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Abstract: Object tracking using Hyperspectral Images (HSIs) obtains satisfactory result in distinguish-
ing objects with similar colors. Yet, the tracking algorithm tends to fail when the target undergoes
deformation. In this paper, a SiamRPN based hyperspectral tracker is proposed to deal with this
problem. Firstly, a band selection method based on a genetic optimization method is designed for
rapidly reducing the redundancy of information in HSIs. Specifically, three bands with highest joint
entropy are selected. To solve the problem that the information of the template in the SiamRPN
model decays over time, an update network is trained on the dataset from general objective tracking
benchmark, which can obtain effective cumulative templates. The use of cumulative templates with
spectral information makes it easier to track the deformed target. In addition, transfer learning of
the pre-trained SiamRPN is designed to obtain a better model for HSIs. The experimental results
show that the proposed tracker can obtain good tracking results over the entire public dataset, and
that it is better than the other popular trackers when the target’s deformation is qualitatively and
quantitatively compared, achieving an overall success rate of 57.5% and a deformation challenge
success rate of 70.8%.

Keywords: object tracking; hyperspectral images; siamese; intelligent optimization; anti-deformation

1. Introduction

Hyperspectral Object Tracking (HOT) tries to predict the position of targets continu-
ously over Hyperspectral Videos (HSVs), using only information on the state of the targets
at the initial time. For popular visual target tracking methods, it is limited in describing
physical characteristics of the image, which leads to tracking failure, as the target is de-
formed [1,2]. Most HOT algorithms extract the spatial and spectral information for objects
of interest [3], which makes it easy to distinguish objects with similar colors. In spite of
the potential of hyperspectral trackers, their robustness can be negatively affected by the
presence of redundant information in the HSVs [4]. Thus, there is a pressing need for
further research to enhance the accuracy of tracking targets in HSVs.

Currently, there are two main tracking methods, including methods based on Deep Learn-
ing (DL) [5–13] and methods based on Discriminative Correlation Filtering (DCF) [14–21].
The former leverages neural networks to obtain more sophisticated depth features, which
have proven to be effective for subsequent tracking. The Deep Learning Tracker (DLT) [5]
was the first tracker to utilize deep learning techniques, completing the tracking process
through a particle filtering framework. The feature extraction method is based on a stacked
auto-encoder network. Yet, DLT tends to lose targets with partial multi-target overlap.
The first application [7] of the siamese network-based tracker made by Bertinetto performs
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a convolution operation on the feature space of the candidate template and corresponding
search region, and then determines the location of the target by finding the maximum
response. The Siamese Region Proposal Network (SiamRPN) algorithm [22] draws inspi-
ration from the principle of generating candidate regions for target detection, ultimately
refining these areas to achieve a more precise bounding box. However, the algorithm’s
performance can be negatively impacted when the background is mistakenly identified
as the semantic object, as the SiamRPN algorithm considers the semantic background as a
source of interference. Furthermore, the Distractor-aware Siamese Networks (DaSiamRPN),
introduced by Zhu [23], improves the discriminatory power of the tracker by incorporating
difficult negative samples in the training model. Besides, Li et al. applied the ResNet
network into a SiamRPN++ visual tracker [24], which achieves good tracking results. Yet,
the SiamRPN-based tracker is susceptible to drift towards regions that are similar to the
target, due to the absence of model updates.

The DCF method [25,26] has demonstrated notable efficiency in training the frequency
domain filter. The pioneer Minimum Output Sum of Squared Error (MOSSE) algorithm [14]
adopts the gray-scale feature to complete target tracking with high execution efficiency.
Yet, this algorithm does not take the background information and scale updating into
consideration. Moreover, additional features, such as color name features [27], Histogram
of Gradient (HOG) [15], and deep features [8], have proven to be valuable in advancing
the development of tracking. To be more specific, the HOG representation is obtained by
the Kernel Correlation Filter (KCF) algorithm [15]. Furthermore, a multi-feature of Visual
Geometry Group (VGG) and HOG are fused with multi-cue correlation by Wang et al. [28].
However, the above DCF algorithms are sensitive to the situation of occlusion [29] during
tracking. Besides, another issue that arises in visual tracking is when the target is similar in
color features to its surrounding background.

From the above analysis, tracking methods based on DL and DCF have been widely
applied to tracking visible targets [24,30,31]. The similarity in color between the target
and background often results in tracking drift for most trackers to some extent. The spa-
tial and spectral characteristics of hyperspectral data can effectively distinguish objects
from the background, which is widely used in the field of image classification [32,33].
Specifically, Ding et al. [32] proposed a novel multi-feature fusion network, which extracts
multi-scale pixel-level local features for HSI classification. Zhang et al. [33] proposed a
graph neural framework based on multiple adaptive receptive fields, which addresses
issues such as insufficient labeled training samples and high spectral mixing between
materials. Benefiting from spectral properties, a number of effective algorithms [3,34–37]
have been developed in the field of HOT. Qian et al. [4] introduced a HOT method utilizing
the convolutional network without a training strategy. The DCF framework obtains a
high execution efficiency, yet the elimination of redundancy in the spectral information is
not considered. Uzkent et al. [38] introduced a Deep Kernelized Correlation Filter-based
method (DeepHKCF) for object tracking, which did not consider the valuable spectral infor-
mation. In their work, HOG feature channels were concatenated with pure hyperspectral
channels for tracking aerial objects. Zhang et al. [39] proposed an HSV tracking method
based on multi-feature integration(MFI-HVT), which generates feature maps by a His-
togram of Gradients (HOG) and a pre-trained VGG-19 network, and then detects targets on
high-speed aircraft by using a kernelized correlation filter framework. The Material-based
Hyperspectral Tracking (MHT) [3] method, developed by Xiong, embeds spectral-spatial
information into multi-dimensional gradient histograms. In addition, the Band Attention
Aware Ensemble Network (BAENet) [34] method, introduced by Li, utilizes a band selec-
tion network combined with the VITAL [40] tracking framework. Liu et al. [41] proposed
an anchor-free siamese network (called HA-Net), including RGB classification, a regression
network, and a hyperspectral network. Furthermore, HA-Net performs online updates by
selecting the image with the highest confidence every ten frames. However, the limited
number of HSVs may result in insufficient training for the model.
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In general, tracking algorithms that utilize HSVs encounter limitations related to the
size of the dataset, which can make it challenging to effectively leverage the semantic infor-
mation of Hyperspectral images (HSIs). In this paper, with the siamese network as the back-
bone model in our tracker, the overall framework also includes band selection [42], model
training, feature transfer, and the template updating mechanism. Specifically, the three
valuable bands are first obtained via a genetic algorithm [43] with the joint entropy or
the optimal index factor. Besides, our model is pre-trained on datasets from the General
Objective Tracking (GOT) benchmark [44], and the semantic information in the HSV is
known to benefit from Transfer Learning (TL) [45]. In addition, a convolutional neural
network named Hyperspectral template Update Network (HSUpdateNet) has been devel-
oped, inspired by the UpdateNet [46]. This method not only replaces the template manual
update function, but also utilizes the spectral information for tracking. For the reason that
the UpdateNet [46] is successfully applied into the Fully Convolutional Siamese Networks
(SiamFC [47]) and the SiamRPN++ [24], the HSUpdateNet designed by us is applied into
our previous work named BS-SiamRPN [36]. Subsequently, the material composition pro-
vided by the rich spectral information improves the ability of feature identification. Finally,
the selected bands are input into the backbone network, which extracts spectral features
of HSVs. The effect of the TL strategy on the proposed model can be seen in Figure 1,
which proves that a tracking algorithm without the TL strategy is very susceptible to the
representation of the target.

Figure 1. Comparison of trackers with and without TL.

The main contributions are listed as follows.

• The SiamRPN model is applied into the field of HOT, which verifies its applicability
in processing HSVs.

• To reduce redundancy in HSVs, bands are determined by an intelligent optimization
algorithm based on maximum joint entropy.
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• TL has been effectively applied into the domain of HOT, which effectively solves
the limitation of lacking labeled data in hyperspectral datasets referring to learning
deep models.

• The proposed HSUpdateNet with an effective template update strategy, which ex-
ploits rich spectral information, helps to obtain a more accurate cumulative template,
and deals with the problem of deformation.

The following is the relevant content of this paper. In Section 1, the current state
of development of the HSV tracking is given in detail. Then, the proposed framework
is described in Section 2. In Section 3, experimental results are analyzed. In Section 4,
the direction of future research is discussed. Finally, Section 5 draws several conclusions.

2. Materials and Methods
2.1. SiamRPN

The SiamRPN model converts the initial similarity calculation problem into a regres-
sion or classification problem using a large-scale offline training network, which is shown
in Figure 2. The SiamRPN extracts features using a siamese network, which is in line with
the architecture of the SiamFC [47] model. The region proposal network also includes
a classification branch and a regression one. The former is specifically used to calculate
the Intersection Over Union (IOU) of the output box with the real target. Besides, a fixed
threshold is set to distinguish the target from the background. The regression branch of the
proposed method is responsible for both accurately matching the predicted bounding box
for the target with its actual state, as well as compensating for any potential scale variations
during the initial stages of the tracking process.

255 × 255 × 3

Detection Frame

127 × 127 × 3

Template Frame

Conv

Conv6×6×256

CNN

6×6×256

CNN

*
4×4×(2k×256)

20×20×256

Conv

Conv

4×4×(4k×256)

20×20×256

17×17×2k

* 17×17×4k
Regression Response

Classification Response

17×17×2

17×17×4

Siamese Network Region Proposal Network

Figure 2. The framework of SiamRPN.

The accuracy and speed of several trackers, including the CFNet tracker [48], the DaSi-
amRPN tracker [49], and the SiamRPN++ tracker [24], are balanced, yet several problems
still need to be solved. First of all, most siamese trackers only utilize characteristics that can
differentiate between foreground and non-semantic contexts. It is challenging to ensure the
performance in complex environments. Secondly, siamese trackers lack an online update
paradigm, which can cause the tracker to lose the target if it undergoes abrupt changes
in appearance. Thirdly, the local search technique of the siamese tracker is sensitive to
partially occluded targets. However, HSVs help to make up for the disadvantage of visible
data in tracking.
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Here, the feature of the detection frame is subjected to convolution operations by the
classification branch, and the feature of the template frame refers to the regression branch.

Acls
w×h×2k = φ(x)cls ∗ φ(z)cls (1)

Areg
w×h×4k = φ(x)reg ∗ φ(z)reg (2)

where ∗ denotes the convolution operation and softmax is utilized in calculating the classi-
fication loss. Acls

w×h×2k consist of 2k channels, indicating positive and negative excitation.
Each point in the 4k channels of Areg

w×h×4k is represented as dx, dy, dw and dh. This is the dis-
tance between the anchor and ground truth. φ(x)cls and φ(x)reg denote the output feature
in the detection branch. Both the template feature maps φ(z)cls and φ(z)reg are kernels.

The definition of the loss function Lreg is as follows:

Lreg =
3

∑
i=0

smoothL1(δ[i], σ) (3)

δ[0] = (Tx − Ax)/Aw

δ[1] = (Ty − Ay)/Ah

δ[2] = ln(Tw/Aw)

δ[3] = ln(Th/Ah)

(4)

where the center point is denoted by Ax and Ay and the shape of anchor boxes is represented
by Aw and Ah, respectively. Moreover, the ground truth boxes are described by Tx, Ty, Tw,
and Th, respectively. σ can control the error range of using mean square error or mean
absolute error. In Equation (3), the loss smoothL1 is formulated as follows:

smoothL1 =

{
0.5σ2x2 if |x| < 1/σ2

|x| − 1/2σ2 if |x| ≥ 1/σ2 (5)

Finally, the total loss function Ltotal is as follows:

Ltotal = Lcls + λLreg (6)

where Lcls describes the cross entropy loss and λ is a hyperparameter of the two losses
(λ = 1.2).

2.2. Hyperspectral Band Selection

In order to simplify the tracking process and reduce the redundant information of
HSVs, the valuable features of HSVs are obtained by feature dimension reduction, such
as feature extraction [16] and feature selection [50]. The former contains some popular
methods, such as singular value decomposition and principal component analysis, which
are utilized to extract features in a reduced dimensional space. However, these algorithms
need to provide a new definition of feature attributes. The latter focuses on choosing
features with a strong performance of classification, such as band selection on HSIs. In
order to preserve the majority of the hyperspectral information, the genetic algorithm [51]
is employed. As a result, the correlation value between the retained bands is usually low.
Figure 3 displays the procedure of band selection.

In Figure 3, the matrix diagram of the correlation coefficient shows that the initial
images can be separated into numerous groups. In addition, images belonging to the same
group exhibit high correlation coefficients, and those not belonging to the same group
exhibit low correlation coefficients. Therefore, it is imperative to decrease the redundancy
of the original information.

With HSVs, it is time consuming to calculate the information entropy during tracking
tasks. Therefore, a genetic optimization approach [52,53] is designed to swiftly identify se-
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lected bands with the highest entropy values. Given the initial image D = [d1; d2; . . . ; d16] ∈
Rm×n×16(m = 135, n = 271), the joint information entropy H is described as

H(di, dj, dk) = −
255

∑
I,J,K=0

PI,J,K log2 PI,J,K (7)

where PI,J,K represents the joint probability between pixel intensity value J in band dj, pixel
intensity value I in band di, and pixel intensity value K in band dk.

Figure 3. Band selection for the first toy1 picture.

Therefore, the entropy H can be defined as a fitness function in the optimization
method. Subsequently, banded arrays are used as chromosomes in the genetic algorithm,
as depicted in Figure 3. Iterations of selection, crossover, and variation are carried out to
determine the appropriate band. Based on correlation analysis and the genetic method,
three bands (band 2, band 5, and band 8 for the initial image of the toy1 video) are obtained.
Additionally, a three-spectra input is required by the fundamental deep network.

In conclusion, band selection based on joint entropy takes into account both imple-
mentation effectiveness and information parsimony. Specifically, the inclusion of additional
bands may lead to redundant information within a particular spectral dataset.

2.3. Transfer Learning

Transfer Learning (TL) is widely used in machine learning areas, such as item recogni-
tion, medical diagnosis, and speech recognition [54–56]. This is because training DL models
in specific application contexts sometimes exhibits various contradictions, such as too few
training samples and the high cost of data labeling.

TL can be divided into four categories based on its processing, sample instance based,
feature based, parameter sharing based, and relationship based. We use a TL based on
parameter sharing, where certain parameters are shared between the model in the source
domain Ds of normal RGB data and the target domain Dt of hyperspectral video data
from the perspective of the model. The goal of migration learning is to find the prediction
function F, formulated as:

Y = F(X, Dt, Ds) (8)

where X is the test set of hyperspectral data and Y is the tracking results.
The normal RGB data are pre-trained first and then the model is fine-tuned using

the hyperspectral video data. Pre-trained models that employ frequently employed RGB
data source domains, encompassing vast datasets, have the potential to augment model
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robustness and foster superior generalization, such as ImageNet [49], COCO [57], and
GOT-10K [44].

The HSIs contain spectral information, which can be lost during pre-training with
RGB data. Furthermore, the TL strategy cannot be used directly with hyperspectral data,
due to of its multichannel information. Thus, the band selection module is required. Finally,
Figure 4 shows the flowchart of the proposed algorithm.

Figure 4. The flowchart of the proposed method.

2.4. Hyperspectral Update Learning

For long-term tracking tasks, such as long sequences in hyperspectral datasets, hyper-
spectral video tracking has difficulty coping with the fact that the appearance of targets
changes dramatically. The SiamRPN model updates targets’ template with the linear
fusion of the current and the cumulative template, which causes information to decay
exponentially over time. Its simplicity limits the potential benefits that can be obtained
from learning updates, despite the fact that it can enhance tracking performance. Moreover,
this linear combination method cannot utilize the potential spectral information for HOT.
Therefore, a learned updating method is adopted to replace the linear mechanism. Inspired
by UpdateNet [46], a convolutional neural network named HSUpdateNet is designed to
obtain the optimal template for HSVs. It replaces the template manual update function
and takes advantage of the spectral information. The template in SiamRPN is updated to
an an exponentially decaying moving average value over time. Specifically, the recursive
formula for the template update is represented as follows:

T̃p = (1− γ)T̃p−1 + γT̃p (9)

where Tp denotes the new template sample at frame p, and T̃p−1 denotes the accumulated
template. Besides, γ = 0.01 is the update factor, which means that the appearance of objects
changes smoothly over the subsequent images.

To exploit the spectral information of HSIs, a universal function ψ is learned to over-
come the limitations of simple template averaging.

The learning function HSUpdateNet ψ is based on the initial true template, the last
accumulated one, and the template referring to the predicted object position at frame p.
TGT

0 represents the initial frame of each HSV, which is shown in Figure 5. The HSUpdateNet
is trained to obtain a prediction of the target template. The predict template T̃p should
match the template T̃GT

p+1, referring to the true position at frame p + 1. To accomplish this,
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HSUpdateNet is trained by minimizing the Euclidean distance between real templates and
updated templates at the next frame, which is defined as follows:

L2 =
∥∥∥ψ(TGT

0 , T̃p−1, Tp)− TGT
p+1

∥∥∥
2

(10)

=

√√√√ n

∑
p=1

(ψ(TGT
0 , T̃p−1, Tp)− TGT

p+1)
2

where L2 represents the Euclidean distance and n represents the length of test HSVs.

T̃p = ψ(TGT
0 , T̃p−1, Tp) (11)

Figure 5. An overview of the tracking framework using HSUpdateNet.

Meanwhile, the multi-stage training strategy is utilized to avoid repeated training,
which makes the procedure simple and efficient. It is not reasonable to use real values for
T̃p−1 and Tp during the first training, because real templates are rarely used in real tracking.
In the first phase, the original tracker with the linear updating strategy is executed on HSVs
to generate the cumulative template and the actual predicted position for each frame.

T̃0
p = (1− γ)T̃0

p−1 + γT̃0
p (12)

The update factor γ corresponds to the first approximation value of HSUpdateNet.
In each subsequent training phase k ∈ {1, . . . , K}, the HSUpdateNet model is trained to
obtain the cumulative template and object location prediction.

T̃k
p = ψk

p(T
GT
0 , T̃k−1

p−1, Tk−1
p ) (13)

The network takes the initial template TGT
0 at each frame into account, which provides

highly reliable information. Moreover, spectral information is learned, which helps to
improve the tracker’s performance.

Furthermore, the linearly updated cumulative templates and HSUpdateNet are visual-
ized in Figure 6. The cumulative template approach utilized by the HSUpdateNet model
more closely reflects real-world situations when compared to the linear update strategy.
However, the linearly updated cumulative template changes at an exceptionally slow rate,
making it difficult to track objects with significantly altered appearances, thus presenting a
significant limitation.
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This is despite the fact that the UpdateNet [46] update strategy suffers from a self-
learning problem, meaning that by updating with mislabeled samples, the tracker may
permanently degrade and drift. However, HSUpdateNet is trained using hyperspectral
datasets and more spectral information is retained during template accumulation, which
enhances the tracker’s ability to identify erroneous samples.

Figure 6. Response maps generated on the search area for different template update strategies.
HSUpdate is shown in green, Linear in blue, No-Update in yellow, and ground truth in red.

3. Results

The experimental setup is detailed in Section 3.1, and the ablation study is given
to prove the importance of several components in the proposed tracker in Section 3.2.
Section 3.4 shows the quantitative comparison of deformation. In addition, qualitative
and quantitative comparisons with existing trackers on the whole dataset are given in
Sections 3.3 and 3.5, respectively.
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3.1. Experiment Setup

Dataset: The GOT10K dataset, which was introduced by Huang et al. [44], serves as a
valuable resource for obtaining pre-trained parameters. With over 10,000 video clips and
more than one million labeled bounding boxes, the dataset consists of five subcategories: an-
imals, motor vehicles, people, assisting objects, and partially moving objects. We performed
transfer learning using the HOT2022 dataset [3], which is provided by the 2022 Hyper-
spectral Object Tracking (HOT2022) challenge on https://www.hsitracking.com/contest/,
(accessed on 13 September 2022). The HOT2022 dataset contains 40 training video sets and
35 test sets with RGB videos, HSVs, and false-color videos. The dataset authors applied
weight to each band in HSVs to generate channels of color images. This method [58] gener-
ates images(false-color videos) with similar color intensity to the color images, ensuring
a fair comparison with color trackers. The HSVs are acquired by a hyperspectral camera
with 16 bands of wavelengths ranging from 470 nm to 620 nm, which was modeled as a
snapshot VIS produced by interuniversity microelectronics center with a bandwidth of
about 10 nm per band. Each video is also labeled with relevant challenge factors, which
include Deformation (DEF), Scale Variation (SV), Occlusion (OCC), Illumination Variation
(IV), Background Clutters (BC), Fast Motion (FM), Out-of-view (OV), Out-of-plane Rotation
(OPR), In-plane Rotation (IPR), Motion Blur (MB), and Low Resolution (LR). Ablation exper-
iments and tracking experiments are performed using all videos. Deformation experiments
are performed using videos with target deformation properties.

Table 1 presents details regarding our experimental videos, while Figure 7 depicts the
corresponding RGB videos. The series for Figure 7a consists of 331 frames of 512 × 256
pixels. The tracking target is a black automobile traveling from near to far on the highway.
The vehicle ranges in size from 188 × 84 pixels to 13 × 9 pixels. There are concurrent SV,
LR, OCC, and IV challenges in the sequence.

Table 1. The details of the experimental videos.

Video Car3 Fruit Hand Kangaroo Pedestrian2 Player

Frame 331 552 184 117 363 901
Resolution 512 × 256 493 × 232 341 × 186 385 × 206 512 × 256 463 × 256
Initial Size 188 × 84 32 × 37 103 × 108 22 × 41 13 × 44 23 × 69
Challenge LR, OCC BC, OCC BC, DFM OPR, SV DFM, OCC IPR, SV

Figure 7. RGB videos for six experiments. (a) Car3; (b) Fruit; (c) Hand; (d) Kangaroo; (e) Pedestrian2;
(f) Player.

Table 1 has comparable details for the other five sequences. In Figure 7b, the tracked
target is a green fruit with sizes ranging from 32 × 37 pixels to 26 × 25 pixels. The video

https://www.hsitracking.com/contest/
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shows green fruit moving randomly in front of a cluttered branch. In addition, the target
tracking in Figure 7c is a palm moving back and forth in front of a yellow background
and undergoing constant changes in shape and size, ranging from 103 × 108 pixels to
87 × 98 pixels. In Figure 7d, our tracking target is a kangaroo running in front of the woods,
surrounded by many similar kangaroos, and its size is from 22 × 41 pixels to 19 × 33 pixels.

In Figure 7e, the object of attention is a person walking in the shadows, who is obscured
by a tree during their movement, with sizes ranging from 13 × 44 pixels to 15 × 39. Finally,
in Figure 7f, the tracking target is a basketball player who keeps moving and turning
around. The size of the target range from 23 × 69 pixels to 34 × 101 pixels.

Evaluation Metrics: The four most popular target tracking assessment metrics [59], i.e.,
precision plot, success plot, average Distance Precision at a threshold of 20 Pixels (DP@20P),
and Area Under the Curve (AUC), are introduced to give the performance comparison.

The success plot represents the proportion of successful frames, where the predicted
tracking box overlaps the ground truth with a fixed threshold (from zero to one). Besides,
the precision plot shows the proportion of frames, where the centroid difference referring
to the estimated target position and the real target position is not more than a specified
threshold. In addition, the curve is determined by the varying percentages that arise from
different thresholds. With the initial target state, all compared trackers execute on the full
test HSVs, and all results are obtained with One-Pass Evaluation (OPE).

Implementation details: The SiamRPN model [22] is pre-trained with GOT10K [44].
The learning rate is between 10−2 and 10−6. In the training model, the batch size is 128,
and the epoch parameter is fixed as 50 (Stochastic Gradient Descent (SGD) for optimization).
For transfer learning, the learning rate is set from 10−4 to 10−6. The first three convolutional
layers are fixed for the first five training epochs and then unfreeze. A batch size of 128 and
an epoch of 20 were employed during training. In the first training phase of HSUpdateNet,
a linear update with an update rate of 0.0102 is used in the template generation part.
Three bands of the hyperspectral dataset are considered as training samples. Furthermore,
weights are initialized by the model generated in the previous stage, while the learning
rate is reduced from 10−8 to 10−9 in each epoch.

3.2. Ablation Study

To verify the algorithm’s effectiveness, a baseline algorithm is first implemented
by adopting only the pre-trained model without enabling the band selection module,
transfer learning module, and online update module. Based on the baseline algorithm,
two alternative algorithms are also implemented. First, the band selection and transfer
learning modules are utilized. Secondly, based on the second method, linear template
update, and HSUpdateNet template update are executed, respectively. Results on the
HOT2022 dataset are shown in Figure 8. Both the second and third two algorithms perform
better than the baseline. In Table 2, the AUC value of the baseline algorithm reaches 0.483.
Besides, the algorithm with only the band selection module does not perform well in
objective indicators. This is because hyperspectral data are different from RGB data in
feature extraction, and the baseline algorithm does not understand the spectral features well.
In contrast, by enabling the band selection module and transfer learning module, which
effectively utilizes the informative spectral features, the tracker performance is improved
by 5%. Both the strategies of linear template update and the HSUpdateNet template update
improve the tracker’s performance. In general, the former is typically used by the siamese
tracker, which runs fast but with limited improvement. Compare with the strategy of no
template update, the performance is only improved by 0.2%. The HSUpdateNet model
not only avoids the exponential decay of information arising from a linear update but also
obtains spectral information that is effective for tracking, resulting in a 4.2% improvement
in performance.
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(a) (b)

Figure 8. Success and precision plots for the ablation study over all the test HSVs. (a) Success plots;
(b) Precision plots.

Table 2. Ablation study over all the test HSVs.

Method Video Type AUC DP@20P

baseline false-color 0.482 0.763
baseline-BS HSV 0.468 0.771
baseline-BS-TL HSV 0.533 0.845
baseline-BS-TL-L HSV 0.535 0.820
baseline-BS-TL-H HSV 0.575 0.861

BS denotes Band Selection, L denotes Linear, and H denotes HSUpdate.

3.3. Qualitative Comparison

In this section, our method is compared against seven other trackers, namely MHT,
MFIHVT, BAENet, DeepHKCF, BS-SiamRPN, DaSiamRPN, and SiamRPN++. Among them,
DaSiamRPN and SiamRPN++ are color trackers, and the rest are the latest HS trackers.
The MHT model introduces hand-crafted features, which extracts material information,
to improve the tracker performance. BAENet transforms HSVs into a group of three-
channel images. These altered images are run through a number of VITAL trackers to
produce several weak trackers. Furthermore, an ensemble learning process is adopted to
track targets. The MFIHVT algorithm generates feature maps by HOG and the pre-trained
VGG19 feature, and the DCF framework is adopted to estimate the location of objects.
The DeepHKCF tracker converts HSV into a three-channel image sequence, which is fed
into the VGGNet for extracting features. The BS-SiamRPN algorithm lacks a template
update strategy. The DaSiamRPN algorithm utilizes data augmentation to increase its
performance. The SiamRPN++ algorithm completes feature extraction using a deeper
network. In this paper, the false-color videos are utilized as the input of the color tracker to
compare with the HS tracker.

Experimental results of all the trackers on all six experimental sequences are shown
in Figures 9–14. The image contains several various colored rectangular boxes, as shown
below, and the varied colors represent different algorithms, i.e., green denotes ours, blue
denotes BANet, black denotes DaSiamRPN, yellow denotes BS-SiamRPN, cyan denotes
SiamRPN++, and red denotes the ground truth.



Remote Sens. 2023, 15, 1731 13 of 20

Figure 9. Qualitative results on the car3 sequence.

Figure 10. Qualitative results on the fruit sequence.

Figure 11. Qualitative results on the hand sequence.
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Figure 12. Qualitative results on the kangaroo sequence.

Figure 13. Qualitative results on the pedestrian2 sequence.

Figure 14. Qualitative results on the player sequence.

In Figure 9, the black car begins at the beginning of the road, and gradually shrinks as
it travels further and further. Furthermore, when the black car is traveling down the center
of the road, a white car is driving in the other direction. When the target vehicle reaches



Remote Sens. 2023, 15, 1731 15 of 20

the end of the road, another vehicle is close behind it. During this time, the two vehicles
gradually shrink. The BAENet algorithm is unable to accurately surround the target due
to the changing aspect ratio of the black car. At frame 263, it can be found that only the
BS-SiamRPN and ours get a high overlap value with true results.

As can be seen in Figure 10, the fruit moves above the leaf, resulting in size changes
that are difficult to track. Because of the blockage of leaves during the subsequent target
movement, all of the trackers addressed in this paper are unable to precisely obtain the
target state. Therefore, BAENet and DeepHKCF can only see a portion of the target. This
problem becomes more serious as targets are frequently occluded by leaves. At frame
253, it is evident that our tracker is capable of reliably locating the target, and adapting to
changes in targets. It is worth mentioning that only our tracker has a decent overlap with
the true result.

The palm in Figure 11 moves over a background with similar colors, causing the palm
to deform due to constant flipping. During the tracking process, the target varies frequently,
yet most trackers cannot react adequately to the target changes. Nevertheless, our tracker
uses HSUpdate to retrieve the best-accumulated template at frame 148, making the tracker
perfectly overlap with the ground truth.

Figure 12 illustrates the challenges of tracking the kangaroo, as its fast jumps cause
variations in appearance and scale, making tracking difficult. Furthermore, with a similar
representation feature to that of the tracking target, other kangaroos create a significant
amount of background interference for object tracking. It is difficult for the DeepHKCF to
completely coincide with the real target box.

Figure 13 depicts a pedestrian walking from a well-lit area to a darker region amid a
background of trees. During subsequent target motion, the pedestrian becomes occluded by
trees, resulting in temporary loss of the target on the screen, posing a significant challenge
for the trackers. The DeepHKCF algorithm fails to obtain the target state at frame 40.
At frame 266, SiamRPN++ also loses the target due to the occurrence of occlusion. At frame
360, the BS-SiamRPN algorithm and our algorithm correctly detect the target, due to the
fact of that the spectral information is preserved with band selection.

Figure 14 shows an athlete dressed in white playing basketball on a court, with move-
ments such as shooting and running leading to variations in the shape of the target. BS-
SiamRPN does not perform well in the tracking task, and because of that, the tracker does
not utilize the strategy of template updating. The DeepHKCF model only adopts one deep
feature, which makes the target drift to the background.

3.4. Quantitative Comparison of Adversarial Deformation

Sequentially, the performance is represented in Table 3, in terms of deformation
challenges. Specifically, our algorithm almost reaches the top two performances in terms of
evaluation metrics. Figure 15 displays the success and precision curves of the algorithm on
videos with a deformation challenge, where the area covered by the curve represents the
value. The specific results are shown in Table 3.

Table 3. Performance comparison with other trackers in terms of deformation challenge.

Algorithm Video type AUC DP@20P

DaSiamRPN false-color 0.670 0.920
SiamRPN++ false-color 0.669 0.971
DeepHKCF HSV 0.433 0.774

BS-SiamRPN HSV 0.641 0.970
MHT HSV 0.708 0.930

MFIHVT HSV 0.655 0.946
BAENet HSV 0.51 0.920

Ours HSV 0.708 0.971
The top two values are in red and blue.
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Overall, the MHT achieved a success rate of 0.708 and a precision value of 0.930.
Besides, our proposed algorithm has the same success rate, and the precision is improved
by 4.1%. It is worth noting that the MHT is the state of the art. Our tracker produced
better results than other algorithms in the DEF challenge, which is shown in Figure 15 and
Table 3. Specifically, the precision value of the proposed algorithm is 0.708 and the success
rate is 0.971, which is a significant improvement over MHT and BS-SiamRPN, referring to
the DEF challenge. Compared to BS-SiamRPN, the success rate of our algorithm is 0.1%
higher and the precision rate is 6.7% higher, which is because the BS-SiamRPN algorithm
lacks a template update strategy. In addition, both SiamRPN++ and our algorithm achieve
the highest precision, but our algorithm’s success rate is 3.9% higher. This is because
our algorithm utilizes the spectral information of HSVs. Numerical results confirm that
AD-SiamRPN can make good use of HSUpdateNet to obtain the best cumulative template,
which helps the tracker cope with the deformation challenge.

(a) (b)

Figure 15. Comparison of performance curves in terms of deformation. (a) Success plots; (b) Precision
plots.

3.5. Quantitative Comparison

Here, the quantitative result for all seven trackers is represented by the precision and
the success plots. The AUC comparison of several hyperspectral trackers and visual DL
trackers is shown in Table 4.

Table 4. Performance comparison with other trackers.

Algorithm Video Type AUC DP@20P FPS

DaSiamRPN false-color 0.558 0.831 48
SiamRPN++ false-color 0.529 0.834 41
DeepHKCF HSV 0.385 0.737 2

BS-SiamRPN HSV 0.533 0.845 55
MHT HSV 0.584 0.876 2

MFIHVT HSV 0.601 0.891 2
BAENet HSV 0.616 0.876 -

Ours HSV 0.575 0.861 35
The top one value is in red.

Figure 16 shows the comparative results of the trackers over the entire dataset. It can
be found that our algorithm achieves high AUC scores (0.575 in the success plot and 0.861
in the precision plot). Facing difficulties such as fast motion, occlusion, same backdrop,
and low resolution, the SiamRPN++ and the DaSiamRPN easily fail to detect targets.
The false-color video, which loses spectral information, does not enhance the two-color
trackers very well. Moreover, the complexity of HSIs necessitates the use of transfer learning
techniques for effective understanding. Our tracker, which utilizes transfer learning to
capture the semantic aspects of multispectral data, achieves robust performance. The MHT
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algorithm leverages both spectral and spatial information to effectively distinguish the
target from the background by adding material features, leading to good performance. The
BAENet model performs best, for the reason that it sent the band group into the VITAL
tracker via the band selection network. The spectral information is retained well, which
is instructive for us for future research. The DeepHKCF algorithm does not perform well,
because it only extracts one type of feature. It introduces a multi-feature fusion tracking
algorithm, which retains more spectral information and has good robustness to the complex
background. Compared with BS-SiamRPN, a template update module, which makes full
use of spectral information, helps to deal with occlusion challenges and other aspects. As a
matter of fact, the overall performance is improved, the AUC score in the success plot is
from 0.533 to 0.575, and the AUC score in the precision plot is from 0.845 to 0.861.

(a) (b)

Figure 16. Success rate and precision rate referring to overall sequences. (a) Success plots; (b) Preci-
sion plots.

4. Discussion

While the comprehensive experiments and analyses have established the effectiveness
of the proposed AD-SiamRPN, there remains a need for further discussion regarding
potential avenues for future research.

• The dearth of high-quality datasets with annotations is a major drawback of hyper-
spectral target tracking, potentially hindering the learning of valuable information
and resulting in overfitting. To address this limitation, our future efforts will focus
on enhancing the feature extraction capabilities of the tracker, perhaps by employing
self-supervised approaches, such as contrast learning.

• The band selection module eliminates the information redundancy of HSVs and re-
taines the physical information. It obtains high tracking speed, but the improvement in
performance was not quantified. In the future, we will compare this with other feature
reduction approaches to validate the effectiveness of our band selection module.

• Experiments have demonstrated that the spectral information helps to distinguish
the target from the background information, and from this, future work can proceed
to design a rational network that uses the raw 16-dimensional data as input to the
network to extract valid hyperspectral features.

5. Conclusions

A tracking algorithm on hyperspectral videos in this paper benefits from band selection
and an improved siamese network. From the above experiments and analysis, some
conclusions are given as follows.

• Hyperspectral information helps trackers detect an object with similar color attributes
from its neighborhood.

• The high quality of the training set in the GOT database provides the basis for the
generalizability of our tracking algorithm (AD-SiamPRN).
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• The band selection module retains the spectral significance of the spectral channel,
and the intelligent optimization algorithm speeds up the tracking task.

• The transfer model aids in the extraction of semantic information from HSV, hence
enhancing the tracker’s performance. The template update module (HSUpdateNet)
performs well with respect to issues such as deformation.

• Future work proceeds to design a rational network that uses the raw 16-dimensional
data as input to the network to extract valid hyperspectral features. Besides, the effec-
tive attention mechanism should be applied into the field of HOT.

In addition, experimental results validate that the AD-SiamPRN method performs
well in HOT (with an overall success rate of 0.575 and a deformation challenge success rate
of 0.708), which lays the foundation for moving target recognition.
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