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Abstract: The Oostvaardersplassen nature reserve in the Netherlands is grazed by large herbivores.
Due to their increasing numbers, the area became dominated by short grazed grasslands and biodi-
versity decreased. From 2018, the numbers are controlled to create a diverse landscape. Fine-scale
mapping and monitoring of the aboveground biomass is a tool to evaluate management efforts to
restore a heterogeneous and biodiverse area. We developed a random forest model that describes
the correlation between field-based samples of aboveground biomass and fifteen height-related
vegetation metrics that were calculated from high-density point clouds collected with a handheld
LiDAR. We found that two height-related metrics (maximum and 75th percentile of all height points)
produced the best correlation with an R2 of 0.79 and a root-mean-square error of 0.073 kg/m2. Grass-
land segments were mapped by applying a segmentation routine on the normalized grassland’s
digital surface model. For each grassland segment, the aboveground biomass was mapped using the
point cloud and the random forest AGB model. Visual inspection of video recordings of the scanned
trajectories and field observations of grassland patterns suggest that drift and stretch effects of the
point cloud influence the map. We recommend optimizing data collection using looped trajectories
during scanning to avoid point cloud drift and stretch, test horizontal vegetation metrics in the model
development and include seasonal influence of the vegetation status. We conclude that handheld
LiDAR is a promising technique to retrieve detailed height-related metrics in grasslands that can be
used as input for semi-automated spatio-temporal modelling of grassland aboveground biomass for
supporting management decisions in nature reserves.

Keywords: HMLS; aboveground biomass; OBIA; grassland; random forest; segmentation;
Oostvaardersplassen

1. Introduction

Aboveground biomass (AGB) is one the most important ecosystem service measures of
grasslands [1,2], to evaluate carbon storage, net primary productivity, and biodiversity [3].
Quantification of the AGB in grasslands improves efficient monitoring of biophysical and
ecological processes. The Dutch nature reserve Oostvaardersplassen (Figure 1), located in
a polder, and reclaimed from the inland fresh water lake IJsselmeer in 1968 [3], initially
developed into a diverse wetland characterized by a heterogeneous mosaic of grasslands,
reedbeds, shrubs, and open forests. However, after the introduction of large herbivores in
the 1980s and 1990s, and due to their increasing numbers, parts of the Oostvaardersplassen
transformed into a short grazed, homogeneous grassland-dominated area [3,4], and as
a result bird diversity decreased [5]. Recently, the management policy of the ‘Staatsbos-
beheer’, the Dutch national forestry department, aims to transform the area into a more
diverse landscape with heterogeneous grasslands, by reducing the numbers of large herbi-
vores [5]. Heterogeneous grasslands are an important breeding and foraging habitat for
several wetland related bird species that forage on insects, amphibians and small mammals.
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To support the transformation into heterogeneous grasslands, detailed mapping of the
AGB and vegetation structure in wetlands is essential [6] to provide a baseline for future
monitoring.
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Figure 1. The two areas A and B in the nature reserve Oostvaardersplassen were selected for handheld
LiDAR surveys and vegetation sampling. The aerial backdrop image is from Google Earth. Area B
was mowed in the summer of 2021 as a management measure for planting shrubs and trees.

Mapping and monitoring of grassland AGB traditionally rely on ground-based destruc-
tive sampling and visual assessment, which is a laborious and costly process [3,7–10]. An
alternative method to map AGB is by using Light Detection and Ranging (LiDAR), a remote
sensing technology where the pulses emitted from the sensor can penetrate the vegetation
canopy and capture the three-dimensional (3D) physical structure of terrestrial vegetation,
detailed topography, and habitats. The vegetation cover, its horizontal variability, height,
and vertical variability are four categories that describe how the AGB is distributed in veg-
etation [10,11]. In many studies, only the height and vertical variability-derived vegetation
metrics have been applied in regression models to estimate the AGB [2,8,12–14]. These
models are based on correlations between AGB values derived from the ground-based, de-
structive harvested samples and LiDAR-derived structural vegetation metrics. Twenty-six
studies [2] explored such regression models for grassland AGB estimation. For instance,
Xu et al. [8] compared the simple regression model, stepwise multiple regression, Random
Forest (RF) model and artificial neural network model for estimating the AGB of grassland.
Stepwise multiple regression produced the highest prediction accuracy (R2 = 0.84, Root
Mean Square Error (RMSE) = 48.89 g/m2), followed by RF (R2 = 0.78, RMSE = 68.72 g/m2),
simple regression (R2 = 0.80, RMSE = 86.4 g/m2), and artificial neural network (R2 = 0.73,
RMSE = 101.40 g/m2) [8]. Li et al. [13] estimated AGB in shrubland and grassland, in which
the stepwise multiple regression slightly outperformed the RF model. In our research, we
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used fifteen input metrics derived from the LiDAR data and only a small sample size. We
opted for using the RF model, because it has the advantage that only a relatively small
amount of training data is required to support numerous predictors [13].

A mosaic of fine-scaled patches with comparable vegetation height and patches with
very low vegetation and bare patches occur in the grasslands of the Oostvaardersplassen.
This fine-scaled mosaic developed through variations in grazing intensity, trampling by
large grazers along movement routes, or variation in growing conditions. To map how
these patterns develop over time, we decided to use handheld LiDAR data and object-
based image analysis (OBIA). OBIA has previously been used for monitoring, mapping and
managing semi-natural grassland habitats [14]. In addition, handheld LiDAR inventories
produce high resolution data, and are easily repeatable to support fine scale monitoring of
vegetation structure and AGB across seasons. Moreover, they are relatively cost effective,
and operation in the terrain is adjustable to changing terrain conditions, an advantage over
terrestrial laser scanning campaigns and multispectral imagery.

We applied OBIA to segment the normalized LiDAR-derived canopy height model
into structurally homogeneous objects [10] for which the AGB is estimated per object from
the metrics used to develop our RF model.

While trees and arable crops show easily detectable physical structures or uniform
growth habits, short grazed grassland does not show such distinct growth features [15].
Therefore, such grassland areas are relatively feature-poor environments and require higher
point densities to capture the vegetation structure for AGB predictions [10]. Morais et al. [2]
conclude from a review of 26 remote sensing grassland AGB studies, that the accuracy
increases with the proximity of the sensor to the ground. A terrestrial laser scanner or
Handheld Mobile Laser Scanner (HMLS) produce sufficiently high density point clouds,
but the HMLS has a far lower acquisition time, enabling quick area coverage [16] and the
freedom to adapt, for example, walking routes to complex surface conditions. Consequently,
an HMLS device was selected as a novel LiDAR platform for capturing 3D point cloud
data in combination with OBIA to estimate aboveground biomass for grassland patches in
the Oostvaardersplassen.

2. Study Area

The research was conducted in the Oostvaardersplassen, a 56 km2 Dutch nature reserve
managed by the ‘Staatsbosbeheer’—the State Forestry Service. The Oostvaardersplassen
is recognized as a Ramsar site (no. 427) and is a Natura 2000 site (site code NL9802054),
because it is a key area for breeding and migratory birds. The reserve is a mosaic of novel
forest, grasslands, and wetland ecosystems, as it is located in a polder reclaimed from the
freshwater IJsselmeer lake in 1968 [17]. The local vegetation consists now of inundated
and non-inundated grasslands with more than 95% grasses and low herbs, and less than
25% tall herbs such as thistle [5]. These grasslands have been under heavy grazing pressure
by Konik horses (Equus caballus var. konik), red deer (Cervus elaphus), and Heck cattle
(Bos taurus var. heck), since their introduction into the Oostvaardersplassen in 1983 and
1992 [3].

Two grassland areas, A (100 by 25 m) and B (80 by 25 m), were selected for AGB
prediction (Figure 1) and mapping vegetation patches. In area A (measured: 18 October
2021) the vegetation is composed predominantly of grasses, reeds, nettle, and thistles.
In area B (measured: 24 October 2021) similar vegetation types occur in an exclosure
which was periodically open and/or closed for the large herbivores and in which strips of
grassland were mowed for planting shrubs and trees (Figure 1). After planting in 2022, the
exclosures were closed.

3. Materials and Methods
3.1. General Workflow

Grassland AGB is predicted and mapped in the Oostvaardersplassen following three
routines (Figure 2). In the first routine, LiDAR data are collected in areas A and B using the
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HMLS. The vegetation is harvested in both areas to collect samples for AGB lab analyses.
In the second routine, an RF model is constructed to predict the AGB based on the lab
analysis and testing 15 selected vegetation metrics derived from the LiDAR data. In the
third routine, the point cloud is segmented into coherent objects that form the basis for
constructing the final AGB map using the best explaining vegetation metrics from the RF
model. These routines will be further detailed, including an estimation of potential errors.
The data used in this study (R code, input data, and an ArcGIS Pro project) is available via
Figshare; see the Data Availability Statement).
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Figure 2. Workflow with three routines for predicting and mapping grassland AGB in the Oost-
vaardersplassen. 1. Data collection; 2. LiDAR metrics and model development; and 3. mapping
grassland AGB.

3.2. Data Collection

The 3D point cloud data is collected in areas A and B (Figure 1) using a GeoSLAM
ZEB-REVO RT Handheld Mobile Laser Scanner [18]. The HMLS potentially records ap-
proximately 43,000 points per second, has a relative accuracy of approximately 6 mm, an
indoor optimal range of 30 m, and a camera attached during scanning [18]. In feature-poor
environments, such as grasslands, point cloud drift, stretch, or discarded areas may oc-
cur, because the built-in Simultaneous Localization and Mapping (SLAM) algorithm can
experience difficulties in determining forward motion [18]. These difficulties may cause
distortions in the scan direction (stretch), or between adjacent scanlines (drift). Discarded
areas are areas without data points as the result of incomplete scanning. We therefore kept
the scanning range at approximately 10 m to ensure sufficient point densities. We kept
the walking speed as constant as possible during scanning, and the scanner oriented in
a horizontal position while following the two planned walking trajectories (Figure 3) to
reduce potential effects of scanner noise, drift, and stretch [19,20]. Furthermore, we utilized
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eight AeroPointsTM (Propeller Aero, Surry Hills, NSW, Australia) locators with built-in
high precision GPS locators in the field (<10 mm horizontal and vertical accuracy) [21] to
define accurate ground control points for georeferencing the generated 3D point cloud.
While scanning, the scanner is placed in the center of each AeroPointTM for at least 10 s
in order to create exact HMLS coordinates at the AeroPointTM locations. Both coordinates
are then used to georeference the point clouds. Once scanned, the raw LiDAR data is
preprocessed [22,23] converted into a 3D point cloud, stored in .las format, georeferenced to
the RD New coordinate system of the Netherlands, and clipped to the extent of areas A and
B (Figure 1) in the CloudCompareTM software, version 2.11.3 [24]. Before the point clouds
were ready to be used for analyses, ghost points (3D points resulting from erroneously
scanned moving objects) were manually removed in CloudCompareTM. In our study,
ghost points were clearly recognized as the HMLS operator’s silhouette, who accidentally
produced self-scanned data point returns.
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Figure 3. Two HMLS scan trajectories were tested for point cloud data collection: (A) zigzag trajectory,
and (B) looped trajectory. The eight AeroPointsTM (in yellow/black squares) are used to generate
fixed GPS points for georeferencing to the Dutch coordinate system (RD New).

In total, 32 vegetation samples were collected and equally divided over areas A and B,
according to the design shown in Figure 4A. Two grassland AGB samples were collected
100 cm east and 100 cm west of an AeroPointTM, using a 30 cm circular metal sampler
(Figure 4C) and stored in plastic bags. Before harvesting, the maximum vegetation height
within the 30 cm diameter sampling locations was measured for error estimation of the
maximum height derived from the normalized LiDAR point cloud. Similarly, digital cylin-
drical samples of the corresponding 3D point cloud were entered in the CloudCompareTM

software, which is schematically shown in Figure 4B. All grassland samples were processed
using standardized methods (e.g., weighing, oven-drying at 75 ◦C for 168 h) in the labora-
tory [25] of the Institute for Biodiversity and Ecosystem Dynamics (IBED) of the University
of Amsterdam (UvA) to retrieve the fresh and dry weights of AGB in kg/m2.

3.3. LiDAR Metrics and Model Development

In the second routine of the workflow (Figure 2), we selected fifteen LiDAR-derived
metrics relevant to AGB prediction in grasslands [1,8,10,12–14]. In Table 1, nine metrics
are categorized according to their height, and six metrics related to vertical variability are
listed along with descriptions in terms of their ecological relevance. The height of each
LiDAR-point is used to calculate the fifteen metrics. These metrics were calculated for all
sampling locations and used to build the RF AGB prediction model. We transformed all
sample coordinates east and west of the AeroPointTM GPS locations (Figure 4C), created
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30 cm diameter circular polygons, and retrieved the 3D point data within a 30 cm cylinder
in ArcGIS Pro [26].
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example during scan trajectory.

We rasterized and normalized the classified point cloud by subtracting the digital
surface model from the digital terrain model raster to estimate the absolute heights of
vegetation in the point cloud. The selected cell size (10 cm) can affect the conservation of
information [27], which is especially the case for OBIA-based mapping and monitoring
of vegetation patches [28]. Therefore, we tested cell sizes of 1, 5, 10, and 50 cm and
suggested that 10 cm cells contain optimal information and detail, which is lost in 50 cm
cells, whereas 1 cm cells can contain erroneous heights. In the software R [29], the fifteen
metrics were calculated for all the point cloud samples (see Figshare link in the Data
Availability Statement).

We developed a Random Forest (RF) regression model [30] in R using the randomFor-
est package to predict grassland AGB by using the field and lab information to determine
the best performing LiDAR-derived metrics. Random Forest regression is an ensemble-
learning algorithm that can rank and select important variables for biomass prediction.
By bootstrapping the samples, it constructs decision trees, each with a randomized subset
of predictors [14]. Important hyperparameters in the model that can be tuned are Ntree
and Mtry. Ntree selects the amount of decision trees and Mtry determines the number
of features that are randomly selected at each node [31]. The RF model was grown us-
ing a randomized subset of the 15 LiDAR-derived metrics (Table 1). In the RF model
reruns, predictors are one-by-one removed based on the lowest %IncMSE values, until the
corresponding R2 and RMSE values stop improving.
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Table 1. LiDAR-derived metrics and their potential relevance for vegetation structure. Metrics that
capture the height and vertical variability-related vegetation structure are calculated from the LiDAR
point cloud for all sampling sites. Ecological relevance adapted from Bakx et al. [10].

Vegetation Structure Metric
Name Metric Description Ecological Description

Height Hmax The maximum of all height returns Vegetation height
Hmean The arithmetic mean of all height returns Mean vegetation height
Hmedian The median of all height returns Median vegetation height
10th perc 10th percentile of all height returns Height at which 10% of returns is recorded
25th perc 25th percentile of all height returns Height at which 25% of returns is recorded
75th perc 75th percentile of all height returns Height at which 75% of returns is recorded
80th perc 80th percentile of all height returns Height at which 80% of returns is recorded
90th perc 90th percentile of all height returns Height at which 90% of returns is recorded
95th perc 95th percentile of all height returns Height at which 95% of returns is recorded

Vertical variability Hstd Standard deviation of all height returns Roughness of the vegetation height
Hvar The variance of all height returns Heterogeneity of the vegetation height
Hcv Coefficient of variation of all height returns Variability of the vegetation height
Hskew The skewness of all height returns Skewness of the vegetation height
Hkurt The kurtosis of all height returns Vertical vegetation variability
HMAD Mean Abs. Deviation of all height returns Spread of the vegetation height

3.4. Mapping Grassland AGB

In the third routine (Figure 2), we segmented the rasterized and normalized canopy
height model into objects and then applied the RF model to assign AGB values to each
grassland object. We decided to use objects instead of pixels for several technical and
practical reasons. OBIA is known to successfully handle high resolution data [31], while
potential salt-and-pepper effects are avoided. In practice, the OBIA-based results can be
evaluated by consulting the video stream to inspect homogeneous vegetation objects and
low vegetation, elongated animal movement path in the grasslands, for example. In the
eCognitionTM software, version 10.1.1 [32], the normalized canopy height model 10 cm
raster was segmented by applying the multiresolution image segmentation algorithm to
create objects [33], by using the optimal combination of the scale, shape, and compactness
parameter settings, which were guided by the ESP2 tool [34]. The ESP2 tool selects the best
fitting scale parameter by increasing the scale parameters with constant increments until
the local variance does not further improve. Once optimal parameters have been derived,
objects are created, for which the 15 metrics are calculated. The RF model is run to compute
the predicted AGB for each object.

3.5. Validation

Many opportunities exist for introducing errors and error propagation, either related to
the data collection protocol, the model development, or the mapping routine. We quantified
or described the major error sources and how they might influence the results. For example,
point cloud drift is dependent on GeoSLAM’s algorithm’s capability to detect fixed features
in feature-poor grassland environments. Since this is a black box procedure, the effect of
point cloud drift is only visible after initial point cloud preprocessing. The distance between
locations in the georeferenced point clouds and the AeroPointTM-derived GPS locations
can be expressed as RMS values. We quantified the RF model performance by calculating
R2 and RMSE values, but for the segmentation validation, we used visual inspection of the
terrain situation using video recordings of the LiDAR scan trajectories. In the discussion,
we provide recommendations on how the procedures and technical steps in our three
workflow routines can be optimized to reduce potential errors as much as possible.

4. Results
4.1. Data Collection: Zigzag and Looped Trajectory

Field experiences with an HMLS for collecting point cloud data in grasslands are
limited and only assessed without a fixed trajectory [35]. Here, we tested both a zigzag and



Remote Sens. 2023, 15, 1754 8 of 14

a looped trajectory for scanning areas A and B. In Figure 5, the relative point densities are
displayed in relation to the planned scan trajectories. Although drift occurs in all point
clouds, the looped trajectory is less affected than the point cloud in the zigzag trajectory.
Some parts of the looped trajectory of area A have relatively low point densities, which are
unrelated to mowing activity. In general, however, the effect of drift and fewer data points
in the raw point cloud is lower in the looped trajectories in both areas, compared to the
zigzag trajectory. Despite the lower RMS errors for the zigzag trajectories (Figure 5), we
opted to use the zigzag trajectory for area A and the looped trajectory for area B during
further AGB model development and mapping.
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Figure 5. Results of the zigzag (A,C) and looped (B,D) walking trajectories (in black: planned
trajectories, in white: recorded trajectories). The point cloud backdrop images show variation in low
to high point densities (grey to colored) and the influence of point cloud drift. The corresponding
RMS are 1.58 (A), 1.48 (B), 3.12 (C), 2.89 (D).

Table 2 presents the results of the laboratory analyses of 32 grassland AGB samples.
The values range between 0.40 and 1.01 kg/m2 in areas A and B, which suggests that on
a fine spatial scale, variation in grassland AGB exists. The maximum vegetation height
(Hmax) results from terrain measurements and corresponding point cloud retrieval indicate
that mean differences between observation and prediction are 26 cm.

Table 2. Laboratory results for the AGB in kg/m2. For location of samples see Figure 4.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16
Area A 0.58 0.73 0.40 0.56 0.70 0.59 0.80 0.66 0.53 0.69 0.68 0.68 0.64 1.00 0.85 0.83
Area B B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16

0.48 0.46 0.59 0.98 0.66 0.54 0.83 0.42 0.86 0.63 1.01 0.66 0.77 0.70 0.77 0.96

4.2. LiDAR Metrics and Model Development

After scanning and preprocessing, sampling locations B15 and B16 (Figure 4) appeared
to contain too few data points (Figure 5) and were omitted from further analysis. For
the 30 remaining locations, the observed versus the predicted AGB is plotted in Figure 6.
Including all metrics, and using an Ntree of 500 and a Mtry of two, an R2 of 0.76 was
obtained with an RMSE of 0.078 kg/m2 (Table 3). The RF model with four metrics (i.e.,
Hmax, Hmean, Hmedian, 75th), an Ntree of nine, and a Mtry of four, predicts the AGB with an
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R2 of 0.78 and a RMSE of 0.075 kg/m2. The highest R2 (0.79) and lowest RMSE (0.073) were
obtained with an Ntree of 25, a Mtry of two, and using Hmax and 75th as predictors.
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Figure 6. Relationship between the measured and predicted AGB values.

Table 3. R2 and RMSE result of various predictors, Ntree, and Mtry combinations.

RF Model R2 RMSE (kg/m2) Predictors Ntree Mtry

All metrics 0.76 0.078
Hmax, Hmean, Hmedian, Hstd, Hvar,

10th, 25th, 75th, 80th, 90th, 95th, Hcv,
Hskew, Hkurt, HMAD

500 2

Four metrics, Ntree and Mtry 0.78 0.075 Hmax, Hmean, Hmedian, 75th 9 4
Two metrics, Ntree and Mtry 0.79 0.073 Hmax, 75th 25 2

4.3. Mapping Grassland AGB

We tested various cell sizes (1, 5, 10, and 50 cm) of the digital surface model as input
for the segmentation routine. We found that the most realistic cell size was 10 cm, which
ensures that sufficient data points are used while keeping most details in the digital surface
model. The multiresolution segmentation settings in the eCognitionTM software version
10.1.1 (shape value of 0.1, and a compactness/smoothness value of 0.5) were guided by the
ESP2 tool [34], in order to optimize the detection of elongated objects, formed by grazing
routes of deer and horses, and of blocky or rounded segments, related to less disturbed
(and often higher) vegetation patches. In total, 368 objects were created for area A and
253 for area B (Figure 7); the latter contains a mowed area with little height variation
and larger segments, which seem unrelated to variations in the canopy height model.
The AGB values were categorized into four RGB classes and assigned to each segment
by using the RF model correlation and presented in yellow-to-green legend colors. Area
A was characterized by higher mean AGB values (0.74 kg/m2) in comparison to area B
(0.69 kg/m2). Field measurements, supported by video observations, also demonstrated
that Hmax, and vegetation density in area A were higher than in area B. In area B, distinct
NNW to SSW variations in AGB values were mapped (supported by video), as well as
an abrupt linear transition in the southern part, which indicates the mowed versus non-
mowed area.
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5. Discussion

We created a field-based (semi-)automated workflow for predicting grassland AGB
for the Oostvaardersplassen nature reserve in the Netherlands, which consists of three
routines: (1) field data collection (handheld laser scanning and vegetation sampling),
(2) development of an RF model for AGB prediction, and (3) mapping of the AGB using
OBIA. Our results show that AGB mapping provides a relatively fast and accurate inventory
of local variation and patterns of AGB in grasslands. However, in the discussion, we
consider the steps in the workflow that can be optimized by further work.

5.1. Data Collection

Existing workflows for handheld LiDAR point cloud data collection in relatively
featureless and degraded grasslands are not available. We tested a zigzag and a looped
walking trajectory (Figure 3) to evaluate the potential effects on scanning accuracy. The
looped trajectory, with the base station in the center, produced results with the lowest
RMS errors during the georeferencing process. Areas with relatively low point densities
were collected in the zigzag trajectory. The looped trajectory facilitates more scan overlap
(and thus higher point densities), which promotes more uniformity and quality in the final
point clouds, which is in line with the findings of Potter [36] for forested areas. Therefore,
we recommend using a predefined looped walking trajectory to optimize the success of
the SLAM algorithm, maintain internal positioning [21,37], and place the end and start
positions in the center of the scanned area. Terrain obstacles that could hamper walking
speed or cause deviation of the predefined route, should be avoided as much as possible
by pre-inspecting the desired walking route. From our experience, we recommend that
for grassland areas larger than approximately 2500 m2, multiple overlapping scans are
preferred, as was also demonstrated in forested areas [37,38]. In featureless grassland areas,
scanning of artificial landmarks, such as wooden poles, can increase the internal position
and contribute to reduction of drift and stretch in the raw scans.

The vegetation height measurement of Hmax in the field and in the point cloud resulted
in an average of 26 cm overestimation of the point cloud vegetation heights and the field
observed vegetation heights. This is partly attributed to the ghost point effect of the 3D
silhouette of the recording person, which was accidentally scanned and not completely
removed in the final 3D point cloud. During field measurements, both the scanning and
the measurement of Hmax could potentially be influenced by wind force that affects the
position of isolated higher grass plumes, especially when only a few occur in the sampled
30 cm diameter. Acceptable results with slightly larger harvested sample size of 50 × 50 cm
quadrats were used by Koma et al. [6] in reedbeds, where Phragmites australis vegetation
reached >5 m height. In the degraded grasslands of the Oostvaardersplassen, most AGB is
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concentrated within approximately 15 cm above terrain level, which is regarded as both
seasonal effect and/or the effect of grazing and trampling by the large grazers. Studies in
forests report that measurements of tree heights between 5 and 8 m with the ZEB-REVO
HMLS contained an average overestimation of 0.65 m [21,39]. Overestimation of woody
vegetation has also been reported with the HMLS LiBackpack D50 device in a study by
Levick et al. [16]. Overestimation is not necessarily an issue for the RF model development
because both training and application are applied to the same point cloud.

5.2. LiDAR Metrics and Model Development

We selected fifteen height and vertical variability-related LiDAR metrics from the
literature to develop an RF model for AGB mapping of grassland ecosystems [1,8,12–14].
The model performance was optimized by selecting those combinations of metrics that
resulted in the lowest error. The highest R2 (0.79) and lowest RMSE (0.073 kg/m2) used
only the Hmax and 75th as predictors, which is comparable to the RF model (R2 = 0.78 and
RMSE = 0.075 kg/m2) that used four height metrics (Hmax, Hmean, Hmedian and 75th). These
results suggest that in (grazed and degraded) grasslands with limited spatial variation
in AGB values, height metrics outweigh the vertical variability metrics. Both increasing
the sample size and splitting the dataset into a training and a validation set is expected to
increase model stability. Morais et al. [2] reviewed 26 studies that used various machine
learning methods to predict AGB in grassland-dominated areas, most of them based on
satellite imagery as data source (R2 ranging from 0.22–0.94). In three studies, RF models
were used in combination with LiDAR data (R2 values of 0.59, 0.61 and 0.79), which is in
line with our findings.

Although RF models seem to perform well in grassland dominated areas, other ma-
chine learning methods (e.g., stepwise multiple regression, support vector machine, partial
least squares regression) could be suitable for remotely sensed grassland AGB estimates
as well [2,13], especially if the number of ABG field samples are increased to improve
model stability and for upscaling to larger extents. Fine scale LiDAR measurements are
sensitive to local environmental disturbances that might cause under- or over-estimation
of the vegetation height. In low and very dense vegetation in the first 15 cm, such as the
Oostvaardersplassen grasslands, the Hmin depends on the pulse penetration potential [20].
Full waveform LiDAR, in contrast to ALS data, has been reported to better capture ground
points [6], but comparisons with HMLS data are unavailable. Still, small irregularities
(rabbit holes, ant hills, grazer’s imprints in the clayey subsoil) can lead to lower Hmin values
per segment. Furthermore, the wind’s influence might have impact on the Hmax calculation.
Scanning should be performed preferably during windless conditions to reduce this type
of sensitivity. Our model provides insights into the vegetation structure and biomass
conditions in autumn, and can be extended to spring and summer conditions as well, and
to other grasslands with similar vegetation structures. We expect that with increasing
variability of vegetation cover over time in the Oostvaardersplassen (e.g., a mosaic of
grassland, shrubs and trees), other combinations of LiDAR metrics (including horizontal
metrics), will contribute to variations in vegetation structure [11] and the prediction of AGB
in the RF model. This would require harmonization of sampling design and field sampling
protocols and would promote the use of indicators of ecological change [6].

5.3. Mapping Grassland AGB

OBIA has predominantly been used to map land use and land cover using high resolu-
tion imagery [31], such as aerial (drone) imagery [15,32], but has also been applied to sensors
with coarser resolutions and in combination with pixel-based hybrid approaches [39,40].
OBIA-based studies in grassland-dominated habitats, however, are scarce [41,42]. Our
segmentation is based on a LiDAR-derived canopy height model raster and allowed direct
comparison between field-measured Hmax and the Hmax and Hmin calculated from the
point cloud. There is no temporal mismatch between AGB sampling and collecting LiDAR
data. Field inspection and video recordings during the scanning confirmed that patterns of
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lower vegetation height (and thus lower AGB) were present and likely the result of grazing
activity. Despite the SLAM algorithm’s difficulty to detect forward motion in feature-poor
environments and potential error propagation, realistic AGB maps were produced for the
autumn situation. To support monitoring and mapping of AGB in grasslands through-
out the season, our workflow should be tested for different growing phases across the
seasons. Another interesting development is to investigate the synergy with other sensor
products [43], such as national-wide LiDAR inventories [44] or Sentinel imagery, in order
to upscale our workflow to other grasslands.

6. Concluding Remarks

Handheld LiDAR scanning is a promising technique to capture high density point
clouds for the rapid retrieval of detailed height-related metrics in grasslands across small
spatial extents. In combination with vegetation samples harvested at the same date, our
workflow presents a rapid method for mapping patterns and variation in grassland AGB.
For the Oostvaardersplassen nature reserve, the two height metrics (Hmax and the 75th
percentile of the grassland vertical vegetation height) proved to be optimal metrics for the
AGB prediction model. We recommend capturing the 3D point clouds during windless
conditions, applying looped scanning trajectories, and placing artificial markers in feature-
less grasslands, in order to reduce the potential effects of stretch and drift, and to avoid
low point density areas. Future research could focus on further optimization of our three
workflow routines, especially by increasing the sample size, training and validation data,
increasing the mapping extent, collecting data in other seasons, and testing the synergy
with other sensors, such as existing nation-wide LiDAR data or Sentinel imagery.
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