal Loss (DFL) function modified
the loss scaling method of the Focal Loss to improve the classification accuracy of the
unbalanced classes in a dataset by solving the problem of the vanishing gradient [39].
Ref. [40] proposed a one-stage class balance reweighting method based on the effective
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sample space. This one-stage method combined with Focal loss [41] and CE loss (cross
entropy loss function) achieved good results in the extremely unbalanced task of image
classification without a priori balanced datasets. However, in the existing dynamic weight-
ing algorithms for solving the extreme imbalance problem, although the effect of very small
class segmentation is improved, it also reduces the overall segmentation accuracy [37].
In addition, the effective sample space in semantic segmentation tasks has not yet been
defined and studied, and the relevant hyperparameters have not yet been proposed for
more applicable computation methods.

In this paper, for the semantic segmentation of remote sensing images, the division
of the majority and the minority categories is achieved by studying the effective sample
space in the dataset. A Dynamic Effective Class Balance (DECB) weighting method based
on the number of effective samples is proposed for the first time. As the most popular
category in remote sensing image segmentation research, a publicly available LULC remote
sensing image dataset and a self-constructed forest fire burning area dataset were made a
validation. The experimental results demonstrate the effectiveness of the DECB method
in remote sensing image segmentation and the highlighting of minimal classes without
sacrificing the overall segmentation effect.

The main parts of this paper are structured as follows: Section 2 introduces the
datasets used in this paper, including the self-built forest fire burning area dataset and
the unbalanced datasets constructed from the publicly available land-cover segmentation
dataset. Section 3 proposes a method for calculating the number of effective samples in
semantic segmentation and a DECB weighting algorithm. Section 4 applies the algorithm to
LULC and burning area segmentation experiments and analyses the experimental results.
Section 5 draws the conclusion.

2. Data

The Land-cover Domain Adaptive semantic segmentation (LoveDA) dataset [42] and
a self-constructed forest fire burning area dataset based on Landsat8-OLI satellite imagery
are used in this paper.

2.1. The LoveDA Dataset

The LoveDA dataset, released in 2021 by the RSIDEA team at the State Key Laboratory
of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan Univer-
sity, is suitable for semantic segmentation and migration learning tasks and it contains a
total of 5987 urban and rural images with a spatial resolution of 0.3 m from three cities,
Nanjing, Changzhou, and Wuhan, including seven categories: buildings, roads, water
bodies, wastelands, forests, agriculture, and backgrounds. In this paper, we demonstrate
the effectiveness of the proposed method in unbalanced semantic segmentation by studying
the rural part of the LoveDA dataset and naming these data as the LoveDA-rural dataset.
The pixel statistics for each categorical sample in the LoveDA-rural dataset are shown in
Figure 1. As can be seen in Figure 1, the categories building (3.09%), road (2.22%), and
barren (3.43%) have a small percentage in the dataset, and they are the minimal categories
in the dataset. It is also important to note that in the overall dataset there are fewer images
containing buildings and barren land, accounting for the large majority in a single image.
As a result, as to whether buildings and barren land are regarded as minimal catalogue or
not, it depends on the number of the analyzed images including buildings and barren land.
The category of roads in both the whole dataset and a single image is a very small category,
as can be seen in Figure 2. In order to observe the semantic segmentation effect of the
proposed method in this paper in such a category where both the overall dataset and the
single images are treated as minimal classes, a dataset LoveDA-r-road based on the rural
part of the data with roads as the only minimal class was created by sieving the images
containing buildings and barren land in the dataset. The proportion of each category in
this dataset is shown in Figure 3, in which the road category accounts for 4.66% and is the
only minimal category.
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2.2. Landsat-8 Forest Fire Burning Area Images

Launched to an altitude of 705 km on 11 February 2013, Landsat-8 carries the Opera-
tional Land Imager (OLI) with an image map area of 185 × 185 km, a spatial resolution
of 30 m, and a temporal resolution of 16 days, using the geographic coordinate system
WGS84 [43]. The OLI collects data for visible (VNIR, bands 2–4), near-infrared (NIR, band5),
and two shortwave infrared portions (SWIR, bands 6–7) of the spectrum. Table 1 [44]
demonstrates the wavelengths and application ranges for each channel.
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Table 1. Landsat-8 OLI multispectral bands.

Band Channel Wavelength (µm) Applications

1 Coastal 0.433~0.453 Active fire detection and environmental observation in
coastal zones.

2 Blue 0.450~0.515
Visible light spectrum used for geographical
identification.

3 Green 0.525~0.600
4 Red 0.630~0.680

5 NIR 0.845~0.885 Active fire detection and information extraction of
vegetative cover.

6 SWIR1 1.560~1.660 Active fire detection, vegetation drought detection, and
mineral information extraction.

7 SWIR2 2.100~2.300
Active fire detection, vegetation drought detection,
mineral information extraction, and
multi-temporal analysis.

Satellite forest fire burning area images were selected along the southwest coast of the
United States and northeastern Australia during 2015–2021 and they contain forty views of
images containing more than sixty forest fire events. Historical fire data were obtained from
the websites of The National Interagency Fire Center (NIFC) [45] and the Department of
Agriculture Fisheries and Forestry (DAFF) of Australia [46]. Considering the characteristics
of recent major wildfires, [47] illustrated the significant forest fire clusters along the specific
coasts of the USA and Australia, especially on account of highly combustible tree crown
fuel load. A schematic map of the study area and data sampling points is shown in Figure 4.

The forest fire burning area dataset from Landsat8-OLI satellite imagery includes
three categories: fire, vegetation, and background. For fire detection and vegetation cover,
bands 4, 5, and 6 were selected as data inputs in this study [44].

Relying on spectral data of SWIR2 and NIR, the active detection threshold method
designed by [48] applies fixed threshold and image context methods when exploring the
differential radiation response of the data to realize the classification of potential active fire
pixels. With this method of annotating data, we generate segmentation masks automatically
based on three conditions:

Equation (1) is the threshold formula, used to identify the unambiguous fire pixels,
and Equation (2) characterizes the candidate fire pixels due to the digital number (DN)
folding of channel 7 (SWIR2):

ρ6 > 0.8 AND ρ1 < 0.2 AND (ρ5 > 0.4 OR ρ7 < 0.1), (1)

R75 > 1.8 AND ρ7 − ρ5 > 0.17 AND ρ7 > 0.5, (2)

In the above equation, ρi represents the reflectance of channel i, and Rij represents
the reflectance ratio of channel i to j. Following this nomenclature, ρ1 is the costal band
centered at a wavelength of 0.443 µm, ρ5 is the NIR band centered at a wavelength of 0.865
µm, while ρ6 and ρ7 are two SWIR bands centered at 1.610 µm and 2.190 µm, respectively.
The spatial resolution of all these bands is 30 m.

All pixels must satisfy the following set of fixed thresholds and contextual tests in
order to be classified as potential fire-affected pixels:

R75 > R75 + max
[
3σR75 , 0.8

]
ρ7 > ρ75 + max

[
3σρ7 , 0.08

]
,

R76 > 1.6
(3)

Using the effective background pixels in a 61 × 61 window centered on the candidate
pixels, the Rij and σRij (σρi ) in Equation (3), respectively, represent the mean and standard
deviation calculated by the channel reflectance.
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Vegetation labels are determined by the (NDVI):

NDVI =
NIR − R
NIR + R

> 0.05, (4)

When pro-processing remote sensing images, the FLAASH atmospheric-correction
module and the radiometric calibration were used. The original image was cropped using a
sliding frame with a step size of 256 and a size of 512 × 512. Due to the rotation invariance
of the remote sensing images, only the symmetric method was used to expand the dataset.
Finally, 2024 images of size 512 × 512 were obtained, and the comparison of the number of
pixels in each category in the dataset is shown in Figure 5.
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3. Methods
3.1. Effective Sample Space

Boundary effects emerge during the expansion of the imbalanced datasets, which
means that when the number of samples in some categories increases beyond a specific
number range, the model’s classification performance of that category will not be enhanced.
The index of range is defined as the effective sample space that can be calculated as the
following [40]:

Ea =
(1 − βa)

1 − β
, (5)

where a is the number of samples and the hyperparameter β is the probability of overlap
between the new sample and the existing sample, defined as the following:

β =
N − 1

N
, (6)

N is the size of the sample space, and as the ideal sample space is infinite, β cannot be
calculated and only the hyperparameters are taken. To calculate the hyperparameter β, the
effective sample space size En can be obtained by expanding the above equation:

En =
1 − βn

1 − β
= 1 + β + β2 + · · ·+ βn−1, (7)

If the sum of the first m terms is 10p times the sum of the second n − m terms, the
second n−m terms can be ignored and the value range of p should be p ≥ 3. The inequality
can be listed as follows:

1 + β + β2 + · · ·+ βm−1

βm + βm+1 + · · ·+ βn−1 ≥ 10p, (8)

The above inequality is equal to the following:

0 < β ≤ m

√
1

10p + 1
, (9)

The range values of the effective sample subspace can be expressed by the follow-
ing inequality:

1 < Em ≤
(

1 − 1
10p + 1

)
∗
(

1
1 − β

)
, (10)

The size of the effective sample subspace varies with the values of m and p, as shown
in Figure 6. The graph shows that Em has a positive correlation with m and a negative
correlation with p.

Emmax =
1000
1001

∗ 1
1 − β

, (11)
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Figure 6. Scatterplot (a) and the fitted surfaces (b) of the effective sample subspace values Em with
the values of m (0 < m ≤ 11500) and p (3 ≤ p ≤ 25).

The above formula shows that for each class of samples, the probability, β, and
the effective sample space size, Em, corresponding to the subspace can be calculated
if the number of samples in the subspace, m, is known. When p takes the minimum
value, there exists a maximum effective sample subspace. Since the datasets used in deep
learning methods are all subspaces in the sample space, the effective sample subspace can
be calculated.

For the parameter β, the Equation (5) is applied to the ideal sample space in the
existing effective sample theory, and three values are taken for the image classification task,
0.9, 0.99, and 0.999. It is also shown that β with the value of 0.999 has a better effective
sample space calculation result compared with the other two in large datasets [40]. The
effective sample numbers calculated by the above algorithm and the algorithm in this paper
are shown in Figure 7.
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paper (βnew).
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Ideally, the number of effective samples should grow with the number of samples, but
when β is taken as a constant, the number of effective samples calculated from this constant
will finally reach an upper limit, which is not consistent with the ideal situation. Therefore,
the effective sample space algorithm proposed in this paper is closer to the ideal state and
is more suitable for semantic segmentation tasks with a large number of samples.

3.2. Dynamic Effective Sample Class Balance (DECB) Weighting Method

In semantic segmentation tasks, to balance the contribution of each classification of
a very unbalanced dataset in the loss function, the widely used dynamic class balance
weighting method (DCB) [49] defines the weights as follows:

Wi = 1 − ni
nbatch

, (12)

In the above equation, nbatch is the sum of the sample sizes within a batch and ni is the
sample size of class i within the same batch. A single batch in the neural network training
process acts as a subspace, which is determined by the batch size. The DCB method is
determined by the proportion of each category in this sample subspace, and the weight of
each category is negatively correlated with its proportion.

In order to increase the weight of the categories with small sample sizes in the neural
network training process, this paper proposes to define a minimal class in the sample
subspace defined as the following:

nibatch < Enbatch , (13)

Enbatch is the size of the effective sample subspace and nibatch is the number of samples
of class i in a single batch. When the number of samples in a classification is less than the
effective sample space corresponding to the sample space, it is defined as a minimal class,
as shown in Figure 8.
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In order to highlight the minority classes in neural network training and achieve class
balancing, a dynamic effective class balancing (DECB) weighting method is proposed, with
weights defined as follows:

WEi =

1 − Enibatch
nbatch

, nibatch < Enbatch ,

1 − nibatch
nbatch

, nibatch ≥ Enbatch

(14)
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Enibatch can be calculated from Equation (11) and β is given by the following equation:

βibatch =
nibatch

√
1

1001
, (15)

Equation (13) applies the DECB method to adjust the weights of the minority classes.
Since the effective number of these classes in a batch space is less than their label frequency,
the weight ratio of them can be effectively increased after using Enibatch instead of nibatch .

Table 2 shows the DCB weights and DECB weights corresponding to the minority
classes for a 512 × 512 size image with four types of batch size and nibatch is the value taken
to satisfy Equation (13) for ease of observation. The DECB method assigns a greater weight
to the minority class.

Table 2. Examples of DECB weighting method (512 × 512 size image).

Batch Size Nbatch β Enbatch nibatch

DCB
Weights Enibatch

DECB
Weights

4 1048576 0.9999934 151623.8390 150000 0.8569 21690.3920 0.9793
8 2097152 0.9999967 303247.1785 200000 0.9046 28920.3560 0.9862
12 3145728 0.9999978 454870.5181 400000 0.8728 57840.2134 0.9816
16 4194304 0.9999984 606493.8575 600000 0.8569 86760.0703 0.9793

4. Results and Discussion
4.1. Environmental Configuration and Parameter Details

This study used the Pytorch deep learning framework and implemented code based
on the corresponding Python 3.6.13, with the detailed tool configuration shown in Table 3.

Table 3. Environmental configuration.

Programming
Environment Auxiliary Library Hardware Configuration Other Software

Python3.6.13 h5py2.10.0 CPU:InterE5-2620v3@2.4 GHz Envi5.3.1
torch1.2.0 GDAL3.0.4 GPU:NVIDIA TITAN X ArcGIS PRO

CUDA11.6 opencv4.1.2 RAM:16 GB
cuDNN8.0.4 numpy1.17.0 Numba0.26.0

The ratio of the training set to the test set is 6:4, and the evaluation metrics are the
average of the optimal hyperparameter combinations measured by multiple training. Some
of the hyperparameters used in this paper are shown in Table 4.

Table 4. Parameter details.

Name of Dataset Number of
Samples

Initial Learning
Rates Decay Rate Batch Size Epoch

LoveDA-rural 8884 1.50 × 10−4 0.96 8 120
LoveDA-r-road 1571 2.50 × 10−4 0.96 12 150

Forest fire
burning area 2022 2.00 × 10−4 0.96 4 150

4.2. Network Structure and Loss Function

The underlying neural network architecture in this paper is based on U-Net [25], which
has been shown to have better results in the forest fire burning area semantic segmentation
task [44]. U-Net is a fully convolutional network with two symmetric halves; the first
has pooling operations that decrease the data resolution and the second has upsampling
operations that restore the data to its original resolution. The first half extracts basic features
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and context, and the second half allows for a precise pixel-level localization of each feature,
with skip connections between the two halves being used to combine the features from
shallow layers with more abstract features from deeper layers [50]. The U-Net structure in
this paper takes a 512*512 three-channel image as an input, and successively convolves to a
feature layer depth of 1024 in the encoder part. Then, four feature layers of different sizes
from the process of encoding are superimposed with the upsampling results obtained in the
decoder part, and finally, the segmented image is obtained by 1*1 convolution. The network
structure is shown in Figure 9. In order to verify the applicability of the weighting approach
on different network architectures, two network architectures, vgg [51] and Resnet50 [52],
were used as backbones, respectively, for experiments in the encoder of the U-Net network.
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Softmax cross entropy (CE) and Focal loss are chosen as the weighted functions in
this paper. As the most used loss function in the classification, CE loss is based on the
theory that cross entropy can be used to measure the difference between the probability
distribution learned by the model and the true probability distribution. Focal loss modifies
the CE loss function by adding a focusing factor γ to reduce the contribution of easily
categorized samples in the loss calculation to solve the category imbalance problem. In this
study, the focusing factor γ is a constant, γ = 3.

CE loss and Focal loss are defined as follows:

CEso f tmax(z, y) = −log

(
exp

(
zy
)

∑n
j=1 exp

(
zj
)), (16)

Focal(z, y) = −∑C
i=1

(
1 − pt

i
)γ log

(
pt

i
)
, (17)

where i and j in Equations (16) and (17) represent the different categories, z is the output
value of each classification prediction, and y is the corresponding label.

The equation for the loss function, weighted by the dynamic effective class balance
according to Equation (13), is shown below:

DECBso f tmax(z, y) = −
(

1 −
EnJ

nbatch

)
log

(
exp

(
zy
)

∑n
j=1 exp

(
zj
)), (18)

DECB f ocal(z, y) = −
(

1 −
EnJ

nbatch

) C

∑
i=1

(
1 − pt

i
)γ log

(
pt

i
)
, (19)
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4.3. Evaluation Metrics

The Intersection-Over-Union (IoU) metric [53], known as the Jaccard index, is widely
used to evaluate segmentation performance. In forest fire burning area segmentation tasks,
false negatives are more fatal than false positives. Therefore, IoU, F1-score [54], precision
(P), and recall (R) are also used in the evaluation of segmentation results.

Since the balance between categories is an important part of this study, in order
to reveal how the balance relationship between categories is affected by the modified
weighting methods, specific indicators need to be calculated for each category in addition
to the overall average. F1-score, precision, and recall are defined as follows:

R =
TP

TP + FN
, (20)

P =
TP

TP + FP
, (21)

F1 =
2

1/P + 1/R
, (22)

where FP, TP, and FN are, respectively, the number of false positives, true positives, and
false negatives in the segmentation results. IoU, the ratio of the intersection to the union
between the predict section and the true section, is defined as follows:

IoU =
TP

TP + FN + FP
, (23)

mIoU is defined as follows:

mIoU =
1
N

N

∑
i=1

IoUi, (24)

where N is the number of categories and IoUi is the IoU score of categories i.

4.4. Results in the Loveda Dataset

The results of the evaluation in the LoveDA-rural dataset are shown in Table 5.

Table 5. The IoU results in LoveDA-rural (%).

Backbone Loss-Function Background Building Road Water Barren Forest Agricultural Average

vgg-16 DECB-
Focal 55.89 68.06 62.74 73.59 46.92 72.51 73.35 64.72

vgg-16 DCB-Focal 56.11 67.18 61.00 73.69 47.02 73.01 73.24 64.46

resnet-50 DECB-
Focal 56.46 66.1 61.00 73.85 47.96 73.15 73.9 64.63

resnet-50 DCB-Focal 57.03 65.07 60.27 74.69 48.03 73.18 74.24 64.64

As the two minimum categories in the LoveDA-rural dataset, IoU with DECB im-
proved by 1% compared to DCB, which led to the increase in mIoU, but the IoU of the
barren and the other majority categories declined. Furthermore, the vgg-16 network com-
bined with Focal outperformed Resnet-50 in this dataset, and the vgg-16 network based on
DECB achieved the best results in both the two smallest categories and mean metrics.

In the LoveDA-r-road dataset, the weighting methods outperformed the combination
with CE over the combination with Focal by weighting object, while Resnet-50 outper-
formed vgg in terms of network structure. However, across all combinations of network
structures and weighted objects, the evaluation indicators obtained by the DECB method
are improved in most classifications, with only some decreases in forest and agricultural.
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In line with expectations, the very small category, road, received the largest increase of
about 1.3%.

The results of the evaluation in the LoveDA-rural dataset are shown in Table 6.

Table 6. The IoU results in LoveDA-r-road (%).

Backbone Loss-Function Background Road Water Forest Agricultural Average

vgg-16 DECB-Focal 53.26 68.79 70.89 66.52 72.75 66.44
vgg-16 DCB-Focal 51.64 66.94 70.26 66.19 72.65 65.54

resnet-50 DECB-Focal 52.94 68.88 71.06 66.94 73.33 66.63
resnet-50 DCB-Focal 51.86 67.83 71.01 66.41 73.23 66.07

vgg-16 DECB-CE 55.1 69.79 70.85 66.82 72.98 67.11
vgg-16 DCB-CE 54.08 68.67 70.19 67.52 72.93 66.68

resnet-50 DECB-CE 55.66 68.99 71.38 66.79 73.06 67.18
resnet-50 DCB-CE 54.97 67.42 71.01 67.41 73.66 66.89

An example of image segmentation in the LoveDA-r-road dataset is shown in Figure 10.
In Figure 10a, the gray roads occupy a smaller area than the water, agricultural land, and
background. For this category, the Focal function performs less well than CE for the
main road segmentation, but the DECB method can improve and optimize the original
segmentation results in both network structures. The misrepresentation of woodland in the
segmentation results based on the vgg can be found by visual interpretation, which may
have resulted from the omission in the original labels.
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The same omission may also be found in Figure 10b. The visual interpretation that
the original labels are incomplete for the road sections around the lake can be found.
After weighting the road category features by the DECB method, the vgg-DECB-Focal
combination completely segmented the road along the lake, and for another very small
category in the image, it also more accurately segmented the labelled woodland on the right
side of the image and the unlabeled suspected woodland on the opposite side of the lake.
These segmentation results show that the DECB method has improved the segmentation of
multiple minimal categories in highly unbalanced images.

In the LoveDA-r-road dataset, DECB not only optimizes the known minimum class
segmentation results, as shown in Figure 10a, but it also enables more accurate segmentation
of missing annotation in images based on the learned minimum class features, as shown in
Figure 10b.

The superiority of the DECB method is demonstrated by the fact that in both of
the LoveDA unbalanced datasets, the DECB method is able to improve the IoU of the
minimal classes with a small enhancement to the overall segmentation effect, about 0.5%
of the IoU. The segmentation effect of the minority classes is enhanced by the dynamic
algorithm of multi-classification balance, which finally achieves the enhancement of the
overall segmentation effect of the dataset.

The DECB method can be applied to a variety of network structures, and the IoU
results in the LoveDA-r-road dataset when combined with the Focal loss are shown in
Table 7.

Table 7. The IoU results for different networks in LoveDA-r-road (%).

Network Weighting Methods Background Road Water Forest Agricultural Average

vgg-16 DECB 53.26 68.79 70.89 66.52 72.75 66.44
DCB 51.64 66.94 70.26 66.19 72.65 65.54

Resnet-50
DECB 52.94 68.88 71.06 66.94 73.33 66.63
DCB 51.86 67.83 71.01 66.41 73.23 66.07

PSPNet
DECB 50.78 60.69 69.61 65.41 72.96 63.90
DCB 48.12 58.99 67.20 62.32 72.34 61.80

DeeplabV3 DECB 50.23 60.66 64.10 62.30 72.63 61.99
DCB 46.96 60.07 62.94 62.90 71.91 60.96

Compared with the DCB method, the DECB method improves not only the IoU per
classification but also the average IoU in a vast number of cases.

The comparison results of two segmentation methods based on multiple network
structures are shown in Figure 11. After applying the DECB method, the segmentation
effect of the road as a minority class in the image becomes clearer than before.

4.5. Results in the Forest Fire Burning Area Dataset

The results of the evaluation in the forest fire burning area dataset are shown in Table 8.
In the forest fire burning area dataset, vgg is more advantageous than Resnet-50, while
Focal performs best in the minority classes and CE performs best in the majority classes.
However, the DECB method is superior to DCB in most categories, with an average increase
of 3.5% in IoU for the very small categories when combined with Focal. While the above
segmentation improvement is achieved, the overall segmentation of the image has an
average improvement of about 1%, which does not decrease with the use of the DECB
method. Furthermore, in the context of forest fire burning area segmentation tasks, where
recall is more demanding, DECB in combination with Focal gives a significant increase of
about 25% in this metric.
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an average improvement of about 1%, which does not decrease with the use of the DECB 
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dataset: (a) example 1 and (b) example 2.

Table 8. Results of the evaluation of the forest fire burning area dataset (%).

Backbone Loss-Function
Fire Vegetation Background

IoU Recall Precision F1-Score IoU Recall Precision F1-Score IoU Recall Precision

vgg-16 DECB-Focal 21.36 51.96 26.62 35.21 93.51 97.13 96.17 96.65 78.06 88.36 87.01
vgg-16 DCB-Focal 17.96 19.57 35.26 25.17 93.34 97.22 95.91 96.56 77.23 87.9 86.42

resnet-50 DECB-Focal 20.72 46.77 27.11 34.32 92.55 95.18 97.1 96.13 74.12 81.3 89.36
resnet-50 DCB-Focal 15.59 19.57 43.63 27.02 92.83 97.2 95.38 96.28 75.32 88.15 83.81
vgg-16 DECB-CE 13.14 17.51 34.46 23.22 95.2 97.47 97.61 97.54 85.95 93.97 90.97
vgg-16 DCB-CE 12.23 15.76 35.31 21.79 94.65 97.91 96.6 97.25 84.58 92.06 91.24

resnet-50 DECB-CE 18.09 27.37 34.8 30.64 94.81 97.41 97.27 97.34 84.27 94.22 88.86
resnet-50 DCB-CE 15.72 21.53 36.81 27.17 94.7 97.78 96.78 97.28 84.22 93.2 89.74

A comparison of the metrics for each combination of scenarios for forest fire burning
area segmentation is shown in Figure 12. The vgg-DECB-Focal combination achieves the
highest IoU, recall, and F1-score scores of all the combinations, indicating that this combi-
nation performs better in terms of semantic segmentation, avoiding false negatives, and
balancing false negatives and false positives. The Resnet-DCB-CE combination outperforms
in the precision metric, which is due to the average outweighing of CE over Focal, DCB
over DECB, and Resnet over vgg in this metric, but is also inferior to the other three.
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burning area segmentation results corresponding evaluation indicators.

Two examples of the segmentation results in the forest fire burning area dataset are
shown in Figure 13. In Figure 13a, the segmentation results of the large burning area can
be divided into three combinations: the first one is based on the Resnet network structure.
These combinations have better segmentation results for forest fire burning areas without
smoke obscuration but they cannot segment the smoke-obscured forest fire pixels. Of these
combinations, the best segmentation results come from the DECB method of weighting.
The second is the three vgg combinations other than DECB-vgg, and none of them can
achieve many segmentations of forest fire pixels inside and outside the smoke area, and
the results obtained are a little fragmented. The third is the vgg-DECB-Focal method. This
combination segmented many forest fire pixels to form a relatively ideal forest fire burning
area, sacrificing the segmentation effect of the background class, but achieving the objective
of highlighting the segmented forest fire pixels required for the task.

The segmentation results of the small burning area in Figure 13b can be divided
into two categories, with the first seven combinations performing the segmentation task
relatively well in the smoke-obscured small burning area. Especially of these seven com-
binations, vgg-DECB-CE achieves a better job of segmenting the tiny fire spots. With the
addition of Focal to further highlight the very small class, the vgg-DECB-Focal method
shows much more false positives and such results are clearly unsatisfactory.

According to Figure 13, the DECB method can improve the model’s focus on forest fire
pixels to a certain extent, and it is particularly effective when dealing with smoke-obscured
forest fire burning areas; although, there exists the possibility of overtraining, making
the false positive rate increase in the absence of smoke obscuration. Therefore, in order
to obtain the best segmentation results, the most suitable combination of the network
structure–loss function weighting methods should be adopted.
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5. Conclusions

The image segmentation results based on deep learning are greatly affected by the
existence of highly unbalanced data among various categories in the remote sensing
dataset. To solve this problem, the following recommendations are made in this paper:
Firstly, the corresponding datasets are established, including a tri-classified, extremely
unbalanced forest fire burning area segmentation dataset and two highly unbalanced
segmentation datasets from a publicly available dataset. Secondly, a method for computing
effective samples in the semantic segmentation task and a weighting method for dynamic
effective class balancing are proposed to solve the class imbalance problem in multi-category
semantic segmentation. Finally, the effectiveness and robustness of the method are verified
experimentally.

The results show that the DECB method can improve minority class segmentation
in the semantic segmentation task by combining Focal_loss and CE in a U-Net network
architecture with vgg and Resnet-50 as different encoders, respectively. In the publicly
available LoveDA-rural and LoveDA-r-road datasets, the average IOU of very small class
segmentation results increased by approximately 1%, and the overall average cross-merge
ratio also increased due to changes in class balance. In the forest fire burning area dataset,
the maximum increase in the mean IOU for forest fire pixel segmentation was about 4%,
and the recall increased by approximately 20%, which is more advantageous in the forest
fire burning area segmentation task. Meanwhile, the DECB method proposed in this
paper can effectively improve the segmentation effect of the minimum classes without
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sacrificing overall accuracy. Meanwhile, the DECB method proposed in this paper can
effectively improve the segmentation effect of the minimum classes without sacrificing
overall accuracy.

However, there are still some issues that need to be addressed in further research. The
quantitative imbalance relationship between the various categories in a single image or
a single batch is not exactly consistent with the dataset itself, which is the fundamental
reason why the data in the sample space cannot be distributed as evenly as ideal.
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