
Citation: Liang, L.; Zhang, S.; Li, J.;

Plaza, A.; Cui, Z. Multi-Scale

Spectral-Spatial Attention Network for

Hyperspectral Image Classification

Combining 2D Octave and 3D

Convolutional Neural Networks.

Remote Sens. 2023, 15, 1758.

https://doi.org/10.3390/rs15071758

Academic Editors: Jens Nieke and

Nafiseh Ghasemi

Received: 23 February 2023

Revised: 20 March 2023

Accepted: 22 March 2023

Published: 24 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Multi-Scale Spectral-Spatial Attention Network for Hyperspectral
Image Classification Combining 2D Octave and 3D Convolutional
Neural Networks
Lianhui Liang 1 , Shaoquan Zhang 2,* , Jun Li 3 , Antonio Plaza 4 and Zhi Cui 1

1 College of Electrical and Information Engineering, Hunan University, Changsha 418002, China
2 Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing,

School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China
3 Hubei Key Laboratory of Intelligent Geo-Information Processing, School of Computer Science,

China University of Geosciences, Wuhan 430078, China
4 Hyperspectral Computing Laboratory, Department of Technology of Computers and Communications,

University of Extremadura, E-10071 Caceres, Spain
* Correspondence: zhangshaoquan1@163.com

Abstract: Traditional convolutional neural networks (CNNs) can be applied to obtain the spectral-
spatial feature information from hyperspectral images (HSIs). However, they often introduce signifi-
cant redundant spatial feature information. The octave convolution network is frequently utilized
instead of traditional CNN to decrease spatial redundant information of the network and extend
its receptive field. However, the 3D octave convolution-based approaches may introduce extensive
parameters and complicate the network. To solve these issues, we propose a new HSI classification
approach with a multi-scale spectral-spatial network-based framework that combines 2D octave
and 3D CNNs. Our method, called MOCNN, first utilizes 2D octave convolution and 3D DenseNet
branch networks with various convolutional kernel sizes to obtain complex spatial contextual feature
information and spectral characteristics, separately. Moreover, the channel and the spectral atten-
tion mechanisms are, respectively, applied to these two branch networks to emphasize significant
feature regions and certain important spectral bands that comprise discriminative information for
the categorization. Furthermore, a sample balancing strategy is applied to address the sample imbal-
ance problem. Expansive experiments are undertaken on four HSI datasets, demonstrating that our
MOCNN approach outperforms several other methods for HSI classification, especially in scenarios
dominated by limited and imbalanced sample data.

Keywords: hyperspectral images (HSIs); deep learning; convolutional neural networks (CNNs); 2D
octave convolution; DenseNet

1. Introduction

Hyperspectral images (HSIs) are captured by hyperspectral imagers, and consist of
tens or even a few hundred consecutive narrow bands of the spectrum. These instruments
are capable of collecting abundant spectral and spatial information [1–3]. The resulting data
cubes can be used to accurately identify ground materials and discriminate ground covers.
Thus, HSIs have been extensively applied in various domains, including environmental
monitoring [4], agriculture construction [5], military defense [6], anomaly detection [7], and
so on. The task of HSI categorization aims to allocate a unique and concrete category to
individual HSI pixels based on their feature information. HSI classification is an essential
branch in HSI processing tasks which has already become a research hotspot among remote
sensing fields [1–3].

During the past decades, many approaches have been proposed to classify HSIs. Early
HSIs classification approaches mainly used spectral features for classification, such as
SVM [8], decision trees [9], and multi-nomial logistic regression (MLR) [10]. As is well
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known, adjacent pixels of HSI are strongly correlated, which leads to a high probability
that they belong to the same ground category. The classification methods merely based on
spectral characteristics overlook the relevance of spatial information and the consistency of
local feature information, resulting in an insufficient utilization of spatial contextual feature
information. Therefore, aiming to further enhance their classification performance, many
machine learning-based approaches for HSI classification tasks integrate both spectral and
spatial information in their models. For example, Li et al. [11] proposed a spectral-spatial
feature categorization method that combines subspace polynomial logistic regression and
Markov random field (MRF), based on MLR to learn posterior probability distributions
from spectral signatures and the subspace projection-based approach to represent noisy and
height-mixing pixels. The spatial contextual information is then included by employing
multi-level MRF prior. Notably, MRF usually exploits the continuity of neighboring image
pixel labels in the probabilistic sense, and it establishes spatial context dependencies by
specifying local conditional probabilities [12,13]. Shen et al. [14] proposed an approach for
spectral-spatial feature information extraction by conducting complex 3D Gabor wavelet
groups with various frequencies and directions. In [15], a pixel-level and object-level
feature extraction method was first proposed by using a composite kernel scheme, which
merges the features of these two levels into a composite kernel and feeds them into an
SVM for classification, and then the voting fusion scheme is employed to determine the
final categorization results. Besides, conditional random fields [16], extended attribute
profiles [17], multiple kernels [18], and extinction profiles [19] have also been proposed.
However, although the above traditional HSI classification approaches have achieved good
categorization results, they are largely based on shallow learning and handcrafted features,
relying on professional domain knowledge in the parameter setting stage. It is, therefore,
difficult to obtain the deep-level abstract characteristic information contained in HSIs using
these approaches.

Recently, with the rapid evolution of deep learning (DL) techniques in machine vision,
audio processing, natural language, face recognition, and so on, DL-based techniques have
been extensively introduced to remote sensing image processing tasks [1,2,20]. Some typical
DL approaches have been widely employed in HSI classification, involving stacked auto-
encoders, recurrent neural networks, deep belief networks, and CNNs, which significantly
boost the performance of the HSI categorization task [21–25]. DL-based techniques are ca-
pable of automatically extracting HSI features from a low to high level and learning efficient
and deeper abstract features. Chen et al. [26] exploited 3D CNNs to obtain spectral-spatial
joint feature information from the raw data directly. Hang et al. [27] proposed an attention-
aided CNN model that merges the attention modules into convolutional layers, making the
CNN concentrate on more discriminative channels and spatial locations. Although deeper
DL networks are capable of extracting more refined discriminative features, it is more
difficult to train a deeper model due to the vanishing gradient phenomenon. Generally
speaking, the deeper the DL network is, the easier it is to lead to gradient disappearance or
explosion problems. ResNets [28] and DenseNets [29] effectively alleviate the vanishing
gradient phenomenon. Based on ResNets and 2D CNNs, Lee et al. [30] utilized multi-scale
convolutional filter groups to construct a nine-layer, fully connected CNN to realize the
joint extraction of spectral-spatial features. In [31], two 3D CNN dense blocks with different
kernel sizes, spatial densely block and spectral densely block, were proposed to acquire
deeper spatial and spectral characteristics. Li et al. [32] proposed a deep multi-layer fusion
DenseNet model, which utilizes 2D CNN and 3D CNN dense blocks to capture different
levels of spatial and spectral signatures from the original HSI, respectively. In [33], a spa-
tial and spectral signature extractor combining multi-scale 2D DenseNet with Bi-RNN is
proposed to enhance the acquisition of complex spatial contextual feature information and
the propagation of features among various convolutional layers via utilizing multi-scale
2D DenseNet.

Based on 3D CNNs and DenseNet, Ma et al. [34] developed a double branch model
(DBMA) combined with 3D DenseNet blocks and multiple attention mechanism blocks,
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applying both attention mechanisms to emphasize important spectral and spatial com-
ponents. Inspired by [34], a double branch and dual attention mechanism framework
(DBDA) is developed, employing input patches of various sizes, to refine and spotlight the
extracted feature maps by introducing different channel and spatial attention modules [35].
Since substantial spatial redundant information exists in traditional CNN-based networks,
Chen et al. [36] first proposed to adopt octave convolution instead, which not only re-
duced redundant spatial information, but also improved performance through effective
communication between high and low frequencies. In order to deeply mine discrimina-
tive spectral-spatial features and simultaneously decrease the spatial feature redundancy
caused by CNNs, Tang et al. [37] developed a 3D octave convolution (3Doc-conv) model
with both spectral and spatial attention networks by replacing the traditional CNN with
octave convolution. Xu et al. [38] presented a multi-scale 3Doc-conv with spatial and
channel attention to obtain the spatial contextual signatures at different scales via multi-
scale octave convolution kernels. Wang et al. [39] designed a fast multi-scale capsule
model with octave convolution, reducing the spatial redundancy parameters and obtaining
competitive classification performance. Combining the characteristics of 2D CNNs and
3D CNNs, a hybrid spectral CNN model is proposed to use 2D CNN after the 3D CNN
to capture more deep spatial representation features, reducing the complexity by using
the 3D CNN alone [40]. Moreover, a cross-level spectral-spatial joint coding model was
also introduced for the categorization of HSIs, which enhances the weight of small samples
with classification difficulties by developing a category-proportional sampling strategy
and a weighted loss method [41]. In [42], a model combined with global convolutional
long short-term memory and global joint attention mechanism is introduced, utilizing a
hierarchical balanced sampling method and a weighted softmax loss strategy to further
overcome the problem of insufficient and unbalanced samples in HSIs.

Inspired by the above-mentioned works, here, we develop a new multi-scale spectral-
spatial attention network framework combining 2D octave and 3D CNNs (MOCNN) for
classification tasks. The spectral-spatial feature extraction module of our MOCNN is
composed of two primary branch networks: the multi-scale DenseNet based on 3D CNNs
(multi-scale 3D DenseNet) and the multi-scale 2D octave convolution network (multi-scale
2D octave) are, respectively, applied to spectral signatures and spatial contextual feature
information extraction. For the spatial feature extraction sub-network, a multi-scale 2D
octave is employed to adequately mine the spatial contextual feature information, while
decomposing the obtained feature map into low-frequency (LF) and high-frequency (HF)
components to decrease the redundancy of spatial feature information. For the spectral
feature extraction sub-network, the multi-scale 3D DenseNet is utilized to sufficiently mine
the spectral signatures at various scales and simultaneously merge the spectral features
in shallow and deep convolutional layers to improve the reuse of spectral characteristics.
Additionally, the spectral attention mechanism module is used to allocate proper weight
values for each spectral band while suppressing insignificant spectral bands to mitigate
the effect of redundant HSI bands in the classification. The channel attention mechanism
module is used in the two feature extraction sub-networks to enhance the interactions of
the feature map information among feature channels and improve the feature extraction
capability. Finally, a sample balancing strategy based on the weighted cross-entropy
loss function (WCL) is used to address the problem of sample imbalance. The MOCNN
proposed in the present paper is inspired from [43]. The major contributions of this study
are outlined below:

• Based on 2D octave, a multi-scale 2D octave convolution sub-network is proposed to
capture spatial feature information. It can not only reduce the spatial feature informa-
tion redundancy, but also extract complex spatial structure information adequately.

• A multi-scale DenseNet based on 3D CNNs is exploited to adequately explore the
discriminative spectral signatures at various scales, while fusing the spectral signatures
in both shallow and deep convolutional layers to enhance the reuse of spectral features.
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• Two types of attention models are utilized to highlight the features containing impor-
tant information to boost the spectral-spatial feature capture capability of the model.
Furthermore, in order to address the problem of sample imbalance, a sample bal-
ancing strategy based on the WCL is employed to achieve the balance of the weight
probabilities for each category, resulting in the fact that the model focuses more on
categories with scarce training samples.

The organization of the remaining parts of this article is described below. The related
materials and methods (i.e., the proposed MOCNN model, 2D octave, 3D DenseNet,
attention mechanism models, and balanced sampling strategy) are briefly presented in
Section 2. The parameter configuration, experimental setup, extensive experimentation
and discussion, analysis of experimental results at various sample ratios, and ablation
experiments are detailed in Section 3. Ultimately, Section 4 provides conclusions and
directions regarding future research.

2. Materials and Methods

The proposed MOCNN model primarily consists of three modules: a branch network
of the multi-scale 2D octave for spatial contextual feature information extraction, a branch
network of the multi-scale 3D DenseNet for exploring the spectral feature information,
and a spectral-spatial feature fusion sub-network. The flowchart of the network of the
MOCNN approach for HSI classification is illustrated in Figure 1. For spatial feature
extraction, after dimensionality reduction of the raw HSI data by principal component
analysis (PCA), two 2D octave convolutional networks (where each network contains
four 2Doc-conv) are utilized to decompose the feature map into LF and HF components
to decrease the redundancy of spatial feature information. Furthermore, the multi-scale
2D octave with two distinct convolution kernel sizes is used to further capture complex
spatial contextual feature information of various scale sizes. In multi-scale 3D DenseNet,
firstly, a band attention mechanism (BAM) is used to band select and weight each spectral
band, to improve the acquiring of characteristic information contained in vital spectral
bands and decrease band redundant feature information. Subsequently, the multi-scale
3D DenseNet is exploited to adequately explore the spectral characteristic information at
various scales, while fusing the spectral features among various layers in the shallow and
deeper convolutional layers. In the final part of the above two sub-networks, the channels
of the feature maps connected by concat operation are weighted using the efficient channel
attention mechanism (ECA) for enhancing the information capture capability of the spectral
and spatial feature channels. Lastly, in the feature fusion sub-network, the final feature
maps gained via connecting these two sub-networks are fed through the fully connected
layer to yield the new spectral and spatial fusion features. The fused new features are then
imported to the softmax layer to gain prediction results.

Figure 1. The flowchart of the network of the MOCNN approach for HSI classification.
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2.1. 2D Octave Convolution

The image information is capable of being divided into the LF information component
and the HF information component. Among them, the LF information denotes the rela-
tively smooth or homogeneous regions of the image, which have relatively slow image
gray value transformations. The HF information refers to the image boundary informa-
tion and the detail information of small areas of the image, where the image gray value
transforms relatively dramatically. Likewise, the output characteristic maps in the CNNs
can be considered as the characteristic signal made up of LF and HF information, and each
position in the spatial dimension of the characteristic map stores its own feature signal
individually. Octave convolution stores the LF information that transforms slowly between
adjacent positions together in a low-resolution tensor by sharing positions so as to decrease
the resolution of LF features and decrease the superfluity of spatial characteristics and oper-
ational complexity. Hence, 2D octave convolution (2Doc-conv) is applied to obtain spatial
contextual feature in this work, which can effectively minimize the spatial information
superfluity and lower the computational effort of the model. The schematic of the overall
structure of 2Doc-conv network is depicted in Figure 2.

Figure 2. The schematic of the overall structure of the 2D octave convolutional network.

Specifically, let us suppose that the input feature maps of the 2Doc-conv are denoted
as X=(Xh, Xl), and the output at the m-th layer of the octave convolution is denoted by
Ym=(Yh

m, Yl
m), where the upper label h and the upper label l stand for the corresponding

feature maps belonging to HF and LF information, respectively. Notice that L → L and
H → H denote the exchange of information between intra-frequencies. H → L and L→ H
express the exchange of information between HF and LF. As the raw HSI contains abundant
spatial and spectral signature detail information, it can be regarded as HF feature data. As
displayed in Figure 2, the 2Doc-conv network is made up of four 2Doc-convs, an averaging
pooling (AP) operation, and an upsample layer. The output characteristic information of
the first layer in this 2Doc-conv is expressed as:

Yh
1 = Con(Xh), (1)

Yl
1 = Con(Apool(Xh)), (2)

where Con(.) and Apool(.) represent the 2D convolution and AP operation, respectively. In
the second layer of the 2Doc-conv network, it is mainly primarily utilized to complete the
update of same-frequency (HF to HF or LF to LF) feature information and the transforma-
tion between different-frequency (HF to LF or LF to HF) ones. Thus, the output features of
the second layer in this 2Doc-conv can be formulated as:

Yh
2 = Con(Yh

1 + Upsample(Yl
1)), (3)

Yl
2 = Con(Yl

1 + Con(Apool(Yh
1 )), (4)
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where Upsample(.) represents the upsample operation based on bi-linear interpolation. For
reducing the redundancy of feature information, the HF information acquired in the second
layer is downsampled, and then the LF feature information gained in this layer is merged
to yield a novel feature Ypool , whose calculation formula is:

Ypool = Con(Apool(Yh
2 ) + Con(Yl

2)). (5)

Likewise, the final output feature information of the third and fourth layer, Yh
3 , Yl

3,
Yh

4 , and Yl
4, in this network can be updated by the communication mechanism between

intra-frequency and inter-frequency, respectively. Finally, Yo can be represented by:

Yo = Con(Con(Yh
4 ) + Upsample(Yl

4)). (6)

To sum up, based on 2Doc-conv, the slowly varying LF feature information is stored
in the tensor with LF resolution, and then the LF feature resolution is lowered by sharing
information among adjacent positions. Compared with traditional CNNs, octave convo-
lution has two obvious advantages, as it can not only reduce spatial redundancy but also
extend the receptive field of the network. Therefore, the 2D octave is exploited instead of
CNNs to improve the categorization performance of HSI in this work.

2.2. 3D DenseNet

Generally, traditional CNN models increase the depth of the network model by stack-
ing convolutional layers, thereby improving the classification accuracy. However, the
problem of gradient descent or gradient explosion will occur when too many convolutional
layers are stacked. Each convolutional layer of DenseNet gains external input information
from all previous convolution layers and delivers their own feature information to all
succeeding convolution layers. The gradient value gained in each convolution layer is the
gradient addition from the previous convolution layers, which can effectively alleviate the
gradient descent problem [29]. Compared with ResNet [28], the DenseNet structure with
feature multiplexing can utilize hierarchical features more efficiently and reinforce feature
transfer among convolution layers.

All convolutional layers in 3D DenseNet are connected by directly skip-connecting to
achieve maximum information transfer among layers of the network. In short, the input of
each convolutional layer is the concatenation of the outputs of all previous convolution
layers. The first 3D convolutional layer processes raw pixel data of size a × a × B (where
a × a denotes the spatial size and B denotes the number of bands) to generate m0 feature
maps of size a × a × b. These maps serve as input to dense blocks. As illustrated in
Figure 3, the input of the dense block is of the size a × a × b with m0 feature maps, where
the subscript indicates the amount of convolutional layers within the dense block. The
convolution layer embedded within the dense block is represented as D(.), after each
convolution layer applies m kernels of size k × k × c to extract rich spectral information,
the output feature map of each layer is size of a × a × b. The number of output spectral
feature maps of the t-th layer can be formulated as m0 + (t− 1)×m, where m0 means the
number of channels contained in the initial feature map. The input to the t-th layer of the
densely connected model can be expressed as:

Ht = D(H0, H1, H2, ......, Ht−1) t ∈ N+, (7)

where D denotes a function module, which includes convolutional layer, batch normaliza-
tion (BN), and activation function layer. N+ denotes a positive integer.
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Figure 3. Schematic of the structure of 3D DenseNet.

2.3. Attention Mechanism Module

The attention mechanism can be used to focus on a certain part of the HSI, assign
independent and appropriate weights, weaken redundant and useless information, and
highlight effective features that are beneficial for classification. This section will describe
the BAM and ECA attention modules in detail.

2.3.1. Spectral Attention Mechanism

The bands of hyperspectral images are redundant and noisy, whereas a band attention
module has the ability to conduct band selection and weight each band, which can mitigate
the negative effects of band superfluity in HSI classification [44]. The schematic of the
structure of BAM is shown in Figure 4. The BAM module primarily contains three 3 × 3 2D
convolutional layers, two 1D convolutional layers, two pooling layers, and an activation
function layer, where the number of channels of 2D convolutional layers is 16, 32, and 32,
respectively. In this attention model, after using a 2D convolutional layer for expanding
the receptive field, the resolution is reduced by pooling layers to obtain global information
in the spatial domain, and then a 1D convolutional layer is employed to further learn the
non-linear correlation among the bands. Ultimately, a sigmoid function is adopted to obtain
the spectral band weight vector. Notably, the sizes of the two 1D convolution kernels are
1 × 1 × 32 × B/r and 1 × 1 × B/r × B, in which B denotes the number of spectral bands
and r is a hyper-parameter that controls the degree of information aggregation layers in the
1D convolution layer. The forward propagation expression of BAM is represented as:

Uo = ψ2(W12ψ1(W11 fG(ψ1((W23ψ1(W22 fP(ψ1(W21Ui)))))))), (8)

where Ui and Uo denote the HSI data input to the BAM and the output of the BAM, Wij
denotes the j-th i-dimensional convolutional kernel matrix in the BAM, fP denotes an
AP layer for resolution reduction, and fG denotes a global AP layer for the sufficient
fusion of the spatial feature information contained in the generated feature maps to form
a band mask. Moreover, ψ1, ψ2 denote the Relu and sigmoid activation functions. After
obtaining the spectral band weighted vector by the ψ2 function, the inner product operation
is performed with the input of BAM to obtain more representative spectral band features.

Figure 4. The schematic of the structure of BAM. S and
⊗

denote the sigmoid activation function
and the multiplication of elements, respectively.

2.3.2. Channel Attention Mechanism

The proper cross-channel feature interaction and avoidance of dimensionality reduc-
tion for channel attention learning can enhance the feature learning capability of the model
while lowering its complexity. ECA is a lightweight and local cross-channel feature interac-
tion attention model without dimensionality reduction [45]. The schematic of the structure
of ECA is given in Figure 5. It generates channel attention weight parameters via 1D
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convolution, with the size R of the convolution kernel being self-adaptively determined by
a non-linear mapping of channel dimensions C, which leads ECA to significantly lower the
model complexity while sustaining cross-channel interaction. Its computational expression
can be presented as:

QC = P(IC) =
1

S× S

S

∑
i

S

∑
j

IC(i, j), (9)

where IC(i, j) refers to the characteristic information of the c-th channel from the input
feature maps at the (i, j) coordinate position. QC denotes the feature information of the
c-th channel from the feature map obtained after the AP layer of IC. The size R of the 1D
convolution kernel (the coverage of local cross-channel interactions) is expressed as:

R = α(C) =
∣∣∣∣ log2(C)

β
+

b
β

∣∣∣∣
od

, (10)

where |r|od represents taking the nearest odd value of r and the values of parameters b and
β are given as 1 and 2, respectively. Hence, after the values of parameters b, β are defined,
the value of R is exclusively defined adaptively by the value of channels C. Finally, the
corresponding weights of the channels can be calculated as:

wC = ψ1(
R

∑
j=1

W jQj
c), Qj

c ∈ θR
c , (11)

where ψ1 denotes the sigmoid activation functions and θR
c represents the set of R adjacency

channels of QC.

Figure 5. The schematic of the structure of ECA. Here, I stands for the input feature map of the ECA,
C represents the number of channels of I, P denotes the set of features obtained from the input feature
map I after AP, and

⊗
denotes the multiplication of elements.

2.4. Balanced Sampling Strategy

The WCL can balance the weight probabilities of different categories, which is a
common method to address the imbalance problem [46]. To tackle the problem of sample
imbalance in this paper, the WCL is applied to lower the weights of easily classified sample
categories, while making the model more focused on categories with small samples and
misclassification. Based on this balanced sample strategy, the composite loss function of
the MOCNN model can be represented as:
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Lim(y, P(Zim)) = −
n

∑
i=1

Wi[ylog(P(Zim) + (1− y)log(1− P(Zim)))], (12)

Lspa(y, P(Zspa)) = −
n

∑
i=1

[
ylog(P(Zspa) + (1− y)log(1− P(Zspa)))

]
, (13)

Lspe(y, P(Zspe)) = −
n

∑
i=1

[
ylog(P(Zspe) + (1− y)log(1− P(Zspe)))

]
, (14)

L = Lspa(y, P(Zspa) + Lspe(y, P(Zspe)) + ηLim(y, P(Zim))), (15)

where Zim, Zspa, and Zspe denote the logits of the spatial-spectral feature fusion, spatial
feature extraction, and spectral feature extraction sub-network in the proposed model,
respectively, L denotes the composite loss function of the proposed MOCNN model, Lim,
Lspa, and Lspe denote the loss functions of the corresponding sub-networks, separately, y
denotes the true label corresponding to the i-th training sample, η denotes the parameter
that controls the weight of Lim, which is set empirically to 0.9, and Wi denotes the weight
parameter corresponding to the category loss, which can be calculated from:

Wi =
N
Ti

, (16)

where N stands for the number of occurrences of the median across all categories and
Ti denotes the frequency of category i, and it represents the proportion of the number of
categories i to the sum of all pixels in the training sample. Thus, Ti is expressed as:

Ti =
Mi

∑j Mj
, (17)

where Mi refers to the number of samples of category i. During each iteration of training,
the network loss corresponding to the training set is updated by the counter-propagation
operation per layer, and the optimal network is selected in a finite number of iterations.

3. Experimental Results and Discussion
3.1. Experimental Datasets Description

In this section, to verify the performance of the MOCNN model and contrast it with
other approaches, four HSI datasets are applied in the experiments, i.e., the Pavia University
(UP), Salinas Valley (SV), Indian Pines (IN), and Zaoyuan (ZY) datasets. The reference
maps (i.e., false-color images and ground truth) for the four HSIs are presented in Figure 6.
Three common quantitative indicators, namely, overall accuracy (OA), average accuracy
(AA), and Kappa coefficient (Ka), are utilized to evaluate the classification performance of
all methodologies [47]. In particular, OA means the percentage of correct categorization
of all pixels, AA refers to the mean classification precision of the whole category, and Ka
takes into account the influence of uncertainty on the classification results and reflects
the coherence between classification outcomes and the ground truth. The values of OA,
AA, and Ka vary from 0 to 1, where closer to 1 implies better classification outcomes of
the model.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Reference maps of the four HSIs. In this figure, sub-maps (a,c,e,g) refer to the false-color
images of the UP, SV, IN, and ZY, whereas sub-maps (b,d,f,h) refer to the ground truth corresponding
to them.

Pavia University dataset (UP): The UP contains 610 × 340 pixels and encompasses
103 spectral channels after abandoning noisy spectral channels, covering wavelengths
varying from 430 to 860 nm, whose spatial resolution (SR) is up to 1.3 m. It encompasses
nine classes of labeled samples of land cover objects for classification.

Salinas Valley dataset (SV): The SV contains 512 × 217 pixels and encompasses
204 spectral channels after abandoning 20 noisy spectral channels, covering wavelengths
varying from 360 to 2500 nm with 3.7 m SR. It encompasses 16 classes of various land cover
labeled samples for classification.

Indian Pines dataset (IN): The IN contains 145× 145 pixels and encompasses 220 spec-
tral channels. It covers wavelengths varying from 400 to 2500 nm, while its SR is 20 m. It
encompasses a total of 16 classes of land cover labeled samples for classification.

Zaoyuan dataset (ZY): The ZY was obtained by OMIS sensor in 2001 in the Zaoyuan
zone of China. It encompasses 80 spectral channels after discarding 48 noisy spectral
channels and covers wavelengths varying from 400 to 1700 nm. The spatial size of ZY is
137 × 202 with 23,821 labeled pixels. It encompasses a total of eight classes of land cover
labeled samples for classification.

During each experimental execution, the selected experimental samples (training
samples, validation sets, and test samples) are taken through a random sampling method.
Tables 1–4 provide the categories information and corresponding sample numbers for each
HSI dataset.
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Table 1. Category information and corresponding experimental sample size for UP.

Category Total Training Validation Test
C1 6631 100 100 6431
C2 18,649 280 280 18,089
C3 2099 32 32 2035
C4 3064 46 46 2972
C5 1345 21 21 1303
C6 5029 76 76 4877
C7 1330 20 20 1290
C8 3682 56 56 3570
C9 947 15 15 917

Total 42,776 646 646 41,484

Table 2. Category information and corresponding experimental sample size for SV.

Category Total Training Validation Test
C1 2009 21 21 1967
C2 3726 38 38 3650
C3 1976 20 20 1936
C4 1394 14 14 1366
C5 2678 27 27 2624
C6 3959 40 40 3879
C7 3579 36 36 3507
C8 11,271 113 113 11,045
C9 6203 63 63 6077

C10 3278 33 33 3212
C11 1068 11 11 1046
C12 1927 20 20 1887
C13 916 10 10 896
C14 1070 11 11 1048
C15 7268 73 73 7122
C16 1807 19 19 1769
Total 54,129 549 549 53,031

Table 3. Category information and corresponding experimental sample size for IN.

Category Total Training Validation Test
C1 46 6 6 30
C2 1428 172 172 1084
C3 830 100 100 630
C4 237 29 29 179
C5 483 27 27 429
C6 730 58 58 614
C7 28 4 4 20
C8 478 58 58 362
C9 20 3 3 14

C10 972 117 117 738
C11 2455 295 295 1865
C12 593 72 72 449
C13 205 25 25 155
C14 1265 152 152 961
C15 386 47 47 292
C16 93 12 12 69
Total 10,249 1238 1238 7773
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Table 4. Category information and corresponding experimental sample size for ZY.

Category Total Training Validation Test
C1 2625 53 53 2519
C2 1302 27 27 1248
C3 3442 69 69 3304
C4 10,243 205 205 9833
C5 1425 29 29 1367
C6 1484 30 30 1424
C7 1808 37 37 1734
C8 1492 30 30 1432

Total 23,821 480 480 22,861

3.2. Parameter Setting

In this section, the configuration of the model parameters is introduced at length
according to the flowchart of the network of the proposed MOCNN model given in Figure 1.
The network parameters settings for 2D octave and 3D DenseNet in the MOCNN model are
given in Table 5. For spatial feature extraction, after the input raw 3D cube is down-sampled
by PCA, the size of the resulting data cubes is 23 × 23 × 9, 29 × 29 × 9, 21 × 21 × 9, and
27× 27× 9 for UP, SV, IN, and ZY, respectively. After that, the reduced data cubes are input
to the multi-scale 2D Octave sub-network for spatial feature extraction, where the detailed
parameters of the two 2D Octaves in this sub-network configuration are shown in Table 5.
For the UP, SV, IN, and ZY, the two convolution kernel sizes kspa in multi-scale 2D octave
are set to 5 and 7, 3 and 9, 5 and 7, 3 and 7, respectively. The quantities of convolutional
kernel channels mspa are given as 32, 64, 32, and 16 for each 2D octave layer, respectively.
For spectral feature extraction, corresponding to the above HSI dataset, the size of the
input raw HSI data is 7 × 7 × 103, 7 × 7 × 204, 7 × 7 × 220, and 3 × 3 × 80, respectively.
After the channels are weighted by a BAM module, the data are fed into a multi-scale
3D DenseNet to learn the spectrum signatures at various scales. Likewise, the detailed
parameters of the two 3D DenseNet in this sub-network configuration are presented in
Table 5, where the two convolution kernel size kspe are set to 5 and 7, 5 and 7, 5 and 7, 3
and 5, on UP, SV, IN and ZY, respectively. The number of convolutional kernel channels
mspe for each convolutional layer and other detailed configuration settings are also given in
Table 5. Besides, the value of the convolution kernel kspe0 depends on the value of bands B.
When the value of B is even, kspe0 takes ceil(B/2 − kspe0). Conversely, kspe0 takes ceil (B/2
− kspe0) + 1. The ceil(.) represents the upward rounding calculation function.

Table 5. Network parameters settings for 2D octave and 3D DenseNet in the MOCNN model.

Model Type / Layer Filter / Operation Configuration

2D octave

2Doc-conv1 (kspa, kspa), 32

stride:1, padding:1, BN+mish2Doc-conv2 (kspa, kspa), 64
2Doc-conv3 (kspa, kspa), 32
2Doc-conv4 (kspa, kspa), 16

3D DenseNet

conv1 (1, 1, kspe), 32 stride:2, padding:0, BN+mish
conv2 (1, 1, kspe), 16 stride:1, padding:1, BN+mishconv3 (1, 1, kspe), 16

concat1 concat(conv2, conv3), 32 BN+mish
conv4 (1, 1, kspe), 16 stride:1, padding:1, BN+mish

concat2 concat(conv2, conv3, conv4), 48 BN+mish
conv5 (1, 1, kspe), 16 stride:1, padding:1, BN+mish

concat3 concat(conv2, conv3, conv4, conv5), 64 BN+mish
conv6 (1, 1, kspe0), 16 stride:1, padding:0, BN+mish

In addition, the parameter settings on four different HSI datasets concerning the learn-
ing rate, dropout, batch size, and epochs are shown in Table 6. Due to space considerations,
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the parameter settings are not described in detail here, and the optimal parameters derived
from the summary of the experiments are given directly.

Table 6. Parameter settings on four different datasets inclusive of the learning rate, dropout, batch
size, and epoch.

Class Learning Rate Dropout Batch Size Epoch

UP 0.00005 0.5 32 250
SV 0.0001 0.5 32 400
IN 0.00005 0.5 32 400
ZY 0.00005 0.5 64 600

3.3. Experimental Setup

For assessing the validity and superiority of the MOCNN approach, the DL-based
classifiers CDCNN [30], FDSSC [31], DBMA [34], DBDA [35], SSAN [24], TriCNN [48],
3DOC-CNN [37], and HRAM [49] are compared with the proposed method.

(1) CDCNN: The CDCNN approach realizes the joint extraction of spectral-spatial fea-
tures through utilizing multi-scale convolutional filter groups and exploiting the modules
of ResNet to significantly improve the depth of the network.

(2) FDSSC: The FDSSC approach utilizes two 3D CNN dense blocks with different
kernel sizes, spatial densely block and spectral densely block, to capture deeper spatial and
spectral characteristics, respectively.

(3) DBMA: The DBMA approach is a double branch model combined with 3D DenseNet
blocks and multiple attention mechanism blocks, applying both attention mechanisms to
emphasize important spectral and spatial components.

(4) DBDA: Although DBDA is analogous to the DBMA framework, DBDA employs
different size input patches and introduces different channel and spatial attention modules.
Moreover, the activation function Mish is introduced to accelerate counter-propagation and
prevent overfitting in severely restricted samples.

(5) SSAN: The SSAN approach is a spectral-spatial two-branch two-attention frame-
work model, which adds spectral and spatial attention mechanisms on the basis of Bi-RNN
and CNN, respectively.

(6) TriCNN: The TriCNN approach is a three-branch network model based on 3D CNN
using various scale convolutional kernels of 1 × 1 × 3, 3 × 3 × 1, and 3 × 3 × 3 sizes to ex-
tract spectral, spatial, and spectral-spatial features, respectively, and then fuse the different
features obtained from the three sub-networks by feature flattening and concatenation.

(7) 3DOC-CNN: The 3DOC-CNN approach adopts 3Doc-conv to acquire the spectral-
spatial characteristics, and introduces attention networks to spotlight the more meaningful
characteristics in HSI.

(8) HRAM: The HRAM approach employs a hierarchical residual network to extract
spatial and spectral characteristics at the granularity level, utilizing a two-branch structure
in parallel with the corresponding convolution kernel. Besides, to boost the discriminative
power of the model, it exploits attention mechanisms to assign adaptive weights to spatial
and spectral features at various scales.

All experiments were run on a 2080Ti GPU, i9-9900K CPU, 128GB RAM, python 3.6,
using tensorflow-gpu 1.14 for implementation. The outcomes reported from all experiments
are the average and variance of the results of twenty Monte Carlo runs. To guarantee
impartial comparison, the experimental arguments of each classifier are set with default
settings of the original paper. In the following, the outcomes of the quantitative comparison
experiments between MOCNN and all compared approaches on UP, SV, IN, and ZY are
presented in Tables 7–10. Among all classification accuracy comparisons, the highest
accuracy is marked in bold. Besides, we visualize the classification maps in Figures 7–10.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Map of the classification results from all approaches on UP. (a) Ground truth. (b) CD-
CNN [30]. (c) FDCNN [31]. (d) DBMA [34]. (e) DBDA [35]. (f) SSAN [24]. (g) TriCNN [48].
(h) 3DOC-CNN [37]. (i) HRAM [49]. (j) MOCNN.

Table 7. Quantitative comparison of the CDCNN [30], FDSSC [31], DBMA [34], DBDA [35], SSAN [24],
TriCNN [48], 3DOC-CNN [37], HRAM [49], and MOCNN on UP.

Category CDCNN FDSSC DBMA DBDA SSAN TriCNN 3DOC-
CNN HRAM MOCNN

C1 92.19 99.35 97.67 98.90 92.80 89.86 95.20 98.75 99.21
C2 96.37 99.70 99.30 99.72 99.45 99.71 100.00 99.68 99.95
C3 72.28 97.03 93.10 95.97 69.73 82.95 89.19 92.87 97.25
C4 97.94 96.61 96.62 97.53 98.15 96.71 97.91 97.36 97.98
C5 99.19 99.70 99.38 99.51 97.01 99.87 94.55 99.29 95.32
C6 92.04 99.66 99.07 98.55 93.66 95.15 97.99 99.89 100.00
C7 90.47 99.95 99.14 99.27 85.43 80.53 82.56 99.26 96.20
C8 83.18 90.79 94.30 92.63 93.17 92.93 97.62 91.85 95.52
C9 99.08 98.15 97.03 97.59 90.73 98.79 98.80 97.72 100.00

OA 92.86
± 2.15

98.33
± 0.93

98.00
± 0.39

98.37
± 0.49

94.94
± 0.61

95.41
± 0.86

97.39
± 0.53

98.17
± 0.81

98.92
± 0.55

AA 91.41
± 3.40

97.88
± 0.91

97.29
± 0.53

97.74
± 0.75

91.13
± 1.35

92.95
± 0.92

94.87
± 0.47

97.41
± 1.01

97.94
± 0.71

Ka 90.48
± 2.91

97.79
± 1.23

97.35
± 0.52

97.85
± 0.65

93.27
± 0.72

93.91
± 0.95

96.54
± 0.65

97.57
± 1.33

98.57
± 0.41
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(f) (g) (h) (i) (j)

Figure 8. Map of the classification results from all approaches on SV. (a) Ground truth. (b) CD-
CNN [30]. (c) FDSSC [31]. (d) DBMA [34]. (e) DBDA [35]. (f) SSAN [24]. (g) TriCNN [48]. (h) 3DOC-
CNN [37]. (i) HRAM [49]. (j) MOCNN.

Table 8. Quantitative comparison of the CDCNN [30], FDSSC [31], DBMA [34], DBDA [35], SSAN [24],
TriCNN [48], 3DOC-CNN [37], HRAM [49], and MOCNN on SV.

Category CDCNN FDSSC DBMA DBDA SSAN TriCNN 3DOC-
CNN HRAM MOCNN

C1 49.99 100.00 100.00 97.48 86.32 99.98 99.08 100.00 100.00
C2 79.97 100.00 99.92 99.96 99.53 99.92 99.78 98.72 100.00
C3 92.96 93.64 97.76 98.20 92.51 99.49 94.16 95.99 99.70
C4 93.95 97.55 94.23 97.13 99.78 99.50 97.66 96.78 98.66
C5 89.59 96.73 97.51 98.46 96.84 95.58 99.28 99.47 99.78
C6 98.18 99.81 98.77 99.88 100.00 100.00 97.68 99.99 98.70
C7 98.02 99.99 99.80 99.91 99.03 99.96 99.60 99.93 100.00
C8 80.45 96.25 94.66 96.99 90.88 95.81 95.70 93.49 99.83
C9 98.20 99.72 99.77 99.40 98.47 99.88 98.68 99.44 95.78

C10 87.17 99.40 96.47 98.31 99.66 97.61 92.28 98.60 99.67
C11 76.08 97.00 97.34 96.88 95.32 99.91 99.71 98.16 100.00
C12 91.28 99.88 99.71 99.70 89.51 96.23 97.14 99.98 98.28
C13 97.01 99.87 98.15 99.37 97.43 95.87 97.43 99.47 98.62
C14 97.35 98.13 98.40 98.46 89.60 95.85 90.36 97.64 99.89
C15 52.71 96.11 87.93 87.12 89.96 86.58 94.02 95.26 96.47
C16 99.02 100.00 98.13 99.96 96.10 99.12 97.06 99.93 99.35
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Table 8. Cont.

Category CDCNN FDSSC DBMA DBDA SSAN TriCNN 3DOC-
CNN HRAM MOCNN

OA 83.77
± 5.41

97.83
± 1.10

95.91
± 1.58

96.49
± 2.10

94.67
± 0.53

96.59
± 0.75

96.69
± 0.41

97.21
± 1.12

98.69
± 0.32

AA 86.31
± 6.21

98.38
± 0.90

97.41
± 0.95

97.95
± 0.91

95.06
± 0.47

97.58
± 0.71

96.85
± 0.55

98.30
± 0.74

99.05
± 0.55

Ka 81.95
± 2.20

97.58
± 1.23

95.46
± 2.05

96.10
± 2.33

94.07
± 0.65

96.20
± 0.84

96.31
± 0.72

96.88
± 1.26

98.54
± 0.71

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Map of the classification results from all approaches on IN. (a) Ground truth. (b) CD-
CNN [30]. (c) FDSSC [31]. (d) DBMA [34]. (e) DBDA [35]. (f) SSAN [24]. (g) TriCNN [48]. (h) 3DOC-
CNN [37]. (i) HRAM [49]. (j) MOCNN.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Map of the classification results from all approaches on ZY. (a) ground truth. (b) CD-
CNN [30]. (c) FDSSC [31]. (d) DBMA [34]. (e) DBDA [35]. (f) SSAN [24]. (g) TriCNN [48]. (h) 3DOC-
CNN [37]. (i) HRAM [49]. (j) MOCNN.
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Table 9. Quantitative comparison of the CDCNN [30], FDSSC [31], DBMA [34], DBDA [35], SSAN [24],
TriCNN [48], 3DOC-CNN [37], HRAM [49], and MOCNN on IN.

Category CDCNN FDSSC DBMA DBDA SSAN TriCNN 3DOC-
CNN HRAM MOCNN

C1 48.27 96.07 97.35 100.00 91.18 100.00 100.00 74.24 97.06
C2 80.85 98.26 95.51 96.64 96.76 94.59 97.48 95.76 97.42
C3 78.45 96.97 99.13 99.10 92.72 98.35 97.99 98.24 98.57
C4 74.12 98.45 96.23 98.46 95.63 95.45 100.00 99.04 100.00
C5 96.44 97.99 97.64 98.77 92.53 97.81 94.13 97.03 95.10
C6 96.27 97.41 98.69 98.92 99.30 99.69 97.36 98.36 98.74
C7 44.91 95.89 81.70 82.30 100.00 99.20 75.00 70.70 95.00
C8 89.30 100.00 99.82 99.95 100.00 100.00 100.00 98.49 100.00
C9 42.50 95.63 95.82 97.20 100.00 63.33 100.00 60.00 100.00

C10 78.95 96.16 95.92 94.41 96.31 97.66 98.15 96.92 97.97
C11 78.02 99.03 97.10 99.18 99.16 98.27 97.86 99.15 98.98
C12 63.40 98.68 94.92 96.49 96.31 92.27 94.79 95.18 98.22
C13 98.45 98.69 99.79 98.78 94.97 99.56 99.37 100.00 100.00
C14 93.75 99.12 98.69 99.32 99.29 98.99 99.19 99.30 99.90
C15 86.86 98.13 95.94 97.90 94.33 94.99 94.67 98.69 100.00
C16 97.64 95.98 93.18 91.66 87.32 95.12 94.37 94.00 95.65

OA 81.76
± 3.71

98.16
± 0.80

97.04
± 1.08

97.88
± 0.54

97.14
± 0.52

97.36
± 0.49

97.60
± 0.32

97.79
± 1.50

98.58
± 0.41

AA 78.01
± 5.81

97.65
± 1.04

96.09
± 0.84

96.82
± 0.49

95.99
± 1.12

95.33
± 1.53

96.27
± 0.91

92.19
± 3.35

98.29
± 0.67

Ka 79.08
± 4.36

97.91
± 1.01

96.62
± 1.24

97.58
± 1.07

96.74
± 0.81

96.99
± 0.55

97.27
± 0.55

97.48
± 1.01

98.39
± 0.51

Table 10. Quantitative comparison of the CDCNN [30], FDSSC [31], DBMA [34], DBDA [35],
SSAN [24], TriCNN [48], 3DOC-CNN [37], HRAM [49], and MOCNN on ZY.

Category CDCNN FDSSC DBMA DBDA SSAN TriCNN 3DOC-
CNN HRAM MOCNN

1 80.19 97.34 96.86 96.88 99.88 95.28 96.10 95.67 97.66
2 85.53 97.63 96.64 97.03 90.46 97.75 99.28 97.58 97.04
3 81.97 98.10 97.06 98.09 97.31 95.52 92.05 98.01 99.49
4 89.22 98.38 98.52 98.46 96.68 97.66 98.66 98.47 97.67
5 55.62 95.81 92.46 96.10 94.15 90.49 91.21 97.41 99.93
6 88.00 96.37 95.75 95.13 94.03 96.27 91.20 97.09 98.03
7 94.75 96.27 98.87 98.49 99.60 97.36 98.44 97.62 97.98
8 61.69 94.29 94.31 94.54 86.59 92.19 95.10 95.33 98.95

OA 84.14
± 3.73

97.43
± 0.83

96.96
± 0.44

97.50
± 0.55

96.06
± 0.95

95.98
± 0.66

96.31
± 0.45

97.59
± 0.36

98.16
± 0.63

AA 86.31
± 6.21

96.77
± 0.62

95.93
± 0.68

96.84
± 0.73

94.84
± 1.02

95.31
± 0.81

95.25
± 0.41

97.14
± 0.41

98.34
± 0.62

Ka 81.95
± 2.20

96.63
± 1.12

96.02
± 0.57

96.72
± 0.72

94.83
± 1.80

94.74
± 0.85

95.15
± 0.77

96.84
± 0.47

97.59
± 1.04

3.4. Classification Maps and Results

The accuracy metrics, including OA, AA, and Ka, for the UP dataset from our proposed
MOCNN approach and several other DL-based comparison models are provided in Table 7,
while corresponding classification maps are given in Figure 7.

From Table 7, it can be seen that the MOCNN approach achieves the optimal classi-
fication precision, with values of 98.92% for OA, 97.94% for AA, and 98.57% for Ka. The
CDCNN approach based on multi-scale convolutional filters and ResNet structure results
in the worst accuracy, with 92.86% OA, 91.41% AA, and 90.48% Ka. The reason may be that
the limitation of this network structure design leads to a weak feature extraction ability of
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the model under the limited training samples. Owing to the fact that the Bi-RNN model
based on the attention mechanism effectively enhances the extraction of spectral features,
the OA of the SSAN approach is 2.08% higher than the CDCNN. However, since SSAN
employs the traditional CNN network for spatial feature extraction, it lacks the adequate
exploitation of spatial features from convolutional layers of various depths. The TriCNN
increases the accuracy of OA by 2.55% and 0.47% over CDCNN and SSAN, respectively,
which may be owing to three convolutional kernels of various scales utilized by TriCNN
and its strengthened ability of the network to explore complex features. Nevertheless,
TriCNN still also lacks the utilization of characteristics across various convolutional layers.
The HRAM effectively improves the utilization of hierarchical features by using hierarchical
ResNets, and its OA accuracy enhances by 2.76% compared with TriCNN. Similarly, the
FDSSCN, DBMA, and DBDA approaches employ 3D DenseNet to improve the reuse and
propagation of hierarchical characteristic information and further enhance the capability of
the network for feature extraction. Compared with SSAN, the OA accuracy of FDSSCN,
DBMA, and DBDA approaches improved by 3.39%, 3.06%, and 3.43%, respectively. Com-
paring our method with 3DOC-CNN using single-scale octave convolution alone, OA
improves by 1.53% and the accuracy of the two metrics (AA and Ka) is also superior to
that of 3DOC-CNN. In spite of the fact that the proposed MOCNN method achieves worse
results than 3DOC-CNN in certain categories, such as Meadows and Bricks, while the
classification accuracy is the highest in other categories.

It is evident from the corresponding Figure 7 that the classification maps of the
MOCNN and DBDA approaches are significantly superior to other methods, with better
homogeneity and smoother classification maps for the “Baresoil” category than those
generated by the other methods. Additionally, our proposed approach contains fewer
misclassified pixels, and noticeably better classification maps in the “Gravel” category. That
is because the MOCNN combining multi-scale 2D octave convolution and multi-scale 3D
DenseNet not only takes into account the utilization of features across hierarchical convolu-
tion layers, but also sufficiently exploits the complex characteristics at various scales.

As shown in Table 8, the MOCNN approach realizes the best categorization results
with 98.69% OA, 99.05% AA, and 98.54% Ka. It is notable that CDCNN has the worst
classification accuracy, which is 14.92% lower than our method. This also indicates the
fact that limitations of CDCNN may exist in the design of the network structure, failing to
exploit the superiority of multi-scale convolutional filters and residual network structures
to mine distinguishing characteristics at various scales from complicated scenes. Although
TriCNN and SSAN methods are both traditional CNN-based in spatial feature extraction,
the OA accuracy of TriCNN is 96.59%, which is 1.92% higher than the value of 94.67% gained
by SSAN. In the corresponding categorization maps in Figure 8, TriCNN has significantly
fewer misclassification noise points in terms of spatial details than SSAN. The reason for
this is that TriCNN adopts a three-branch network with convolutional kernels of various
scales, which greatly boosts the network’s ability to capture complex characteristics. The
HRAM method based on hierarchical ResNet achieves an OA accuracy of 97.21%, which
exceeds the conventional CNN-based TriCNN and SSAN, respectively, by 0.62% and 2.54%.
In addition, in comparison to FDSSC, DBMA, and DBDA based on single-scale DenseNet,
our method’s classification accuracy OA is 0.86%, 2.78%, and 2.20% higher, respectively.
This may be explained by the fact that MOCNN uses not only DenseNet structures but
also multi-scale convolutional kernels, which further facilitate the extraction of complex
characteristic information at various scales. Notably, despite the fact that MOCNN achieves
optimal categorization accuracy in many categories, certain categories in other comparison
methods, such as FDSSC in categories “Brocoli-green-weeds-1”, “Brocoli-green-weeds-2”,
and “Vinyard-vertical-trellis”, also obtain 100% categorization accuracy. It demonstrates
that other DL-based models also have strong feature learning capabilities and may assign
more weights to certain categories to realize accurate classification of that category.

Meanwhile, as seen in the corresponding classification map in Figure 8, the MOCNN
approach provides the most accurate categorization result map and is smoother in homoge-
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neous regions. Its causes can be attributed to the following: first, the densely connected
based structure merges features from convolutional layers of various depths, enhancing
the reuse and propagation of feature information. Then, the use of multi-scale convolu-
tional kernels facilitates the extraction of complex characteristic information at various
scales. In addition, two attention mechanism modules are utilized to highlight important
spatial feature information and reinforce the extraction of feature channel information in
the network, respectively.

As shown in Table 9, MOCNN achieves the optimal categorization performance in
OA, AA, and Ka, achieving 98.58%, 98.29%, and 98.39%. Compared with the suboptimal
classification results, our method improves over the FDSSC by 0.42%, 0.64%, and 0.48%.
Compared with HRAM and TriCNN, the accuracy improvement of AA by MOCNN is
more remarkable, i.e., 6.1% and 2.96% higher, respectively. This is primarily attributed
to employing a WCL-based sample balancing strategy that allows MOCNN to allocate
appropriate weights to each category and to pay more attention to the categories with
small sample sizes. Furthermore, it is clear from Table 3 that the sample distribution of the
IN is highly unbalanced. Certain categories, such as “Soybean-mintill” and “Corn-notill”,
have 295 and 172 samples. Yet, there are also some categories with only a few or dozens,
such as “Oats”, “Grass-pasture-mowed”, “Alfalfa”, and “Corn”, which have only 3,4, 6,
and 29 samples, respectively. Nonetheless, the MOCNN also achieved an OA accuracy of
100.00%, 95.00%, 97.06%, and 100.00% for these categories, respectively. It illustrates that
the compound loss function based on WCL proposed in this paper, allocating appropriate
loss weights to various categories, can make the model more focused on the categories with
small samples, which effectively alleviates the problem of poor classification results due to
sample imbalance. As we can see from Figure 9, although the MOCNN method has few
misclassified pixels on the categories Corn-notill, Corn-mintill, and Soybean-mintill, the
overall classification results are relatively less noisy than the other approaches. Moreover,
the smoothing in homogeneous areas (such as Corn-notill and Grass-pasture-mowed) is
significantly better than the other methods.

As seen in Table 10, the MOCNN approach still realizes the best categorization results
with 98.16% OA, 98.34% AA, and 97.59% Ka. Although the categorization accuracy of
MOCNN is not the highest in the “Grape”, “Peach”, “Corn”, and “Terrace/Grass regions”,
the accuracy of our method exceeds 97.04% in each of these categories. This illustrates
well the effectiveness of our method in extracting discriminable features between different
categories. Moreover, we can see from Figure 10 that the classification map of the CDCNN
approach with the lowest categorization accuracy has a large number of misclassified pixels
and pepper noise. The OA accuracy of SSAN and 3DOC are 96.06% and 96.31%, respectively,
which are both better than 84.14% of CDCNN. In contrast, SSAN and 3DOC-CNN also have
fewer mislabels, but the classification results in the “Pear” and “Dry vegetable” regions
are still not satisfactory. Conversely, in the densely connected based approaches, i.e.,
FDSSC, DBMA, DBDA and MOCNN, categorization results are significantly better than the
previous two methods. This illustrates that the complex spatial structure information of HSI
can be effectively exploited by using the complementary yet related information between
the features of different convolutional layers. Besides, the ResNet-based HRAM method
achieves 97.59% categorization accuracy with less classification noise on the categorization
map. Nonetheless, since it adopts the single-scale convolutional kernel, it suffers from
limitations in capturing boundary detail information. However, the MOCNN method not
only produces a smoother appearance in homogeneous areas but also has clear boundaries
and preserves edge detail information well, which also demonstrates that the proposed
MOCNN based on multi-scale convolutional structure and attention network mechanism
can adequately capture complex characteristic information at various scales.

3.5. Discussion

In this section, we first discuss the classification performance of the proposed method
and other research methods with varying training sample sizes. Following that, we discuss
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the effects of different functional modules on the classification performance of the model in
the ablation experiments.

3.5.1. Performance under Different Numbers of Training Samples

DL is a data-driven approach that relies on the availability of massive amounts of
labeled data. Therefore, to further investigate the categorization performance under various
numbers of training samples, we conducted extensive experiments on UP, SV, IN, and
ZY using different percentages of training samples, respectively. Figure 11 exhibits the
corresponding experimental results. Notably, since the highest values of CDCNN on the IN
and ZY are lower than the minimum coordinate values on the corresponding sub-figures,
the plot of CDCNN is not shown in the corresponding sub-figures. As anticipated, the
categorization precision of the DL-based approach improves along with the increase in the
number of training samples. As seen in Figure 11, it is evident that our method can still
achieve superior classification precision with limited training samples. Hence, our method
can save a great deal of labor and cost in labeling samples.

(a) (b)

(c) (d)

Figure 11. Classification performance under different percentages of training samples. (a) UP. (b) SV.
(c) IN. (d) ZY.

3.5.2. Ablation Experiment

In this section, ablation experiments were designed to validate the effectiveness of
the spectral attention module BAM, the channel attention mechanism ECA, multi-scale
3D DenseNet, and multi-scale 2D octave. Specifically, no-ECA denotes that the proposed
model does not use the ECA module, and only the BAM module is employed. Similarly,
no-BAM denotes that the proposed method utilizes only the ECA module. MONA indicates
that ECA and BAM attention networks are not used in the proposed MOCNN approach.
The MCNN denotes that the proposed MOCNN method only adopts multi-scale 3D
DenseNet for spectral feature extraction, and there is no branch network employed for
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spatial information extraction. The MONN denotes that the proposed MOCNN method
only adopts multi-scale 2D octave for feature extraction, and lacks the network for the
extraction of spectral information.

From Figure 12, the classification accuracy of the MONA approach without using
any attention mechanism is significantly lower than that of the no-ECA and no-BAM
approaches on the four datasets, thus fully proving the effectiveness of the ECA and BAM
attention modules. In addition, it is apparent that the classification outcomes of MONN
and MCNN are significantly lower than MOCNN, which is due to the fact that MONN
based on multi-scale 2D octave can only extract spatial feature information at various scales,
while lacking access to spectral information. Similarly, MCNN based on multi-scale 3D
DenseNet can only withdraw spectral signatures at various scales and lacks the mining
of complex spatial information. It also further demonstrates that the single extraction
network, either for spectral features alone or for spatial feature information alone, fails to
simultaneously sufficiently exploit the spectral-spatial feature information that is favorable
for HSI categorization.

Figure 12. Results of ablation experiments on different types of datasets.

4. Conclusions

In this study, a new multi-scale spectral-spatial attention network combining 2D octave
and 3D CNN is proposed for HSI classification. Concerning spatial features, based on
2D octave, multi-scale 2D octave is proposed to obtain complicated spatial characteristic
information. It can not only adequately mine the spatial feature information under the
complex structure by using convolutional kernels of various scales, but also decompose
the obtained feature map into LF and HF components to lessen the redundancy of spatial
feature information. Concerning spectral features, we use the multi-scale 3D DenseNet to
sufficiently extract discriminative spectral characteristics at various scales, while fusing
spectral features in both shallow and deeper convolutional layers to enhance the transmis-
sion and reuse of feature information among various convolutional layers. Besides, Two
attention models (BAM and ECA) are used to improve network performance. Among them,
BAM is exploited to assign proper weight values for each spectral band while suppressing
insignificant spectral bands to alleviate the effect of redundant HSI bands in the classifica-
tion. ECA is used in the two feature extraction sub-networks to enhance the interactions
of feature information among feature channels and boost the feature extraction capability.
Moreover, a sample balancing strategy based on WCL is applied to address the problem of
sample imbalance. Experimental outcomes indicate that the proposed MOCNN approach
outperforms several other compared approaches for classification.

In the future, we will develop semi-supervised or unsupervised HSI classification
methods able to operate in scenarios with limited and imbalanced samples.
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CNN convolutional neural network
HSI hyperspectral image
MLR multi-nomial logistic regression
MRF Markov random field
DL deep learning
3Doc-conv 3D octave convolution
MOCNN multi-scale spectral-spatial attention network

framework combining 2D octave and 3D CNNs
multi-scale 3D DenseNet multi-scale DenseNet based on 3D CNNs
multi-scale 2D octave multi-scale 2D octave convolution network
LF low frequency
HF high frequency
PCA principal component analysis
BAM band attention mechanism
ECA efficient channel attention mechanism
WCL weighted cross-entropy loss function
AP averaging pooling
BN batch normalization
2Doc-conv 2D octave convolution
OA overall accuracy
AA average accuracy
Ka Kappa cofficient
UP Pavia University dataset
SV Salinas Valley dataset
IN Indian Pines dataset
ZY Zaoyuan dataset
SR spatial resolution
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