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Abstract: Atmospheric phase is the main factor affecting the accuracy of ground-based synthetic
aperture radar. The atmospheric phase screen (APS) may be very complicated, due to the drastic
changes in atmospheric conditions, and the conventional correction methods based on regression
models cannot fit and correct it effectively. Partition correction is a feasible path to improve atmo-
spheric phase correction (APC) accuracy for complicated APS, but the overfitting problem cannot
be ignored. In this article, we propose a clustering partition method, based on the normal vector of
APS, which can partition the complicated APS more reasonably, and then perform APC based on the
partition results. APC, and simulation experiments on measurement data, suggests that the proposed
method achieves higher accuracy than the conventional model-based methods for complicated APS
and avoids severe overfitting, realizing the balance between accuracy and credibility. This article
verifies the feasibility and effectiveness of using APS distribution information to guide the partition
and conduct APC.

Keywords: ground-based synthetic aperture radar (GB-SAR); atmospheric phase (AP); permanent
scatterer (PS); complicated atmospheric condition; regression model; k-means; clustering partition

1. Introduction

Ground-based synthetic aperture radar (GB-SAR) interferometry, is a valid measure-
ment technique for deformation and has been widely utilized in the fields of geological
hazard monitoring and building deformation monitoring [1]. Fine spatial resolution, zero
spatial baseline, and short revisiting time, make GB-SAR a suitable sensor for the monitor-
ing of small-scale areas [2]. A GB-SAR system extracts the deformation component from the
signal phase by an interferometry process, to achieve submillimeter precision deformation
inversion. Compared with conventional techniques, such as displacement meter, GNSS,
total station, and LIDAR, GB-SAR has significant advantages such as its ability to be used
all day, in all weathers, having a high accuracy and wide spatial coverage, and fast image
acquisition [3].

A spatially inhomogeneous atmosphere affects the speed and path of radar waves in
propagation, introducing additional phase delays [4,5]. Because the atmospheric conditions
constantly change over time, the phase delay in images are not consistent and cannot be
eliminated by the interferometry process. The residual phase delay in the interferogram is
known as atmospheric phase (AP), and it is one of the main factors affecting the precision of
GB-SAR. Mainstream GB-SAR systems use short wavelength electromagnetic waves and are
susceptible to changes in atmospheric conditions [6]. Atmospheric phase correction (APC)
is one of the most critical challenges in obtaining high-accuracy and reliable deformation
inversion results in GB-SAR.
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The atmospheric refractive index, which affects radar waves, is determined by hu-
midity, pressure, and temperature. Theoretically, phase delays can be calculated with the
auxiliary of external meteorological data [7]. However, in real monitoring scenarios, it
is quite difficult to obtain high-precision meteorological data. The most practical APC
methods are currently based on the permanent scatterer (PS) technique. The scattering
properties of PSs could remain highly stable in long-term monitoring, and their phase
change is mainly caused by atmospheric changes [8]. By analyzing the phase of PSs, a
variety of regression models without auxiliary data have been proposed to correct AP [9,10].
However, these models have low order and few parameters, and their fitting ability is
poor. Current research works [2,10] and our dataset, reveal that the atmosphere changes
drastically when the monitored target is located at a high altitude and has a steep to-
pography, AP can not be accurately corrected in these complicated conditions by simple
models. To further improve the APC accuracy, some data-driven APC methods have been
proposed. These methods, discussed in [6,11–13], generally divide the atmospheric phase
screen (APS) into a massive number of sub-blocks and correct them by interpolation or
parameter estimation, to achieve high accuracy. However, APC in a small sub-block is
prone to overfitting, which reduces the credibility of APC and deformation inversion.

Partition correction is a feasible path to improve the APC accuracy for complicated
APS, but overfitting cannot be ignored. To solve the APC problem of GB-SAR in com-
plicated atmospheric conditions, a new APC method, based on a clustering partition, is
proposed in this article. Spatial normal vectors of the PSs are estimated and combined with
position coordinates, to construct new vectors. Then, a clustering process is utilized to
partition the APS into sub-blocks; finally, APC is performed in each sub-block. A dataset
was acquired from a mine in Shaoguan City, Guangdong Province, with an Arc-SAR sys-
tem, and was processed. The APS estimation on interferograms, a simulation experiment,
time series of APC, and the comparisons with the conventional methods, validated the
feasibility and effectiveness of the proposed method. Setting the algorithm parameters rea-
sonably, the proposed method has effectively balanced the contradiction between accuracy
and overfitting.

The arrangement of this article is as follows: Section 2 introduces some related
works about APC; Section 3 introduces the information of the dataset and briefly ana-
lyzes it; Section 4 introduces the new method; Section 5 presents the results and analysis;
Sections 6 and 7 present the discussion and conclusions, respectively.

2. Related Works

For a radar image acquired at time t, its unwrapped phase can be modeled as

ϕ(~r, t) = ϕ0 +
4π fc

c
r + ϕatm(~r, t) + ϕnoise (1)

where~r denotes the space domain, φ0 is the backscattering phase, fc is the carrier frequency,
c is the speed of light, r is the slant distance from the radar to target, ϕatm(~r, t) is the AP
delay for domain~r at time t, and ϕnoise denotes the thermal noise [14].

The atmosphere is a non-ideal medium, that affects the speed and path of electromag-
netic wave propagation. Let atmospheric refractive index be n(~r, t), then the corresponding
atmospheric delay ϕatm(~r, t) can be obtained by integrating n(~r, t) along the propagation
path L, as is shown in Equation (2) [15].

ϕatm(~r, t) =
4π fc

c

∫
L

n(~r, t)dl (2)

The AP term ∆ϕatm of an interferogram is described as

∆ϕatm =
4π fc

c

∫
L

∆n(~r, t)dl (3)

where ∆n denotes the refractivity variation.
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APC methods can be mainly divided into two categories: methods based on meteoro-
logical data and methods based on PSs. In recent years, some more novel methods have
also emerged.

2.1. Methods Based on Meteorological Data

ϕatm(~r, t) can be calculated by using meteorological data to calculate ∆n. According
to the ITU-R recommendation, the refractive index n, is determined by the following
expression [16]:

n = 1 + 10−6 · (77.6
P
T
− 5.6

e
T
+ 3.75× 105 e

T2 ) (4)

where T is absolute temperature (K), e is water vapor pressure (hPa), and P is total atmo-
spheric pressure (hPa). e can be calculated using T, P, and relative humidity H (%).

Luzi et al. [17] used meteorological data to compensate for AP, and concluded that me-
teorological data at a single location could not be used to correct for AP at different ranges.
Iannini L. et al. [18] used meteorological data to model tropospheric atmospheric refraction
and successfully rejected most of AP, confirming the feasibility of the meteorological data
APC method.

The meteorological data-based method is theoretically supported, but its accuracy
is limited by the coverage and accuracy of meteorological sensors, which results in its
poor practicability.

2.2. Methods Based on Permanent Scatterers
2.2.1. Permanent Scatterers

The PS technique was initially applied in satellite-based SAR [19], and later extended
to GB-SAR. PSs have stable scattering characteristics and can be assumed to be stationary,
so that the AP can be inferred from the phase change of PSs. PSs-based APC methods are
most widely used. The most commonly used criteria for PSs selection include amplitude-
dispersion index (ADI) and coherence coefficient.

The ADI method was proposed by Ferretti [19], it is simple and efficient, but requires
a large number of SAR images for statistics. The expression for calculating the ADI DA is

DA =
σA
mA

(5)

where σA is the standard deviation and mA is the mean value of a pixel’s time series.
The coherence coefficient method was proposed by Berardino et al. [20]. A minimum

of two images is required to select PS points using the coherence coefficient method,
but isolated highly coherent points are easily missed. The coherence coefficient, γ, of a
pixel’s time series is calculated as

γ =

|
m
∑

i=1

n
∑

j=1
M(i, j)S∗(i, j)|√

m
∑

i=1

n
∑

j=1
|M(i, j)|2

m
∑

i=1

n
∑

j=1
|S(i, j)|2

(6)

where M(i, j) is the master image and S(i, j) is the slave image of an interferogram pair, ∗
denotes the complex conjugate, and m× n represents the size of the sliding window [21].
The average coherence coefficient of a pixel γ̄ is

γ̄ =

N
∑

i=1
γi

N
(7)
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where γi is the coherence coefficient of the ith interferogram pair of the pixel, and N is the
number of interferogram pairs.

Phase deviation and phase noise are also used in PSs selection. Generally, PSs selection
uses a combination of criteria, to improve selection quality.

2.2.2. Conventional Model-Based Methods

In a stable atmosphere, T, H, and P vary slowly in time and are homogeneous in space.
∆n can be considered as a constant. Therefore, Equation (3) can be summarized as the
following slant distance regression model

∆ϕatm =
4π fc∆n

c

∫
L

dl = β · r (8)

where r is the radar-to-target distance and β is the regression coefficient. For further fitting
ability, the 2nd-order model shown in Equation (9) [22], or higher-order models, have also
been utilized in GB-SAR applications.

∆ϕatm = β0 + β1 · r + β2 · r2 (9)

where β0, β1, and β2 are the model regression coefficients.
For complicated scenarios, with steep topographic variations, multiple-regression

models are proposed. In these scenarios, the atmosphere can be considered as stratified in
height, and n shows an exponential relationship with height, whereby the slant distance
and elevation model can be utilized to estimate the APS, as is shown in the following
equation [9]:

∆ϕatm = β0 + β1 · r + β2 · r · ∆h (10)

where β0, β1, and β2 are the model regression coefficients; and ∆h denotes the relative
elevation between the radar and the target. The acquisition of ∆h requires auxiliary data
such as an accurate DEM, which is difficult in emergencies, limiting the application of the
slant distance and elevation model. Based on [9], Dematteis [23] proposed a new model:

∆ϕatm = β0 + β1 · r + β2 · r · h2 (11)

where h is elevation.
In scenarios with wide span, the AP changes significantly in both range direction and

azimuth direction. The introduction of azimuth angle can effectively improve the fitting
ability [24]. The slant distance & azimuth model is shown in Equation (12):

ϕ =
4π

λ
(β0 + β1 · r + β2 · sin θ) (12)

where θ is the azimuth angle.
When the monitored target spans a large distance, the interferograms can be par-

titioned in the range or azimuth direction, and APC is performed separately for each
sub-block to enhance the correction effect.

2.2.3. Some Novel Data-Driven Methods

Model-based methods are not applicable for complicated conditions, some novel
methods based on the properties of the APS are proposed. These methods can better
simulate AP and have higher APC accuracy. Based on the path integral model of AP
theory, Yunkai Deng et al. [11] proposed a grid partition method, this method firstly divides
the interferogram into a certain number of grids, and then estimates the atmospheric
parameters of the grid to achieve APC; Cheng Hu [12] and Xiaolong Zhao et al. [6] selected
appropriate reference control PSs, to reconstruct the APS using spatial interpolation. Such
fine methods generally divide the APS into hundreds of sub-blocks and correct them by
interpolation or parameter estimation, to obtain high-accuracy APC results. However,
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distinguishing the potential deformation phase component from the AP in a small sub-
block is challenging, the estimation of the APS is prone to overfitting, which reduces the
credibility of the APC and deformation inversion results. Yuta Izumi et al. [13] performed
clustering, in accordance with the temporal APS behavior, to divide sub-blocks; the number
of sub-blocks and the effect of overfitting are reduced. However, time-series clustering
requires a large amount of previous monitoring images to be included in the data processing,
this method is computationally intensive and has poor real-time performance.

3. Data Acquisition and Analysis
3.1. Data Acquisition

The dataset used in this article was acquired by an Arc-SAR system, as is shown in
Figure 1b. The main system parameters are shown in Table 1.

( a )( a )

R a d a r

( a ) ( b )

Figure 1. Main mine of Dabao Mountain Mine, the Arc-SAR system and its location: (a) main mine
and the Arc-SAR system, (b) location of the Arc-SAR system.

Table 1. System parameters of the Arc-SAR system.

Parameters Value

Carrier frequency 24 GHz
Beam coverage 270◦

Range resolution 0.2 m
Angle resolution 6 mrad
Detection range 4000 m

The monitored target is the main mine of Dabao Mountain Mine, in Shaoguan City,
Guangdong Province, China, as is shown in Figure 1a. The elevation of the Dabao Mountain
Mine is from 600–800 m. After decades of open-pit mining, the mountain is stepped
and fairly steep. There is a large pit in the foot of the mine, with the risk of landslide
collapse. The radar was located on the east side of the mine, about 800 m away from
the mountain’s main body, and can cover the whole mountain, as is shown in Figure 1b.
The data acquisition campaign started at 11:00 a.m. on 10 November 2021, and ended at
11:00 a.m. on 12 November, with 849 SAR images obtained. During the data acquisition,
the mine was in the normal mining condition.

3.2. Data Analysis
3.2.1. PSs Selection

Figure 2 shows the PSs selection result, using ADI and the coherence coefficient as the
phase quality metrics. By setting an ADI threshold Dth = 0.1 and an average coherence
coefficient threshold γth = 0.95, 147,624 PS points are selected in the first 100 interferograms.
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Figure 2. Permanent scatterers (PSs) selection result, p1–p8 are the reference PS (RPS) points for
phase analysis.

3.2.2. Spatial Phase Wrapping in the Dataset

In the continuous mode, when the temporal baseline is short, phase wrapping usually
appears only in the time dimension, and it is only in the discontinuous monitoring mode
that the spatial phase wrapping needs to be considered [25,26]. The acquisition interval of
the radar images was less than 3 min, but a significant spatial phase wrapping phenomenon
appeared. Figure 3 shows one of the interferograms with spatial phase wrapping. This phe-
nomenon suggests that the possibility of two-dimensional spatial phase wrapping cannot
be ignored in the continuous observation mode with a short temporal baseline, when the
atmospheric conditions are complicated. In GB-SAR, there is no complicated interference
fringe when phase wrapping occurs, and the coherence between the two images is also
strong, which makes the phase unwrapping simpler than airborne SAR and spaceborne
SAR. In our article, based on the distribution of residues, a wrapped interferogram is
divided into high quality regions and low quality regions. For the high quality areas, phase
unwrapping is performed by integration along the range and azimuthal direction; for the
low quality areas, the branch-cut algorithm [25,27] is used. The experimental results show
that the idea greatly improves the efficiency, while ensuring the quality of unwrapping.

Figure 3. An interferogram with spatial phase wrapping, only PSs are displayed.
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3.2.3. Cumulative Phase Analysis

Dividing the image into two cross-range intervals and four range intervals, eight blocks
were obtained. The pixel with the lowest ADI in each block was taken as the reference PS
(RPS) point, their distribution is marked in Figure 2. The uncorrected cumulative phase (CP)
curves of the RPS points are shown in Figure 4. For PSs in each interferogram, the standard
deviation of their phase values was calculated, Figure 5 shows the curve of the standard
deviation. The larger the standard deviation, the more complicated the APS.
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Figure 4. Cumulative phase (CP) curves of the RPS points.
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Figure 5. Phase standard deviation curve of all interferograms, only PSs counted.

A significant periodicity is observed in the changes of the CP curves in Figure 4 and the
standard deviation curve in Figure 5. In the morning, the CP curves show a clear increasing
tendency and the standard deviation of the interferograms also increased, reaching a
maximum value at around 14:00. Then, the CP curve starts to decline, and the standard
deviation of the interferogram decreases and stabilizes in the evening. The change in the
CP curves at night is flatter than that of the daytime, and the standard deviation of the
interferometric phase is also smaller.

4. Methodology
4.1. Algorithm Flowchart

The workflow of the proposed method is shown in Figure 6. The main steps in-
clude data pre-processing, normal vector estimation, clustering partition, and atmospheric
phase correction.
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Figure 6. Workflow of the proposed method.

4.2. Data Pre-Processing

The differences in the stability of the monitored target’s scattering properties lead
to a non-uniform distribution of PSs. When AP estimation is performed in sub-blocks,
the influence of the dense areas of PSs on the estimation results, is weighted more than
that of the sparse areas of PSs, which biases the estimation. Therefore, the areas with
sparse PSs need to be properly supplemented. Considering that the AP is highly relevant
in local space, an inverse distance weighting interpolation (IDWI) algorithm, based on
Delaunay triangulation, is utilized in the proposed method, to perform spatial interpolation.
The main steps of spatial interpolation are:

1. Construct a Delaunay triangulation network, which is denoted T, to connect all
PS points. The IDWI is performed only within the convex packet of PSs. Delau-
nay triangulation is an optimized spatial structure and can make the interpolation
result automatically approach the regular triangle, improving the interpolation preci-
sion [28,29];

2. For a pending interpolation point p, in the convex package, it must be inside a triangle
T, and three vertices of this triangle v1, v2, and v3 are selected as reference points
for interpolation;

3. The estimated phase of p, which is denoted ϕp, is calculated by

ϕp =
n

∑
i=1

ϕvi

|di|2
/

n

∑
i=1

1

|di|2
(13)

where i = 1, 2, 3, ϕvi are the phase values of reference points v1, v2, and v3, and di is the
spatial distance from vi to p, respectively.

The purpose of spatial interpolation is to avoid excessive disparity in the distribution
density of PSs, there is no need to pursue absolute uniformity. The original PSs and
the supplementary PSs are collectively called the complete PSs (CPSs). After spatial
interpolation, the CPSs are also smoothed by median filtering, to reduce the negative effect
of noise on the subsequent normal vector estimation and obtain the overall distribution of
the APS. An example of the original PSs and the corresponding CPSs is shown in Figure 7.
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Figure 7. Distribution of the original PSs and the corresponding complete PSs (CPSs) after pre-
processing: (a) original PSs, (b) CPSs.

4.3. Spatial Normal Vector Estimation

The space, composed of cross-range, range, and interferometric phase, which is de-
noted Ω, is shown in Figure 8. The spatial span of CPSs is at the kilometer level, and the
interferometric phase values are mostly below 10 rad, the spatial coordinate values of CPSs
are not in the same order of magnitude as the phase values. If the normal vectors are
estimated directly using the original phases, their directions will be too concentrated and
will be difficult to be distinguished. Therefore, the interferometric phase is amplified, to
ensure that its value range is of the same order of magnitude as the spatial span of the CPSs.
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Figure 8. Schematic diagram of normal vector estimation: (a) normal vector estimation results of an
amplified phase map and (b) local details. The orange arrows represent normal vectors.

The idea of estimating a normal vector, is to fit a plane based on the CPSs in the
local APS, then the direction vector of the plane is the normal vector of a CPS. For a CPS
p(R cos θ, R sin θ, kph ϕ) in Ω (where R is slant distance, θ is azimuth angle, ϕ is phase,
and kph is amplification factor of ϕ), its normal vector ~np = (nCR, nR, nP)

T is estimated by:

1. Perform a k-nearest neighbor search, to find the nearest k CPSs to p, the points set is
denoted N:

N = {pi(xi, yi, zi)|i = 1, 2, . . . , k} (14)

where 
xi = Ri cos θi
yi = Ri sin θi

zi = kph ϕi

(15)
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where Ri, θi, and ϕi are slant distance, azimuth angle, and amplified phase of the ith
CPSs in N, respectively.
The general form of the plane to be fitted is:

Ax + By + Cz + D = 0 s.t. A2 + B2 + C2 = 1 (16)

2. Construct the covariance matrix M for N:

M =

 x2 − x̄2 xy− x̄ȳ xz− x̄z̄
xy− x̄ȳ y2 − ȳ2 yz− ȳz̄
xz− x̄z̄ yz− ȳz̄ z2 − z̄2

 (17)

where x̄ = 1
k ∑k

i=1 xi, xy = 1
k ∑k

i=1 xiyi, and so on.
3. Solve the normalized eigenvectors corresponding to the minimum eigenvalue of M,

to obtain the normal vector:

~np =
(
nCR, nR, nϕ

)T
= ±(A, B, C)T (18)

4. Adjust the direction of ~np so that (0, 0, 1) · ~np > 0, to ensure that all normal vectors
point to the same side.

4.4. Clustering Partition

The k-means clustering algorithm [30] is utilized in this article ,to divide the APS
into an appropriate number of sub-blocks. Define the spatially constrained normal vector
(SCNV) as

Vscnv = (R cos θ, R sin θ, knv · nCR, knv · nC, knv · nϕ) (19)

The SCNV of a CPS has two components: the position coordinates component
(R cos θ, R sin θ) and the normal vector component (knv · nCR, knv · nC, knv · nϕ), where
R and θ denote the slant distance and azimuth angle of the CPSs, respectively; knv is the
amplification factor of (nCR, nR, nϕ). The value range of (R cos θ, R sin θ) is usually much
larger in order of magnitude than the norm of (nCR, nR, nϕ). Therefore, the normal vector
component needs to be amplified to raise its weight in SCNV. The empirical criterion
for the selection of knv is that the norm of the amplified normal vector is in the same
order of magnitude as the value range of (nCR, nR, nϕ). For the same interferogram, knv is
kept consistent.

Clustering partition undergoes the following steps [31]:

1. Construct the SCNV set V = {V1
scnv, V2

scnv, . . . , Vm
scnv}, where m is the number of all

CPS points;
2. Set the number of clusters to kcl and initialize the clustering center C = {C1, C2, . . . , Ckcl

};
3. Calculate the Euclidean distance from Vi

scnv to each cluster center and assign Vi
scnv to

the cluster with the closest Euclidean distance;
4. Calculate the center of mass of each cluster and update the cluster center with the

center of mass;
5. The above steps are iteratively processed until the clustering centers no longer change,

or a predetermined number of iterations is reached.

kcl is related to the properties of the APS: when the APS is gentle, kcl takes a small
value, and when the APS fluctuates a lot and its spatial distribution is complicated, a larger
kcl is needed.

Figure 9 shows the clustering results of the datasets constructed with position co-
ordinates (R cos θ, R sin θ), normal vectors (nCR, nR, nϕ), and SCNV. When only position
coordinates are used for clustering, the sub-blocks are divided entirely based on the spatial
distance, which does not reflect the spatial distribution of APS. If only normal vectors are
used, without introducing position coordinates, two sub-blocks that are far apart will be
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clustered into one cluster, while two sub-blocks that are close to each other, but slightly
different in orientation, will be divided into different clusters. Small fluctuations in APS
have a great impact on the clustering process, and the final clustering results are very
fragmented, which is contrary to our original intention of dividing local APS according to
their overall trends. When using the SCNV dataset for clustering, component (nCR, nR, nϕ)
restricts the orientation and trend of the clusters, and component (R cos θ, R sin θ) restricts
the position of the clusters.

Figure 9. Clustering partition results using (a) position coordinate, (b) normal vector, and (c) spatially
constrained normal vector. Different colors in the figures represent different clusters.

Although SCNV introduces the restriction of position coordinates, it does not com-
pletely ensure that CPSs clustered in the same cluster are necessarily spatially adjacent.
Two sub-blocks with different positions and different normal vector orientations may be
clustered into one cluster, when the normal vector components and the position com-
ponents satisfy a specific relationship. For example, in Figure 9c, #1, #2, and #3 belong
to the same cluster but are not spatially adjacent . Therefore, a secondary partition is
needed, to divide the blocks distributed at different locations in the same cluster into
several different sub-blocks.

After k-means clustering and secondary partition, there are a large amount of small
sub-blocks, that are prone to overfitting in the APC process. These sub-blocks need to be
merged with other larger sub-blocks. Defining the sub-blocks whose area is less than a
certain threshold as too-small sub-blocks, the steps for merging a too-small sub-block are:

1. Calculate the average normal vector of each too-small sub-block;
2. Search the sub-blocks adjacent to the too-small sub-block, calculate their average

normal vectors, and then calculate the spatial distance between these average normal
vectors and the normal vector of the too-small sub-block;

3. Merge the too-small sub-block into the block corresponding to the minimum spatial
distance in step 2.
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4.5. Atmospheric Phase Correction

APS estimation and correction are performed in each sub-block, after the clustering
partition. A schematic diagram of the process is shown in Figure 10.

Figure 10. Schematic diagram of atmospheric phase screen (APS) estimation and correction: (a) APS
partition results, different colors represent different sub-blocks; (b) a sub-block of APS; (c) APS
estimation result of the sub-block in (b); (d) corrected result of the sub-block in (b).

The AP of each sub-block is estimated by the regression model shown in Equation (20).

∆ϕatm = β0 + β1 · r · sin θ + β2 · r · cos θ (20)

The estimation of the regression coefficients β0 − β2 is performed based on CPSs.
The matrix form of Equation (20) is

∆Φ = Xβ + ε (21)

where

∆Φ =


∆ϕ1
∆ϕ2
. . .

∆ϕm

, X =


1 r1 · sin θ1 r1 · cos θ1
1 r2 · sin θ2 r2 · cos θ2

. . . . . . . . .
1 rm · sin θm rm · cos θm

, β =

 β0
β1
β2

, ε =


ε1
ε2
. . .
εm

, (22)

where m denotes the number of CPS points; ∆ϕi, ri and θi are the unwrapped phases, slant
distance, and azimuth of the ith CPS in the sub-block; β0− β2 are the regression coefficients;
and ε is the random error vector. The regression coefficients vector can be estimated with a
least-squares regression

β̂ = (XTX)−1XT∆Φ (23)

where T denotes the matrix transposition.
The estimated AP ∆Φ̂AP is obtained from

∆Φ̂AP = Xβ̂ (24)
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The difference between ∆Φ and ∆Φ̂AP is the corrected phase. The complete correction
result is obtained after the correction of all sub-blocks.

5. Results and Analysis
5.1. APS Estimation on Interferograms

All interferograms were corrected by the 2nd-order slant distance model, the 2nd-
order slant distance model with azimuthal partition, the slant distance & azimuth model,
and the proposed method. The algorithm parameters of the proposed method are shown
in Table 2.

Table 2. Algorithm parameters of the proposed method.

Parameters Value

kph 50
kcl 10
knv 100

Since the monitored target was relatively stable and the probability of a large-scale
landslide was small, the corrected phase should be concentrated around 0. Figure 11a shows
the overall original phase distribution of the 7th interferogram’s CPSs, and Figure 11b,c
show the original phase distribution along the range direction and cross-range direc-
tion. In the range direction, the phase increases with distance, but the distribution in the
cross-range direction is more complicated. The AP of the 7th interferogram is large, and
complicated enough to verify the proposed method.

Figure 11. Original phase distribution of the 7th interferogram: (a) overall phase distribution, (b) phase
distribution along the range direction, and (c) phase distribution along the cross-range direction.

Figure 12 shows the APC results by the three regression model-based methods and the
distribution of the corrected phase along the different directions. The AP are all reduced
after correction, and the improvement is particularly noticeable in the range direction.
However, in general, there is still significant residual AP.
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Figure 12. Correction results by the three regression model-based methods and the distribution of the
corrected phases along the different directions: (a1–a3) are the atmospheric phase correction (APC)
results of the 2nd-order slant-range model, the 2nd-order slant-range model with azimuthal partition,
and the slant distance & azimuth model, respectively, (b1–b3) are the distributions of the corrected
phase along the cross-range direction, and (c1–c3) are the distributions of the corrected phase along
the range direction.

Figure 13 shows the APC results by the proposed method. High-accuracy results are
obtained in both the range direction and cross-range direction, and the residual phase is
mostly concentrated around 0 and significantly smaller than that of the regression model-
based methods. Figure 14 shows the partition result of the 7th interferogram using the
proposed method. The clustering partition result is consistent with the spatial distribution
of APS, and the number of sub-blocks is less than 20.

Table 3 shows the statistical results of the residual AP’s standard deviation after APC,
and Figure 15 shows the variation curves of the residual AP’s standard deviation after APC,
along the acquisition time. From Table 3 and Figure 15, it is seen that the standard deviation
of the corrected AP is significantly reduced compared with the uncorrected AP. The residual
AP standard deviation of the slant-range model is the largest, and the fluctuation of its
curves is the most obvious, but the fluctuation is significantly reduced after azimuthal
partition. The smallest residual AP is obtained by the proposed method, with the smallest
mean and median of the standard deviation and the smoothest curves, which indicates the
highest APC accuracy.

Parameter setting analysis is conducted in Sections 5.3.1 and 5.3.3, to further explore
the effect of the algorithm parameters on the corrected accuracy.
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Figure 13. Corrected phase distribution of the 7th interferogram by the proposed method: (a) overall
phase distribution, (b) phase distribution along the range direction, (c) phase distribution along the
cross-range direction.

Figure 14. Clustering partition result of the 7th interferogram by the proposed method: (a) pre-
processed result, (b) partition result. Different colors in (b) represent different clusters.
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Figure 15. The variation curve of the residual AP’s standard deviation after APC along the acquisi-
tion time.
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Table 3. The statistical results of the residual AP’s standard deviation after APC.

Uncorrected 2nd-Order Slant
Distance Model

2nd-Order Slant
Distance Model with
Azimuthal Partition

Slant Distance &
Azimuth Model Proposed Method

Mean Value 0.2310 0.2071 0.1601 0.1897 0.1018
Median Value 0.1766 0.1631 0.1285 0.1523 0.0872

5.2. Simulation Experiment of Deformation Monitoring

To verify the tracking effects and retention rate of different methods on deformation,
simulated deformation was added to some areas of the interferograms. The areas where
deformation was added are shown in Figure 16, and none of the selected areas had obvious
natural deformation. The added deformation is equivalent to 10 rad and was uniformly
added to each interferogram. In order to reduce the effect of edge jump caused by partition,
and the sudden phase change caused by noise, APC was performed by sliding average,
i.e., the current interferogram and the previous n− 1 interferograms were added together
to perform APC, and then the corrected phase value was divided by n, as the correction
result of the current interferogram. In this experiment, n = 10. The algorithm parameters
of the proposed method are shown in Table 2.

Figure 16. The areas where the deformation was added, A, B, C, and D mark the areas where
deformation was added.

The median curves of the corrected CP for areas A, B, C, and D are shown as solid
lines in Figure 17. Although the median curves’ trends using the proposed method are
similar to the simulated deformation curve, their slopes are slightly smaller, which indicates
overfitting. In order to evaluate the degree of overfitting, the deformation retention rate
(DRR) ndr was calculated as follows:

The relationship between a simulated deformation curve Ds and time t is:

Ds(t) = kst (25)

where ks is the slope of the simulated deformation curve.



Remote Sens. 2023, 15, 1744 17 of 26

11 22 34 45
0

2

4

6

8

10

C
um

ul
at

iv
e 

Ph
as

e(
ra

d)

Time(h)
11 22 34 45

0

2

4

6

8

10

C
um

ul
at

iv
e 

Ph
as

e(
ra

d)

Time(h)

11 22 34 45
0

2

4

6

8

10

C
um

ul
at

iv
e 

Ph
as

e(
ra

d)

Time(h)
11 22 34 45

0

2

4

6

8

10

C
um

ul
at

iv
e 

Ph
as

e(
ra

d)

Time(h)

(a) (b)

(c) (d)

Figure 17. CP median curves of simulated deformation areas, (a–d) are the median curves of A–D in
Figure 16, respectively.

The relationship between the corrected deformation curve Dc and t is:

Dc(t) = kct (26)

where kc is the slope of the corrected deformation curve.
The least-squares method (LSM) was used to estimate kc, based on the corrected

deformation curves in A, B, C, and D. ndr is expressed as:

ndr =
kc

ks
(27)

Compared with calculating DRR based on the final cumulative phase value, estimating
the slope of the cumulative phase curves by LSM uses more information and can better
reflect the overall situation.

To attenuate the overfitting, an overfitting correction factor is introduced. The rela-
tionship between the overfitting-corrected phase ϕO and the AP-corrected phase ϕAP, is
shown in Equation (28).

ϕO =
ϕAP
ndr

(28)
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In this experiment, ndr = 0.938. With the change in algorithm parameters and monitor-
ing situation, ndr also changes accordingly. To explore the effect of the algorithm parameters
on DRR, a parameter setting analysis was conducted in Sections 5.3.2 and 5.3.3.

The overfitting-corrected curves are shown as red dotted lines in Figure 17. Calculating
the difference between these curves and the simulated deformation curve, the result is
shown in Figure 18. After APC, the CP curves and difference curves of the slant distance
model and the slant distance & azimuth model have large fluctuations and high spikes
during the period when the atmospheric conditions change more drastically, and the
correction accuracy is poor. In contrast, the curves obtained by the proposed method are
relatively flat, with lower fluctuations and spikes. Table 4 calculates the standard deviation
of the phase difference curves in Figure 18. After overfitting correction, the proposed
method has the smallest standard deviation and has a better tracking effect on the simulated
deformation curve.

(a) (b)

(c) (d)

Figure 18. Phase difference curves between the median curves of CP for the four areas and the
simulated deformation curve, (a–d) are the difference curves of A–D in Figure 16, respectively.

Table 4. The standard deviation of the phase difference curves in Figure 18.

2nd-Order Slant Distance
Model

2nd-Order Slant Distance
Model with Azimuthal

Partition

Slant Distance & Azimuth
Model

Proposed Method with
Overfitting Correction

A 0.1818 0.5090 0.0910 0.0364
B 0.2170 0.1022 0.0941 0.0469
C 0.0969 0.0786 0.1791 0.0578
D 0.2567 0.0629 0.1278 0.0300
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5.3. Parameter Settings Analysis

The proposed method has three important parameters: kph, kcl , and knv. The effect of
kph and kcl on APC accuracy and DRR will first be analyzed. Then, appropriate values of
kph and kcl are selected, to discuss the effect of knv.

5.3.1. Effect of kph and kcl on Atmospheric Phase Correction Accuracy

Set knv = 100, kph = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300}, and
kcl = {5, 10, 15, 20, 25, 30}, to correct all interferograms. The standard deviation of the
residual phase of each corrected interferogram was calculated separately, to obtain a stan-
dard deviation series, and then the mean value of the series was taken, which represents
the overall accuracy. The smaller the mean value, the higher the accuracy. The statistical
results of the mean values of standard deviation with different combinations of parameters,
are shown in Figure 19.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
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0 . 1 0 5
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0 . 1 1 5
0 . 1 2 0
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Figure 19. Mean values of images’ standard deviation with different parameter combinations.

The larger kcl is, the smaller the sub-block is, so the APC accuracy improves with the
increase in kcl . However, the enhancement effect of kcl on accuracy decreases with its grad-
ual increase. The APC accuracy presents a U-shaped relationship with kph. The accuracy
first improves with the increase in kph, and the highest accuracy interval is [25, 75]. Then,
the accuracy starts to decrease with the further increase in kph. When kph is small, the z
component of the normal vector is close to 1, and when kph is large, the z component is close
to 0. Both of these extreme cases lead to the concentrated distribution of the normal vector,
that cannot be effectively distinguished by clustering. Only when the normal vectors are
uniformly distributed, do the clustering results have the best discrimination.

5.3.2. Effect of kph and kcl on Deformation Retention Rate

The settings of kph and kcl are the same as in Section 5.3.1. Simulated deformation was
added to all interferograms, with the same deformation parameter settings as in Section 5.2.
Time series corrections were performed using different parameter combinations, and the
DRR of cumulative deformation was subsequently counted, using the method in Section 5.2.
The DRR curves are shown in Figure 20.

DRR decreases rapidly with the increase in kcl , this indicates that the number of
clusters has a great influence on overfitting. With the increase in kph, the DRR also decreases,
but the rate of decrease is smaller. When kph increases by a certain degree, the DRR will
instead improve.
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Figure 20. Deformation retention rate (DRR) curves under different parameter combinations.

5.3.3. Effect of knv

Considering the APC accuracy and DRR, we set kph = 50 and kcl = 10, to analyze the
effect of knv. The mean value of the standard deviation and DRR are shown in Figure 21.
After the introduction of knv, the standard deviation decreases with the increase in knv, this
finding suggests that knv has a significant effect on the improvement of accuracy. However,
this improvement diminishes as knv increases. The DRR decreases with increasing knv,
therefore, knv cannot be increased unrestrictedly for the sake of higher accuracy.
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Figure 21. The mean value curve of standard deviation and DRR curves when kph = 50, kcl = 10:
(a) mean value curves of standard deviation, (b) DRR curve.

5.4. Time Series Atmospheric Phase Correction

The uncorrected CP curves for RPSs p1–p8, and the corrected CP curves produced by
the four methods, are shown in Figure 22. For the proposed methods, overfitting correction
was performed after APC, and ndr = 0.938. Due to the large residual AP, the curves of the
2nd-order slant distance model fluctuate most sharply. Its APC accuracy is improved after
azimuthal partition, but the curves still have obvious fluctuations. In general, the APC
accuracy of the slant distance & azimuth model is better than that of the slant distance
model. After APC with the proposed method, the fluctuations of the curves at the RPSs are
very small, mainly distributed between −0.3 and 0.3 rad, and most of the AP is eliminated.
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For the areas without obvious deformation, the proposed method achieved a better APC
accuracy than the conventional methods.

0 10 20 30 40
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

Ph
as

e(
ra

d)

Time(h)
0 10 20 30 40

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

Ph
as

e(
ra

d)

Time(h)

0 10 20 30 40
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

Ph
as

e(
ra

d)

Time(h)
0 10 20 30 40

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

Ph
as

e(
ra

d)

Time(h)

p1
p2
p3
p4
p5
p6
p7
p8

(a) (b)

(d)(c)

Figure 22. Corrected CP curves of RPSs p1–p8 in Figure 2: (a) 2nd-order slant distance model, (b) 2nd-
order slant distance model with azumithal partition, (c) slant distance & azimuth model, (d) the
proposed method with overfitting correction.

Figure 23 shows the final cumulative results of all interferograms corrected by the
proposed method. A, B, and C, marked with red circles, are potential deformation areas,
and their details are shown in Figure 24. The larger potential deformation areas in A, B,
and C are marked with #1–#7, respectively.

Figure 23. Final cumulative results after correction of all interferograms.

During the data acquisition, the bottom of the mine was being mined normally,
and there were mining trucks in A and B, and A is the main operation area. Therefore,
the phase changes in these two areas were mainly caused by mechanical operations and
are not natural deformations. Among the seven marked small areas, #3, #4, and #7 have
significant deformation, and their median curves of CP are shown in Figure 25.
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Figure 24. Details of (a) area A, (b) area B and (c) area C, the larger potential deformation areas are
marked as #1–#7, respectively.
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Figure 25. Corrected CP median curves of (a) #3, (b) #4, and (c) #7 in Figure 24 .

Figure 25, indicates that the curves of the conventional methods have obvious spikes
in the interval with violent atmospheric changes, while the curves of the proposed method
are smoother and consistent with the findings of the experiment in Section 5.2.

Both #3 and #4 are located in area A, in which mining vehicles operate, while small-
scale blasting is conducted periodically, and the phase change in A is affected by both
vehicle activity and mining-induced landslides. During the daytime, the mining activity
is frequent and the CP curves are highly variable, while at night, when mining stops,
the curves remain relatively stable. Area #7 is located in the middle of the mountain, far
away from the operation area, without the interference of mining operations. The deforma-
tion area in #7 is small, and the CP curves are smooth overall and were slowly developing
toward the negative direction in both the daytime and nighttime, so this can be considered
as a naturally occurring deformation. For #7, the corrected deformation of the proposed
method is generally smaller than that of the conventional methods, which is mainly because
the atmospheric variation was large during the beginning of the acquisition period, making
the curves of the conventional methods jump downward, while the proposed method is
highly accurate and thus the jump is not obvious.

6. Discussions
6.1. Complicated Distribution of Atmospheric Phase

The interferogram in Figure 3 shows spatial phase wrapping with significant AP,
while the interferogram in Figure 11 illustrates the complicated distribution of AP in
different directions. From the time-series CP curves of the RPSs in Figure 4, and the
standard deviation curves representing the complexity of the AP distribution in Figure 5,
the AP fluctuate greatly with time and there is obvious periodicity. These indicate that in
a real monitoring scenario, multiple factors interact with each other and make the APS
exhibit strong inhomogeneity in both space and time, seriously affecting the accuracy of
deformation measurement. In this research, the factors affecting the AP include:
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(1) High altitude. The altitude of the Dabao Mountain is between 600 and 800 m. The solar
radiation is stronger than that in lower altitude areas, and the air is relatively thin and
poorly insulated. This also leads to large changes in atmospheric parameters within a
short period of time, and therefore significant diurnal variations. During the daytime,
the monitored area is mostly in clear or cloudy weather, and there was no obvious
rainfall process during the data acquisition, so the influence of solar irradiation on
temperature and humidity is significant. The heat brought by the sun makes the
atmospheric parameters change significantly, so the distribution of the AP is more
dispersed, and the spatial phase wrapping phenomenon can easily occur. After the
rapid loss of heat at night, the change in atmospheric parameters tends to be smooth,
and the AP becomes smaller and more stable accordingly.

(2) Steep terrain of the mine. The Dabao Mountain Mine has been mined for many years
and the mountain is very steep. The relative elevation from the bottom of the pit
to the top of the mine is about 150 m. The difference in elevation makes the spatial
distribution of atmospheric parameters non-uniform, resulting in significant changes
in the spatial distribution of AP with the change in elevation.

6.2. Comparison of the Conventional Methods and the Proposed Method

The information used to fit the regression coefficients in the conventional methods
includes slant distance, azimuth, and elevation, which are not sufficient to reflect the spatial
distribution pattern of APS comprehensively. The order of the model is generally first or
second order, with which it is difficult to simulate the complicated APS. For scenarios with
good atmospheric homogeneity, such conventional methods can achieve good correction,
but for APS with complicated spatial distribution, their APC accuracy is not satisfactory.
As can be observed from Figure 12, there are large AP residuals in both the range and
cross-range direction after APC, and the CP curves of the conventional methods all have
obvious spikes. Partition in the azimuth direction effectively reduces residual AP, and the
CP curves’ fluctuations of the 2nd-order slant distance model, indicating that partition
methods can significantly improve APC accuracy.

The proposed method divides the sub-blocks according to the spatial distribution of
APS, the close areas with the same distribution are divided into a sub-block for correction,
which ensures the APC accuracy and avoids the occurrence of serious overfitting at the same
time. Compared to conventional methods, the proposed method has significantly improved
correction results. As shown in Figure 13, the residual AP of the corrected interferogram in
both directions is concentrated around 0. As shown in Figure 15, the standard deviation of
the corrected residual AP is also the smallest among the results of all four methods. Both
for simulated deformation and real deformation, the CP curves obtained by the proposed
method are smoother in Figures 13, 17 and 25, indicating a higher APC accuracy.

Since the estimation of the APS is performed in sub-blocks, without considering the
block-to-block relationship, the estimated APS may have a phase jump at the edge of
the sub-blocks. To reduce the effect of APS discontinuities during long-term monitoring,
a sliding average correction method is used. The results show that the cumulative curves of
the proposed method do not show significant jumps, indicating that the phase discontinuity
has almost no effect on the long-term correction.

6.3. Conflict between Accuracy and Credibility

The deformation component in the interference phase will inevitably affect the APC,
which leads to the overfitting problem. There is a conflict between correction accuracy
and reliability when using the block method for APC. Increasing the number of blocks
can improve the estimation ability of the correction method for APS, reduce the residual
atmospheric phase after correction, and thus improve the accuracy of correction. If the
block is too small, the proportion of deformation part in it will be too large, which will
have a significant impact on the parameter estimation of APC, leading to overfitting.
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GB-SAR systems are often applied in important fields, such as disaster monitoring.
Compared with false alarms, missing reports may lead to premature warnings and dis-
astrous consequences. Therefore, it is necessary to avoid the excessive requirement of
precision and lead to a large number of deformation losses. Both accuracy and DRR should
be taken into consideration when setting parameters. The chosen parameters have a great
influence on the correction accuracy and DRR. Hence, different parameters are selected for
experiments in this paper, to analyze the influence of the parameters on the APC results
and guide the selection of the parameters. It is worth noting that the universality of the
parameter analysis results has not been verified, due to the lack of sufficient datasets. The
relevant literature generally pays more attention to the accuracy, rather than overfitting
and DRR. Consequently, systematic theories or empirical formulas have not been formed
yet, which needs to be further studied.

7. Conclusions

This article focuses on a high-accuracy APC method for GB-SAR, based on normal
vector clustering partition. Through the analysis of the data, it is found that the atmosphere
changes drastically in complicated conditions. Even when the time baseline is very short,
there are still a large amount of AP in the interferometric phases. In some cases, AP lead to
spatial phase unwrapping. For complicated APS, the residual AP is still very obvious after
correction with conventional regression models.

The proposed method combines the spatial normal vectors of local APS, with the
position coordinates of PSs as the dataset, and uses a clustering approach to partition the
APS according to its distribution, followed by the partitioning of APC.

APC and simulation experiments on measurement data, suggest that the proposed
method achieves higher accuracy than the conventional model-based correction methods,
for APS under complicated conditions with drastic changes. At the same time, due to
the introduction of a spatial normal vector in the process of partitioning, the partitioning
results are consistent with the distribution of APS. The number of sub-blocks is minimized,
thus avoiding severe overfitting, and the deformation component is preserved as much as
possible, realizing the balance between accuracy and credibility. This article verifies the
feasibility and effectiveness of using APS distribution information to guide the block and
conduct APC, and provides a new idea for further research.

The analysis of the algorithm parameters demonstrates that the parameter settings
have a significant impact on the APC accuracy and deformation retention rate, and that
they should be set reasonably. However, due to the lack of more data for verification,
a systematic parameter selection theory or empirical formula has not been formed, which
needs further research. At present, researchers usually pay more attention to the accuracy,
and pay less attention to overfitting and deformation retention rate, and relevant studies
need to be strengthened.
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