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Abstract: Accurate precipitation forecasting is challenging, especially on the sub-seasonal to seasonal
scale (14–90 days) which mandates the bias correction. Quantile mapping (QM) has been employed
as a universal method of precipitation bias correction as it is effective in correcting the distribution
attributes of mean and variance, but neglects the correlation between the model and observation
data and has computing inefficiency in large-scale applications. In this study, a quantile mapping of
matching precipitation threshold by time series (MPTT-QM) method was proposed to tackle these
problems. The MPTT-QM method was applied to correct the FGOALS precipitation forecasts on
the 14-day to 90-day lead times for the Pearl River Basin (PRB), taking the IMERG-final product as
the observation. MPTT-QM was justified by comparing it with the original QM method in terms
of precipitation accumulation and hydrological simulations. The results show that MPTT-QM not
only improves the spatial distribution of precipitation but also effectively preserves the temporal
change, with a better precipitation detection ability. Moreover, the MPTT-QM-corrected hydrological
modeling has better performance in runoff simulations than the QM-corrected modeling, with
significantly increased KGE metrics ranging from 0.050 to 0.693. MPTT-QM shows promising values
in improving the hydrological utilities of various lead time precipitation forecasts.

Keywords: precipitation; bias correction; Quantile Mapping; sub-seasonal to seasonal forecast

1. Introduction

Meteorological disasters represent one of the most serious types of natural disaster in
the world. Among the different kinds of meteorological disasters, a flood disaster induced
by heavy precipitation has a wide range of influence, a long duration, and causes significant
property loss and casualties [1]. In light of the global warming environment, it is expected
that the frequency and intensity of flood disasters will continue to increase [2]. Therefore,
there is an urgent need to detect and monitor flood events. Precipitation forecasting is one
of the most important and effective tools for obtaining information in flood monitoring [3].
Therefore, if more accurate precipitation forecast information were to be provided before the
occurrence of heavy precipitation, this would mark a great contribution to flood forecasting
and monitoring and disaster prevention [4,5].

Numerical weather forecast technology has undergone unprecedented development,
and the quality of precipitation forecasting has also significantly improved [6], particularly
on the short-and-medium-term scale (0–10 days). The effective lead time for a disastrous
weather forecast needs to be extended to 14 days through the development of certain skills
so as to ensure the significant value of forecasting for decision making [7,8]. However, as
the atmosphere is a nonlinear system with inherent randomness [9], there are deviations
between the numerical models and the observed data. At the same time, the predictable
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lead time of a model has a certain range [10]. For example, the predictable lead time of a
daily weather forecast is generally around two weeks [11]. In recent years, a series of new
random physical process experiments [12] and an updated parameterization scheme [13,14]
were designed to improve the model ensemble predictions. However, weather forecasting
on the sub-seasonal to seasonal scale is still challenging [15].

Therefore, to obtain accurate and reliable precipitation forecast information and pro-
vide a solid foundation for flood forecasting and monitoring, the bias correction of the
model precipitation forecast is a significant step. Bias correction is an essential link in the
process for obtaining a medium-and-long-term forecast, especially for lead times beyond
14 days. In recent decades, scholars have proved that statistical post-processing methods
can effectively reduce or eliminate the systematic errors in the original model data. A
variety of bias correction models have been developed based on statistical methods, such
as analogs [16–19], QM, and other non-parametric methods [20–25] that are easy to im-
plement and fast to calculate. There are various parametric methods based on complex
mathematical and physical models, such as the non-homogeneous Gaussian regression
model [26], logistic regression model [27], Bayesian model averaging model (BMA) [28,29],
Bayesian joint probability (BJP) [30–32], Kalman filtering [33], etc. In recent years, with the
development of machine learning technology, this kind of method has been widely used for
the bias correction of model data. For example, random forest [34], artificial neural network
(ANN) [35,36], convolutional neural network (CNN) [37], and other neural-network-based
composite methods [38] have been employed.

QM, as the most efficient method, has been widely used to correct satellite precipitation
products and ensemble numerical forecast and general circulation model (GCM) climate
forecast data. At the same time, QM can directly calibrate runoff simulations using the
hydrological model [39–41]. In addition, studies show that assimilating transformed
precipitation into the NWP model using QM can also improve the typhoon forecast [42,43].
In the procedure of the QM method, the cumulative distribution function (CDF) of the
model data and the observation data are established, respectively. Then, the transfer
function (TF) between the two types of data is established for correction, or the model
data are directly mapped to the CDF of the observation data [44] to correct the model
data. The QM correction method can capture the average evolution of, and variability in,
precipitation while adjusting all statistical moments. Many different test schemes based
on QM have been successfully applied for bias correction. For example, Terink et al. [45]
adjusted the daily RCM simulation precipitation and temperature data of the Rhine River
Basin and found that the QM method operated relatively well under normal and extreme
conditions. Bennett et al. [20] used QM to correct the annual and seasonal RCM rainfall
bias in Australia, and they highlighted that the spatial distribution was improved after bias
correction. Similarly, Themeßl et al. [25] found that the QM method effectively corrected
the modeled daily precipitation in Alpine areas by analyzing seven bias correction methods.
Huang et al. [22] established a five-parameter gamma Gaussian model on the basis of QM,
which was successfully used to calibrate the monthly and seasonal precipitation forecasts
of GCMS. Although the QM method is effective in correcting distribution attributes such
as the mean and variance, the performance of the QM method in optimizing the spatial
distribution of forecasting precipitation and detecting the occurrence of precipitation events
is not satisfactory. Moreover, the QM method ignores the correlation between prediction
data and observation data [41].

Therefore, if the QM method is directly used to correct the forecast precipitation on
the sub-seasonal to seasonal scale (14–90 days) with a high temporal resolution (e.g., 3 h),
the detailed temporal and spatial characteristics of precipitation will be blurred. In this
study, a new bias correction method based on the QM was proposed to calibrate forecasting
precipitation on the sub-seasonal to seasonal scale with a high temporal resolution. The new
method firstly matches the precipitation threshold according to the time series and then
corrects the model precipitation data by QM. The performance of the new bias correction
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method was analyzed against the observation data and the original QM method in terms
of both precipitation accumulation and hydrological simulations.

The remainder of the paper is structured as follows. The datasets and study areas
used in this study are described in Section 2. A detailed description of the proposed bias
correction scheme is provided in Section 3. The results are presented in Section 4. Section 5
is the discussion and Section 6 is the conclusion.

2. Study Area and Data
2.1. Datasets

The problem of an insufficient spatial distribution of precipitation observed by surface
rainfall stations is overcome by satellite remote sensing. Satellite remote sensing precip-
itation is an important source of precipitation data in many remote areas, particularly
in the case of ungauged basins. In 2014, the Global Precipitation Measurement (GPM)
was jointly developed by the National Aeronautics and Space Administration (NASA)
and the Japan Aerospace Exploration Agency (JAXA) in order to provide high-resolution
precipitation data globally. GPM is the inheritance and improvement of the Tropical Rain-
fall Measuring Mission (TRMM) satellites. On the one hand, the spatial resolution of the
precipitation products ranges from 0.25 degree to 0.1 degrees, and the time resolution is
increased from 3 h to 30 min. On the other hand, GPM’s dual-band (Ku, Ka) radar system
and high-performance microwave radiometer significantly enhance the detection ability
for weak rainfall (<0.5 mm/h) and solid precipitation. The core observation platform of
GPM is composed of dual-frequency precipitation radar (DPR) and the 13-channel GPM
microwave imager (GMI) carried by GPM. DPR is the first type of active spaceborne remote-
sensing and dual-frequency rain radar in the world, which is composed of Ku-band radar
(13.6 GHz) and Ka-band radar (35.5 GHz). Ku-band radar has a better detection effect for
medium-intensive precipitation, and Ka-band radar is more sensitive to small precipitation
particles due to its shorter detection band. The GPM IMERG-final product is used as the
reference data for analysis in this study. The original temporal resolution of IMERG-final
is half-hourly, and the spatial resolution is 0.1 degrees [46]. In this study, IMERG-final
was resampled to 0.125 degrees using the arithmetic mean method and accumulated to a
three-hourly resolution.

The Flexible Global Ocean–Atmosphere–Land System model (FGOALS) was devel-
oped by The Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS),
and the Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical
Fluid Dynamics (LASG) [47]. FGOALS is also one of the coupled models for China’s
participation in the 6th International Coupled Model Comparison Program (CMIP6). The
output data from the historical climate simulation experiment (2001–2020), based on the
updated version of the FGOALS model [48], i.e., FGOALS-f3-L, was used as the model
prediction data to be corrected using the new bias correction method on the sub-seasonal to
seasonal scale in this study. The FGOALS-f3-L data were interpolated using the first-order
conservation interpolation method into 0.125 degrees, consistent with the IMERG-final.
The research period of this study was between 2001 and 2020, of which 2001–2015 was
the historical period for the experimental data, and the period of 2016–2020 was set as the
verification period.

2.2. Study Area

The Pearl River is one of the seven major rivers in China. The Pearl River flows
through Yunnan, Guizhou, Guangxi, Guangdong, Hunan, Jiangxi, and other provinces
(autonomous regions) and the northeast of Vietnam, with a total length of 2214 km and
a total drainage area of 453,690 square kilometers. Of this, the PRB in China covers an
area of 442,100 square kilometers, and the basin in Vietnam covers an area of 11,590 square
kilometers. The PRB is composed of four water systems, including Xijiang River, Beijiang
River, Dongjiang River, and the rivers in the Pearl River Delta. The PRB is located in the
inland and subtropical climate zone. The average precipitation from April to September is
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between 600 and 1900 mm, and the runoff of the PRB from April to September accounts for
approximately 80% of the annual runoff [49]. The PRB was the main research area of this
study, extending eastward to eastern Guangdong and southward to the coastal areas of
western Guangdong and southern Guangxi (Figure 1).
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The runoff data of eight hydrological stations in the PRB were selected for this study
(Table 1). The time series of the observed runoff data is 2016–2020, and the source of the
data is the Pearl River Administration of Navigational Affairs, https://zjhy.mot.gov.cn/
zhuhangsj/shuiqingxx/, accessed on 9 May 2021.

Table 1. Information of main hydrological stations in the PRB.

Num. Name Longitude Latitude Drainage Area (Km2)

1 Boluo 114.3 23.167 25,325
2 Feilaixia 113.236 23.786 34,000
3 Shijiao 112.963 23.554 38,363
4 Liuzhou 109.397 24.329 45,413
5 Nanning 108.236 22.833 72,656
6 Guigang 109.613 23.089 85,148
7 Dahuangjiangkou 110.204 23.582 288,544
8 Wuzhou 111.329 23.465 327,006

3. Method

The QM method uses a single transfer function to map the model simulation data
to the CDF distribution of the observed data. When the simulated and observed values
are relatively close, the revision is better; however, when the difference between the two
values is large, the QM method can-not improve the model data significantly and may even
introduce new biases. The QM method tends to reproduce the average precipitation from
the observation, but the reproducing is not based on the one-by-one mapping between
the observation and the model, let alone the correction of the modeled number of wet
days [50,51]. In general, the QM method maps all the same precipitation amounts simulated
by the model at different times to the same percentile value of observed precipitation,
causing exactly the same revised precipitation values.

Manolis et al. [52] used different instances of gamma function that are fitted on
multiple discrete segments of the precipitation CDF, instead of the common quantile–

https://zjhy.mot.gov.cn/zhuhangsj/shuiqingxx/
https://zjhy.mot.gov.cn/zhuhangsj/shuiqingxx/
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quantile approach that uses one theoretical distribution to fit the entire CDF. This allows to
better transfer the observed precipitation statistics to the raw model data. However, new
uncertainties may be introduced in the CDF fitting using the Gamma-theoretic distribution.

The bias correction methods proposed in this study are described in this section,
and the technical workflow is shown in Figure 2a. First, the new bias correction method,
which is called the quantile mapping of matching precipitation threshold by time series
(MPTT-QM) method, was proposed in this study. A threshold segmentation was performed
using different percentiles of historical observed precipitation data [52]. The CDF dis-
tribution function of the observed and model data for each interval was then calculated
using the nonparametric method of empirical distribution. Four discrimination factors
were established according to the threshold distribution characteristics of the observed
precipitation in historical periods and the error relationship between the observed and
model precipitation. The weighted results of the four discrimination factors were used to
determine the threshold intervals of the forecast precipitation, and then the CDF matching
method (Figure 2b) was used for further correction within the determined interval.
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3.1. Quantile Mapping of the Matching Precipitation Threshold by Time

The QM method is effective in correcting distribution attributes such as the mean and
variance but neglects the correlation between the model and observation data. In this study,
the MPTT-QM bias correction model was proposed to solve this problem while retaining
the advantages of QM. The percentile method, which is commonly used in precipitation
research, was used to determine the threshold interval for this study [53,54]. Specifically, a
set of 12 percentile threshold values (i.e., the 10th, 20th, . . . , 80th, 85th, 90th, 95th, and 98th
percentiles) was used to classify all the observed 3-h precipitation data into 13 intervals,
similar to those proposed in previous studies [55,56]. For each interval, a list of date–time
stamps (referred to as TOBShis(i)

) for all the observed values was derived as follows:

TOBShis(i)
= (time1, time2, time3 · · · , timek) (1)

where i (i = 1, 2, · · · n, n = 13) indicates each of the intervals, and timek indicates the
occurrence time when the precipitation intensity falls within the ith interval. The CDF
distribution of the observation data in each interval, hereafter referred to as CDFOBShis(i)

, is
calculated. According to TOBShis(i)

, the corresponding model precipitation values (referred
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to as MODhis(i)) are derived to calculate the model CDF (referred to as CDFMODhis(i)
). An

initial bias correction is performed using the QM method (Figure 2b):

MODBCk = CDF−1
OBShis(i)

(
CDFMODhis(i)

(
MOD f orek

))
(2)

where MOD f orek
represents the forecast model data at a certain time k to be corrected on

the sub-seasonal to seasonal scale, and MODBCk is the corrected results. The problem with
the original QM method is that the same precipitation value modeled at different times is
mapped onto the same value by the original QM method. To overcome this issue, instead
of using the identical CDF function for the bias correction, we propose four discriminant
factors in MPTT-QM to adjust the forecast value so as to determine which interval’s CDF
matching function should be chosen for the correction. The details of the discriminant
factors are described below.

3.2. Discrimination Factors
3.2.1. Discrimination Factor One

The threshold distribution of the observation data (i.e., IMERG-final) is an important
reference for estimating the distribution interval of the forecasting threshold. Ftimet repre-
sents the threshold interval with the maximum probability of precipitation distribution at
the tth time of a year according to long-term observation. Specifically,

Ftimet = Max
(

k(i,t)/Sumi

)
(3)

where k(i,t) denotes the number of times when the precipitation values fall in each threshold
interval at the same time of the year (i.e., the same month, day, and hour), i denotes the
threshold intervals ( i = 1, 2 · · · n, n = 13), and t denotes the 3-h interval time in a year
(t = 1, 2 · · ·m; m = 366× 8). Sumi is the total number of OBShis values falling in the ith
interval for all the observation times.

3.2.2. Discrimination Factor Two

The error relationship between historical observation and historical model data can be
used as an important reference for estimating the distribution interval of the forecasting
threshold [23]. The historical precipitation data are extracted at the same time (the same
month, day, and hour) as the forecasting precipitation, so that there are fifteen groups in
total. The average precipitation in the historical period is defined as the sixteenth group of
data. The series of data are written as MODj(j = 1, 2, · · · , n, n + 1, n = 15). The correlation
coefficient between the MOD f ore and MODj(j = 1, 2, · · · , n, n + 1, n = 15) is calculated,
respectively, and the j-group with the largest correlation coefficient is recorded as MODMax.
One extracts the observation data of the corresponding year of MODMax, which is written
as OBSMax. The linear fitting method is used to simulate the error relationship between
MODMax and OBSMax [24]:

OBSMax = a + b×MODMax (4)

where a and b are the linear fitting parameters calculated by the ordinary least squares
method. It is assumed that the same error relationship is also followed for future forecast data:

MOD f ore−BC = a + b×MOD f ore (5)

where MOD f ore−BC is the forecast data corrected using the error relationship. The distribu-
tion interval of MOD f ore−BC is taken as F2.
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3.2.3. Discrimination Factors Three and Four

The removal of multiplicative errors is a convenient method for bias correction on
sub-seasonal to seasonal scales [57]. FMOD f oret

(t = 1, 2 · · ·m; m = 366× 8) represents the
forecast threshold interval, with multiplicative error being adjusted as follows:

FMOD f oret
= MOD f oret

×OBShist /MODhist (6)

where MOD f oret
is the forecast value to be corrected, OBShist is the average value of the

observation in the historical period for the same time as the forecast time, and MODhist is
the average value of the forecast period. The distribution interval of FMOD f oret

is taken as

F3. The distribution interval of OBShist is taken as F4.

3.2.4. Random Forest

Random forest is a classification algorithm based on a tree classifier, which was first
proposed by Breiman [58]. There are many advantages to random forest, for example,
it relieves the overfitting problem that often occurs in machine learning. At the same
time, the selection of characteristic genes can be carried out. A large number of theoretical
and applied studies have proved the accuracy of the random forest model from different
angles [59,60]. At present, random forest is considered as one of the best machine learning
models due to its tolerance of outliers and noise in the dataset. The contribution weights
of different factors to a group of data can be obtained through the random forest model,
which is also one of the characteristics of random forest.

In this study, four discriminant factors of each time step in the historical period were
used as input data, and the true threshold interval of the historical observation data was
used as the target data. Then, the contribution weight of each factor to the true threshold
interval of the observed data was calculated through the random forest model.

F = ∑t(Ft ×Weightt) (7)

Above, Ft is the tth factor, and the weight coefficient of Ft is Weightt(t = 1, 2, . . . , 4).
The weighted result F is the estimated distribution interval of the forecasting threshold.
This means that the forecasting data should be matched with the distribution interval F,
and the CDF function of the history observation and history model in interval F should be
adopted for further correction.

It is critical issue to address the 0 value in the forecast. The method proposed by Tian
et al. [61] is adopted in this study. When the forecast precipitation is 0, the OBShis and
MODhis of the first eight timesteps (one day) of MOD f ore are extracted to calculate the
number of missed (m) and false alarms ( f ) of MODhis according to OBShis. If m <= f , it is
determined that the forecast precipitation is 0. If m > f , the mean value of the first eight
timesteps is used to replace the forecast.

3.3. Additional Spatial Correction

In order to maintain better smoothness and continuity of the spatial distribution of the
corrected model precipitation data, the outliers need to be removed from the data. Dixon
and Dean [62] proposed a simplified outlier test method for smaller sample sizes (n < 10),
namely the Q-test (or Dixon’s Q-test). This method has been widely used in many scientific
research fields, such as international analytical chemistry and materials, for a long time.
The calculation of the statistic Q value is very simple; the difference between the suspicious
value and its nearest value is divided by the range. The calculation formula is written
as follows:

Q1 =
x2 − x1

xn − x1
or Qn =

xn − xn−1

xn − x1
(8)

According to the measured sample number and the given confidence, one can check
the critical value table to obtain the value Qp(n). If Q1 (or Qn) > Qp(n), there are outliers
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in the sample data. Otherwise, the data are without any outlier. In this study, we select
the spatial window of 3× 3 grid cells (the number of samples n = 9) and gradually slide
it to identify outliers. We replace the outlier with the arithmetic mean of the data of the
nearest eight non-outlier and non-missing grid cells. That is, a simple interpolation and
replacement calculation is performed on the outlier. The outliers among the corrected data
are removed by the additional spatial correction. The spatial continuity distribution of the
corrected data is better maintained.

3.4. The DRIVE Model

The hydrologic model has been demonstrated to be an effective and efficient tool for
monitoring, simulating, and forecasting floods [63,64]. The hydrological simulations were
conducted using the Dominant river Routing Integrated with VIC Environment (DRIVE)
model, which was developed by Wu [65] through coupling the DRTR (Dominant River
Tracing, DRT-based runoff-Routing) model with the VIC (Variable Infiltration Capacity)
land surface model. To be applied for spatially distributed and real-time runoff prediction,
the VIC model has further been significantly modified (in particular, from its original point-
based model structure to a grid-based model structure) so that the modified VIC as a runoff
generation component of the DRIVE model is capable of simulating spatially distributed
runoff at each time step (i.e., computing all the grid boxes at each time step) [65]. The
DRTR model includes a package of hydrographic upscaling (from fine spatial resolution to
coarse resolution) algorithms and resulting global datasets (flow direction, river network,
drainage area, flow distance, slope, etc.) especially designed for large-scale hydrologic
modeling. The DRTR model is grid based and very convenient for simulating spatially
distributed streamflow by coupling with the modified VIC model. More details about the
DRIVE model can be found in Wu et al. [66]. The DRIVE model has been used routinely
for global flood forecasting and monitoring [66], implementing TRMM global satellite
precipitation products [67].

3.5. Evaluation Methods

Six precipitation products were used in this study to evaluate precipitation and hydro-
logical performance. They are IMERG-final (IMERG, observation) and FGOALS (model).
The FGOALS model precipitation data are corrected by QM and MPTT-QM for 14-day and
90-day lead time forecasts, respectively, which are called QM-14day, QM-90day, MPTT-QM-
14day, and MPTT-90day. This also means that the revised calculation is repeated every 14
(90) days. After the completion of each correction process, the observations for these 14 (90)
days were summarized into the historical phase dataset, and the initial conditions were
recalculated for the next revision.

Firstly, the 3-hourly precipitation products of 2016–2020 were accumulated to daily,
5 days, 15 days, and monthly. Then, the precipitation accuracy was evaluated for each
time scale. The model data were assessed through three widely used statistical evaluation
metrics: the correlation coefficient (R), root mean square error (RMSE), and mean bias
(MB). A higher R, lower RMSE, and absolute MB indicate better agreement between the
estimations and observations. The formulas are provided in Table 2. In addition, three
indicators were selected in this study to evaluate the precipitation detection capabilities,
including the probability of detection (POD), critical success index (CSI), and false alarm
ratio (FAR). POD represents the ratio of correct estimates to the number of precipitation
occurrences based on observations. FAR denotes the proportion of precipitation occurrences
that were erroneously detected. CSI indicates the overall performance in terms of detection
capability by integrating POD and FAR. The values of these indicators range from 0 to 1,
and a higher POD and CSI and lower FAR indicate a better performance.

Therefore, six different types of precipitation data were used in this study to run the
DRIVE model on the 3-hourly time scale and the 0.125-degree spatial scale. The simulated
runoff was compared with the runoff observed at eight hydrological stations in the PRB.
The Kling–Gupta efficiency coefficient (KGE) was selected as the hydrological assessment



Remote Sens. 2023, 15, 1743 9 of 21

indicator. The KGE coefficient is a comprehensive evaluation index integrating the cor-
relation coefficient (R), bias ratio (β), and variability ratio (γ). KGE can comprehensively
evaluate the performance of simulation data, and the optimum score is 1.

Table 2. Statistical metrics used for evaluating precipitation and runoff estimates. P is precipitation
estimate; Pobs is observation data; Q is runoff estimate; Qobs is observation runoff from the gauge;
Cov is the covariance; σ is the standard deviation and µ is the mean value; n is the number of data
pairs; H is the number of observed precipitation events detected correctly by the products; F is the
number of precipitation events detected by the products but not observed; and M is the number of
precipitation events that the products cannot detect.

Statistical Metrics Formulas Optimal Score

Correlation coefficient (R) R = Cov(P,Pobs)√
σ(P)σ(Pobs)

1

Root mean square error (RMSE) RMSE =
√

1
n ∑(P− Pobs)

2 0

Mean bias (MB) MB = 1
n ∑(P− Pobs) 0

Probability of detection (POD) POD = H
H+M 1

Critical success index (CSI) CSI = H
H+M+F 1

False alarm ratio (FAR) CSI = F
H+F 0

Bias ratio (β) β = µP
µPobs

1

Variability ratio (γ) γ = σP/µP
σPobs

/µPobs
1

Kling–Gupta efficiency (KGE) KGE = 1−
√
(R− 1)2 + (β− 1)2 + (γ− 1)2 1

4. Results
4.1. Precipitation Assessment Results

Figure 3 illustrates the spatial patterns of daily average precipitation from 2016 to
2020, derived from the IMERG, FGOALS, QM, and MPTT-QM precipitation products. It
can be seen that the IMERG precipitation in the PRB shows a decreasing trend from east to
west. The maximum precipitation area is concentrated in the east of the PRB. The FGOALS
model data show a higher value in the eastern area and lower value in the western area.
However, the overall precipitation value is smaller than that of IMERG, and there are
also great differences in the spatial details. The precipitation products corrected by QM
effectively improve the precipitation in the eastern and central areas of the PRB, and QM is
more similar to IMERG in terms of spatial distribution. However, the figure shows that the
maximum daily rainfall area of IMERG precipitation reaches more than 5 mm/day in the
east of the PRB, and there are certain differences between QM-14day and QM-90day, on
the one hand, and IMERG, on the other. The precipitation corrected by MPTT-QM is more
consistent with the overall spatial distribution of IMERG. It clearly shows four rainbands
with decreasing precipitation from east to west. The distribution of MPTT-QM-14day is
better than that of MPTT-QM-90day. MPTT-QM-90day has an overestimation trend in the
central part of the Pearl River Basin relative to MPTT-QM-14day.

To further evaluate the spatial distribution consistency between the corrected precipita-
tion and IMERG precipitation, Figure 4 shows a density scatter diagram of the daily average
precipitation distribution of each grid cell in the study area. It can be seen from Figure 4a
that the FGOALS data show an overall small trend for IMERG. In particular, when the
daily average precipitation of IMERG is distributed in the range of 4–5 mm, the FGOALS
is as small as 50%. However, for some precipitation maxima, FGOALS shows a higher
estimation. The QM-corrected data can effectively solve the problem of the serious under-
estimation of FGOALS. However, when IMERG precipitation is in the range of 4–6 mm,
QM-14day and QM-90day are still slightly low. No matter how high or low the precipitation
value is, the scattered points marking the spatial distribution of MPTT-QM and IMERG are
basically situated around the y = x baseline, and the performance is clearly better than that
of the QM method. As can be seen in Figure 4, there is a more pronounced overestimation
trend in MPTT-QM-90day than MPTT-QM-14day when the precipitation level is in the
5 mm interval, which is consistent with Figure 3. In terms of spatial correlation coefficient
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values and root mean square error values, MPTT-QM-90day and MPTT-QM-14day are very
similar, but the spatial mean bias is smaller for MPTT-QM-14day.
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To verify the time series trend of precipitation on the basin scale, the basin mean values
of different precipitation products in the PRB were calculated on the 15-day scale and the
monthly scale in this study (Figure 5). The figure shows that the basin mean precipitation
of IMERG at 15 days (red line in Figure 5a–e) has changed steadily over the past five years,
and the maximum precipitation period is mainly from May to September each year. The
three wet years are 2016, 2019, and 2020. Among these, the wet years of 2016 and 2020
were caused by short-term heavy precipitation events, and that of 2019 was caused by
continuous precipitation events.

Regarding the IMERG data, the basin mean precipitation values in the first half
of June and August in 2016 and the first half of June and September in 2020 reached
200 mm. The basin mean precipitation in the first half of June 2020 reached 242.24 mm,
which is the highest value within the past five years. In Figure 5a, the precipitation of
the FGOALS model (blue line) shows a time lag trend and lower precipitation relative to
IMERG. Figure 5b,c illustrates that the QM does not have the ability to change the trend of
model precipitation. It can only adjust the precipitation value at each time step to make
it larger and, therefore, closer to the distribution of IMERG. Moreover, the MPTT-QM
model can change the trend of precipitation in the time series (Figure 5d,e). Comparing
the MPTT-QM with the QM and FGOALS data, it can be found that MPTT-QM has better
consistency with IMERG, especially for 2017, 2018, and 2019. However, for the extreme
precipitation events in 2016 and 2020, although MPTT-QM can effectively improve the
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original data, the correction performance of MPTT-QM for extreme precipitation events
still needs to be further improved.
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in the PRB from 2016 to 2020. Each scatter point represents the daily average precipitation value of
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represent the FGOALS, QM-14day, QM-90day, MPTT-QM-14day, and MPTT-QM-90day, respectively
(unit: mm/day).
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Figure 6 demonstrates the boxplots of R, RMSE, and MB for the MPTT-QM model
and other precipitation products over four different time scales. The MPTT-QM model
performs better than the other products, with a higher R, lower RMSE, and lower MB. With
the increase in the time scale from days to months, the R value becomes higher. However,
the daily scale is enhanced to a stronger degree than the monthly scale. For example, for
the correlation coefficient R, the median value of FGOALS on the daily scale is 0.02, and
the values of MPTT-QM-14day and MPTT-QM-90day are 0.15 and 0.13, which are 650%
and 550% higher than the original model data. The monthly FGOALS median value is 0.33,
and the MPTT-QM-14day and MPTT-QM-90day are 0.78 and 0.76, respectively, which are
136% and 130% higher than the value for FGOALS. For the QM precipitation products, the
performance of R and RMSE is equivalent to that of FGOALS, and there is no significant
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improvement. On the daily scale, the performance of R and RMSE are slightly decreased.
MB is effectively improved using the QM method. The median value of MB is increased
from −2.19 to −0.66 (QM-14day) and −0.66 (QM-90day), respectively, on the daily scale.
Meanwhile, the median of MB of the MPTT-QM model performed better, with values of 0.07
(MPTT-QM-14day) and 0.13 (MPTT-QM-90day) on the daily scale, respectively. Overall, in
terms of time distribution, MPTT-QM-14day outperform MPTT-QM-90day significantly.

Figure 6. Boxplots of correlation coefficient (R), root mean square error (RMSE), and mean bias (MB)
for five precipitation products over four different time scales: daily, 5-day, 15-day, and monthly.
(a–d) represent the boxplot of R, (e–h) represent the boxplot of RMSE, and (i–l) represent the MB.

Table 3 summarizes the statistical metrics of the five precipitation products. The values
in the table are the basin average values of the statistical metrics for the PRB on a daily scale.
Although the FAR values of MPTT-QM-14day and MPTT-QM-90day are slightly higher,
other indicators should be comprehensively considered. Combining the results of several
assessment indicators in Figures 4 and 6 in terms of temporal and spatial distribution, the
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performance of the revised product decreases significantly as the prediction time increases.
Overall, the MPTT-QM-14day shows the best performance among the five precipitation
products, with POD of 0.950. The second-best-performing product is MPTT-QM-90day,
which has the highest CSI value.

Table 3. Summary of performance statistical metrics for the FGOALS, QM-14day, QM-90day, MPTT-
QM-14day, and MPTT-QM-90day precipitation products. The precipitation threshold is set to
0.1 mm/day.

Names CSI POD FAR

FGOALS 0.302 0.412 0.461
QM-14day 0.322 0.444 0.462
QM-90day 0.322 0.443 0.462

MPTT-QM-14day 0.486 0.950 0.501
MPTT-QM-90day 0.488 0.946 0.498

It is worth mentioning that the POD values of MPTT-QM-14day and MPTT-QM-90day
are greater than 90% for all grid cells in the PRB. For MPTT-QM-14day, 49.6% of the total
grid cells in the PRB have POD values greater than 0.95, and 40% have POD values greater
than 0.95 for MPTT-QM-90day. The MPTT-QM-14day and MPTT-QM-90day methods
effectively improve the value of CSI by more than 0.4, increasing from 3.6% to 95.3% and
95.1%, respectively.

4.2. Hydrological Assessment Results

First, six precipitation products were used to run the DRIVE model. The KGE coeffi-
cient results obtained by comparing the runoff observation data of the hydrological stations
on the monthly scale are shown in Figure 7. The runoff simulation results show that the
calibrated DRIVE model is efficient. The runoff results of IMERG-DRIVE show that the
KGE coefficients of the eight hydrological stations in the PRB are more than 0.48, and there
are five stations with monthly KGE values greater than 0.60 (Figure 7). The average of
the monthly KGE coefficient is 0.59. Among the stations, the Nanning station data are
simulated best, and the monthly KGE coefficient reaches 0.66. The simulation effect of
FGOALS-DRIVE on the PRB is unsatisfactory. The average of the monthly KGE coefficient
is 0.01. These unsatisfactory results are related to the poor self-quality of the FGOALS
precipitation. After QM bias correction, the effect of the runoff simulation was slightly
improved. The monthly KGE average increased to 0.16 (QM-14day) and 0.15 (QM-90day),
respectively. However, the runoff simulation results of QM still fall short of the credible
standard. According to the results of the MPTT-QM-14day runoff simulation, there are
five hydrological stations with monthly KGE values greater than 0.4 in the PRB, and the
average value reaches 0.45. The performance of MPTT-QM-90day is slightly worse, the
average value reaches 0.40. The performance of the MPTT-QM method in hydrology is
more related to the self-quality of the observed precipitation.

On the daily scale, the average correlation between the output runoff data of IMERG-
DRIVE and the observed runoff data is 0.74, indicating that the data are highly correlated
(Figure 8a). The average correlation coefficient of FGOALS-DRIVE is 0.19, and Nanning
station has the highest correlation, which is 0.23. The average correlation coefficients
of both QM-14day and QM-90day are 0.16 on the daily scale, a value which is slightly
lower than that of FGOALS. The runoff correlation was significantly improved by the
MPTT-QM method. After MPTT-QM-14day correction, the correlation coefficients of seven
hydrological stations were greater than 0.4. Wuzhou station, located in the middle of the
PRB, has the highest correlation coefficient, which reaches 0.60. On the monthly scale,
MPTT-QM-14day performed better, raising the average correlation coefficient of FGOALS
on the monthly scale from 0.37 to 0.71. Therefore, by comprehensively comparing the KGE
coefficient and correlation coefficient of QM and MPTT-QM relative to the observed runoff,
it can be seen that the MPTT-QM method is more effective than the QM method.
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The KGE coefficients of area rainfall of the upstream basin and simulated runoff for
the five precipitation products, compared with IMERG, are shown in Table 4. In general,
the performance of MPTT-QM in estimating precipitation and runoff of the eight stations
in the PRB is significantly better than that of QM method. The MPTT-QM-14day is the
best-performing model. For the MPTT-QM-14day model, the average KGE coefficient of
the area rainfall compared with FGOALS is increased by nearly 3.82 times, and the average
KGE coefficient of the runoff is increased by more than 12.94 times for the eight hydrological
stations in the PRB. For the MPTT-QM-90day model, the average KGE coefficients of area
rainfall of the upstream basin and runoff are increased by 3.78 times and nearly 12.60 times,
respectively. The same conclusion is obtained using the QM method. According to the
KGE coefficient of QM-14days, the average rainfall value of the eight stations is doubled,
and the average runoff value is increased by nearly 5.03 times. The KGE coefficient of
QM-90day is nearly doubled and increased by 4.98 times. It can be seen that both QM and
MPTT-QM perform better for the 14-day lead time forecast than 90-day one. Although the
KGE coefficient of the area rainfall is higher, both the MPTT-QM and QM bias correction
methods are clearly more efficient in improving the runoff simulation.
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Table 4. Summary of performance based on the monthly KGE coefficients of hydrological stations
in the PRB for the FGOALS, QM-14day, QM-90day, MPTT-QM-14day, and MPTT-QM-90day. For a
hydrological station, P represents the KGE coefficient of model-simulated area rainfall of the upstream
basin compared with IMERG. Q. represents the KGE coefficient of model-simulated runoff compared
with the IMERG-DRIVE-simulated runoff.

Names Boluo Feilaixia Shijiao Liuzhou Nanning Guigang Dahuangjiangkou Wuzhou

FGOAlS
P 0.291 0.006 0.018 0.053 0.220 0.201 0.300 0.293
Q 0.428 0.012 −0.014 −0.033 −0.085 −0.107 0.103 0.093

QM-14day P 0.365 0.188 0.204 0.352 0.383 0.369 0.478 0.480
Q 0.439 0.194 0.186 0.242 0.364 0.313 0.344 0.318

QM-90day P 0.364 0.186 0.202 0.348 0.381 0.366 0.475 0.476
Q 0.437 0.191 0.184 0.240 0.360 0.309 0.342 0.316

MPTT-QM-14day P 0.761 0.798 0.804 0.793 0.892 0.886 0.876 0.863
Q 0.701 0.573 0.617 0.550 0.793 0.768 0.777 0.766

MPTT-QM-90day P 0.731 0.780 0.788 0.774 0.882 0.881 0.890 0.883
Q 0.701 0.573 0.594 0.524 0.802 0.769 0.724 0.720

Figure 9 shows the monthly runoff intensity–time curve after the removal of the
missing values of the Guigang, Nanning, Wuzhou, and Liuzhou stations in the PRB from
2016 to 2020. The figure shows that the runoff curve (red) simulated by IMERG-DRIVE
is closely matched with the distribution of the observation data for most time periods.
The runoff value of FGOALS-DRIVE is very small for all the hydrological stations. The
QM-DRIVE-simulated runoff data are similar to the precipitation, which is corrected by QM.
Only the numerical value can be changed, and it is difficult to change the trend of the runoff.
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The runoff data simulated by MPTT-QM-DRIVE at four stations show a good performance,
which is basically consistent with the runoff intensity–time curve of IMERG-DRIVE.

Figure 10 illustrates the intensity–time curve of the monthly area rainfall of the up-
stream basin for the Guigang, Nanning, Wuzhou, and Liuzhou stations. The figure demon-
strates that the variation in area rainfall is more complex relative to the runoff. The area
rainfall of the upstream basin for the four stations obtained by the MPTT-QM method also
indicates a good performance.
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5. Discussion

In general, the MPTT-QM-corrected precipitation data indicate a significantly better
performance than that of the original QM method in terms of the consistency of the
temporal and spatial distribution on the sub-seasonal to seasonal scale. This is because
MPTT-QM overcomes the problem that the same precipitation value modeled at different
times is mapped onto the same value using the original QM method by correction at the
precipitation threshold intervals. In order to more accurately identify the threshold intervals
of the forecast precipitation, the four discrimination factors are selected to comprehensively
consider the threshold distribution characteristics of the observed precipitation in the
historical period and the error relationship between the observed precipitation and the
model precipitation.

At the same time, due to the fact that precipitation errors can be transmitted using the
hydrological model, more accurate precipitation data will also lead to an improvement of
the hydrological simulation performance. Therefore, the MPTT-QM method also has an
excellent performance in hydrological simulations.

When the MPTT-QM model is applied in practice, it will provide a solid foundation
for the prediction and early warning of flood disasters. At the same time, the MPTT-QM
model also requires further improvement. For example, the performance of the MPTT-QM
model will decrease slightly with the lead time increase in the bias correction. Moreover,
the question of how to predict and correct the occurrence of extreme precipitation events
using the MPTT-QM model is the primary problem to be solved in the next stage of model
research and development.

6. Conclusions

In this paper, we proposed a new precipitation bias correction method based on QM
to match precipitation thresholds by time series, which is called the MPTT-QM model.
FGOALS model data were used to estimate 3-h precipitation in the PRB at a spatial res-
olution of 0.125 degrees. The model performance and retrieval results are summarized
as follows:

1. The MPTT-QM model has better consistency with IMERG than the original QM model
in terms of spatial distribution. The MPTT-QM model excelled in terms of the RMSE
and MB;

2. MPTT-QM can effectively optimize the change in the precipitation series and improve
the correlation coefficient between the model and observation data, which the QM
method cannot achieve to any meaningful extent. For a 14-day lead time forecast,
MPTT-QM increases the average correlation coefficient of the PRB by nearly six times
compared to the original FGOALS model on the daily scale;

3. MPTT-QM also shows a stable performance in terms of the POD and CSI. MPTT-
QM shows a good precipitation detection ability for the 14-day to 90-day lead
time forecasts;

4. Based on the hydrological performance evaluation, the KGE coefficients of the eight
hydrological stations are improved significantly using the MPTT-QM-DRIVE model
compared to the QM-DRIVE model.
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