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Abstract: Change detection (CD) methods using synthetic aperture radar (SAR) data have re-
ceived significant attention in the field of remote sensing Earth observation, which mainly involves
knowledge-driven and data-driven approaches. Knowledge-driven CD methods are based on the
physical theoretical models with strong interpretability, but they lack the robust features of being
deeply mined. In contrast, data-driven CD methods can extract deep features, but require abun-
dant training samples, which are difficult to obtain for SAR data. To address these limitations, an
end-to-end unsupervised CD network based on self-adaptive superpixel segmentation is proposed.
Firstly, reliable training samples were selected using an unsupervised pre-task. Then, the superpixel
generation and Siamese CD network were integrated into the unified framework to train them
end-to-end until the global optimal parameters were obtained. Moreover, the backpropagation of the
joint loss function promoted the adaptive adjustment of the superpixel. Finally, the binary change
map was obtained. Several public SAR CD datasets were used to verify the effectiveness of the
proposed method. The transfer learning experiment was implemented to further explore the ability
to detect the changes and generalization performance of our network. The experimental results
demonstrate that our proposed method achieved the most competitive results, outperforming seven
other advanced deep-learning-based CD methods. Specifically, our method achieved the highest
accuracy in OA, F1-score, and Kappa, and also showed superiority in suppressing speckle noise,
refining change boundaries, and improving detection accuracy in a small area change.

Keywords: change detection; deep learning; synthetic aperture radar (SAR); superpixel segmentation;
Siamese network; transfer learning

1. Introduction

Natural and human activities have a continuous impact on Earth’s resources and
environment. The accurate detection of changes is of great significance in resource and
environmental protection [1], agricultural survey [2], urban renewal [3,4], forest resource
management [5], and other applications of Earth observation. Remote sensing Earth
observation has the advantages of large-scale and periodic observations. By using image
processing and pattern recognition techniques, change information can be identified from
multi-temporal remote sensing data.

The synthetic aperture radar (SAR) is an advanced active remote sensing technology
characterized by its penetration ability, all-weather and all-time work, wide coverage,
and other advantages. Therefore, SAR images provide crucial data support for acquiring
ground information in harsh environments and are widely used in remote sensing change
detection (RSCD).

To the best of our knowledge, the change detection (CD) methods that use multi-
temporal SAR images can be divided into two categories: traditional knowledge-driven
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methods and data-driven methods, whereby both of which involve supervised and unsu-
pervised designs. Supervised methods require a large number of labeled samples as prior
knowledge, which are difficult to obtain for SAR images. Therefore, our research is focused
on designing an automatic and efficient unsupervised CD method for SAR data.

In the early stages of SAR CD method research, the majority of the studies focused
on developing pixel-based change detection (PBCD) methods. These methods mainly
involve three steps: image preprocessing, difference image (DI) generation, and DI analysis.
Specifically, image preprocessing includes speckle noise filtering, radiometric calibration,
geometric correction, registration, etc., which generate comparable multi-temporal images
with less noise. The traditional knowledge-driven methods mainly focus on DI generation
and DI analysis. In the step of DI generation, the most straightforward method is based
on image algebra, such as image difference [6] and image ratio [7]. The more complex
approaches include methods based on image transformation, such as principal component
analysis (PCA) [8,9] and change vector analysis (CVA) [10,11]. Other methods include tex-
ture analysis [12], edge-based detection [13,14], machine learning [15,16], GIS analysis [17],
and mixed techniques. After the ideal DI is extracted, thresholding [18], clustering [19], or
other advanced methods [20,21] are used to analyze DI, and then the binary change map is
finally obtained.

However, the PBCD method is sensitive to speckle noise, thus detecting change with
false alarms, holes, and jagged boundaries. To solve these problems, object-based change
detection (OBCD) methods are proposed. These methods [22–24] segment pixels into image
objects and take them as study units, which can smooth holes and improve the boundary
detection accuracy. However, the proper setting of scale parameters in OBCD is complex
and mechanical, and improper settings may cause important small changes to be missed.
Moreover, the performance of OBCD methods depends on the accuracy of the segmentation
algorithm. As a compromise, the CD method based on superpixel segmentation [25] has
become a popular choice to generate uniform and homogeneous regions with the ability to
perceive semantic information.

For the object or superpixel segmentation of multi-temporal images, three strategies
are generally used [26,27]: (1) Only one phase image is segmented, and the other image
is directly stacked with this segmentation result to perform CD. This strategy will cause
missed and false detection. (2) Multi-temporal images are segmented independently, which
often produces sliver polygons due to the inconsistency of the segmentation. As a result,
it is difficult to perform CD analysis, and segmentation error will propagate to the CD
analysis step. (3) The multi-temporal images are segmented simultaneously by stacking
them; this manner with low computational efficiency often leads to over-segmentation and
boundary fragmentation. Therefore, a better segmentation strategy still needs to be further
investigated.

Due to the continuous development of satellite sensors, a large number of accumulated
images provides opportunities for data-driven deep learning change detection (DLCD)
methods. Deep learning automatically extracts high-level features from images [28], which
has been proven to be an effective feature-learning technique [29–31]. The end-to-end
DLCD method can directly obtain CD results from multi-temporal images. Moreover, the
extracted deep features are robust to speckle noise [32]. To our best knowledge, according to
the strategy of fusing multi-temporal information, the DLCD methods involve three types:
(1) Early fusion [33], where multi-temporal information is fused before being inputted
into the network. In order to increase the information, other useful manual features can
be added for different tasks. (2) Multi-temporal information fusion based on the Siamese
network [34,35], where the multi-temporal images are input into different branches of the
Siamese network, respectively, to learn the correlation or difference in the multi-temporal
information. (3) Multi-temporal information fusion based on the recurrent neural network
(RNN) [36], where RNN is used to mine the dependence of sequential images acquired at
different times. Among these three strategies, the Siamese network has proven to be more
specific for CD and has great potential to improve detection accuracy [37,38]. Currently,
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the DLCD methods generally input the sampling patches (patch-based) or the whole image
(image-based) into the network. The patch-based method with low computational efficiency
loses a considerable amount of spatial context information. However, image-based fully
convolutional network methods, such as FCN [39], Unet [40], DeepLab [41], and their
variants, can accept any size of input image (if the computing memory allows), utilizing
global context information to generate the dense pixel-wise prediction. These methods are
efficient and accurate and have become the mainstream network in DLCD fields [25].

Furthermore, existing DLCD methods mainly take a pixel as the basic analysis unit,
which limits DLCD to perceive object boundaries and model semantic information. There-
fore, researchers have proposed the hybrid method combining deep learning with the
object-based method or superpixel segmentation. For example, ref. [42] proposed an object-
based method that used a convolutional neural network (CNN) to extract change features,
which achieved higher accuracy and computational efficiency. In [43], a CD method combin-
ing a neural network and the extraction of superpixel-level change features was proposed,
which can obtain a robust and high-contrast CD result. The authors in [44] proposed a
CD method combining superpixel segmentation and a graph neural network. Bi-temporal
superpixel maps were generated via simple linear iterative clustering (SLIC) [45], and the
superpixel-level change features were extracted to generate the graph. However, the above
methods isolate the superpixel or object generation from the deep network training. The
generated segmentation cannot be dynamically adjusted during the training, thus greatly
limiting the performance of CD and failing to obtain the global optimal solution.

To solve the above problems, a novel end-to-end unsupervised CD method combining
the superpixel segmentation network and Siamese deep convolutional network is proposed.
Two weight-sharing superpixel sampling networks (SSNs) [46] are introduced in series
with a Siamese deep convolutional CD network, and the overall framework still follows
the Siamese architecture (Figure 1). Firstly, two SSNs are used to generate superpixel and
deep features containing segmentation information with less noise. Then, the Unet-based
Siamese CD network is used to extract multi-scale change information. The proposed
method can train the superpixel segmentation part and CD network end-to-end under a
unified framework and finally obtain the global optimal parameters. During the training
process, the task-specific loss function promotes the adaptive attachment of the superpixel
to the change boundary. The main contributions of this paper are as follows:

(1) This study combines knowledge-driven and unsupervised learning to propose an end-
to-end CD network. The incorporation of superpixel segmentation information is an
interesting practice of integrating prior knowledge into the deep learning technique.
The generated superpixels in our proposed method can be adjusted adaptively, which
ensures better consistency in the superpixel segmentation of unchanged areas and
closer segmentation to change boundaries in changed areas for the bi-temporal data.

(2) This study is the first to explore the ability of the network to detect changes, which
is crucial for the generalization performance of CD networks. We designed transfer
learning experiments between homogeneous data and even heterogeneous data to
explore the ability to detect changes and generalization performance. This information
is of great importance for the development of DLCD for SAR images with no or limited
samples in the future.

(3) The proposed method is unsupervised and is friendly to SAR data with extremely
limited labeled samples. Preprocessed SAR images of different sizes can be input into
our network to obtain the change map with high accuracy. Furthermore, this method
has the potential to be extended to more complex sequential image processing.
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Figure 1. The overall framework of the proposed method. The input of the network is the SAR
intensity image pairs and the output is the predicted probability. The joint loss function is used to
backpropagate and the binary change map is finally obtained. Training steps see Algorithms 1.

Algorithms 1: Training steps of the proposed method.

Input: Bi-temporal SAR images I1 and I2
Output: The binary change map

Normalize the bi-temporal SAR images I1 and I2
for Number of training iterations do
1. Two weight-sharing SSNs take normalized bi-temporal SAR images, respectively, as input.
2. Two SSNs’ output pixel–superpixel associations Q1 and Q2 and high-level features Fpix1 and
Fpix2 for different times.
3. K-dimensional Fpix1 and Fpix2 are fed into the Siamese CD network.
4. The Siamese CD network outputs the predicted probability map P.
5. Calculate the weighted cross entropy loss LCE and dice loss LDice as Equations (7) and (9).
6. For both of the different times, calculate task-specific reconstruction loss Lrec as Equation (10)
and take the positional pixel features Ixy of input to calculate compactness loss Lcpt as Equation
(11).
7. Calculate the joint loss L as Equation (15).
8. Update the parameters of networks based on the joint loss L.
End for

2. Methods
2.1. Unsupervised Change Detection Workflow

The proposed method works in an unsupervised manner. The first step was to generate
reliable training samples via an unsupervised pre-task to train the network.

Given two coregistered SAR intensity images I1 = {I1(i, j), 1 ≤ i ≤ A, 1 ≤ j ≤ B}
and I2 = {I2(i, j), 1 ≤ i ≤ A, 1 ≤ j ≤ B}, acquired at different times, t1 and t2, over the
same geographic area, the log-ratio operator [7] was used to generate the DI. Previous
studies have proven that for SAR images, the ratio operator is not only more robust toward
calibration errors, but can suppress multiplicative noise [47]. The log-ratio operator takes
the logarithm to the ratio image and further converts the residual multiplicative noise into
additive noise which is easier to process, as shown in Equation (1).

LR = log
(

I1

I2

)
= logI1 − logI2 (1)

where LR is the log-ratio DI, and log represents the natural logarithm.
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After the DI was obtained, the hierarchical FCM (HFCM) [48] clustering algorithm
was used to classify the DI into three clusters: changed class Ωc, unchanged class Ωu, and
uncertain class Ωi. Pixels belonging to Ωc and Ωu could be considered to be reliable samples
with a high probability of being changed or unchanged. Although these “uncertain” pixels
were not used as training samples, their semantic information could still be utilized because
we used the image-based fully convolutional network.

The above unsupervised design allowed us to perform CD even with only one target
image pair. However, only a few pixels in this image pair were selected as samples and other
pixels need to be further classified, so training samples are extremely rare. Therefore, the
data augmentation technique was used to augment samples to prevent overfitting [49,50].
We applied random crops and rotations in multiples of 90

◦
(90

◦
, 180

◦
, and 270

◦
) to the

normalized bi-temporal images and the generated pseudo-label map with a 50% probability.
Then, we used these samples to train the network and finally obtained the binary change
map. Although the training of the network was supervised, the selection of training
samples was unsupervised, so the whole CD flow was essentially unsupervised, as shown
in Figure 2.
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2.2. Superpixel Sampling Networks (SSNs)

The SSN [46] is the first end-to-end deep superpixel segmentation network that can be
easily integrated with the downstream deep network to generate task-specific superpixels.
This paper aims to use SSN to generate CD-specific superpixels that adhere better to the
change boundary, reduce the influence of speckle noise, and refine the boundary of the
final change map.

Figure 3 shows the overall architecture of the SSN, which consists of two parts: (1)
the CNN-based feature extractor, where a deep network was used to extract features for
superpixel segmentation to replace manually designed features. (2) Differentiable SLIC
(DSLIC), where the features from the feature extractor were fed into the DSLIC to implement
the superpixel segmentation. Given an image to be segmented as the input of SSN, we
could obtain the pixel–superpixel soft association Q ∈ Rn×m and the high dimensional
features Fpix ∈ Rn×c. Q could be used to realize the mutual mapping between pixel feature
representation P ∈ Rn×c and superpixel feature representation S ∈ Rm×c, where n is the
number of pixels, m represents the number of superpixels, and c is the number of channels.
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2.2.1. The Input of the SSN

In [46], the SSN was used for RGB image segmentation, and its input was 5-dimensional
scaled XYLab features, including three-channel CIELAB color and two-channel positional
features (x, y). The position and color scales are expressed as γpos and γcolor, respec-
tively. The value of γcolor was selected by experiences or trial, while the value of γpos was
determined by the number of superpixels:

γpos = η max
(

mw

nw
,

mh
nh

)
, (2)

mw, mh, nw, and nh represent the initial number of superpixels and the number of pixels
along the image width (w) and height (h), respectively. η is an empirical constant, set to 2.5
in [46].

2.2.2. Feature Extractor Based on CNN

As shown in Figure 3, the feature extractor is a common CNN-based network, consist-
ing of a series of 3 × 3 convolutional layers, batch normalization (BN) layers, and rectified
linear unit (ReLU) nonlinear layers. After the second and fourth convolution layers, two 2
× 2 max-pooling layers were, respectively, used for downsampling to expand the receptive
field. Skip connections were used to fuse the multi-scale information from shallow and
deep layers. The output channel of each hidden layer (i.e., base channel) was set to 64.
The feature channel of the output layer was set to (K − 1). Then, the one-channel input
and (K− 1)-channel output were concatenated to produce the final K-dimensional pixel
features. This feature extractor can also be replaced by other networks. The resulting
K-dimensional features will be fed into the DSLIC and downstream Siamese CD networks.
The pixel-superpixel association Q ∈ Rn×m will be iteratively updated.

2.2.3. Differentiable SLIC

The core of differentiable SLIC is to replace the non-differentiable nearest neighbor
operation of SLIC [45] with a distance soft association Q ∈ Rn×m defined by a Gaussian
radial basis function. The initialization strategy of the SSN is to divide the image into
regular grids as initial superpixels; the clustering algorithm can use soft k-means or others.
For the pixel feature representation P ∈ Rn×c and the superpixel feature representation
S ∈ Rm×c, the soft association between the pixel i and the superpixel j can be calculated at
the tth iteration as follows:

Qt
ij = e−D(Pi , St−1

j )
= e−‖Pi, St−1

j ‖
2
, (3)
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where D denotes distance computer. The new superpixel centers were computed using the
weighted sum of pixel features:

St
j =

∑n
i=1 Qt

i,jPi

∑n
i=1 Qt

i,j
(4)

For convenience, denote column-normalized Qt as Q̂t; then, rewrite the update of super-
pixel centers as

St = Q̂tT
P (5)

Through Equation (5), one can realize the mapping from pixel to superpixel representation,
and the inverse mapping from superpixel to pixel representation can be achieved through
Equation (6):

P = Q̃tSt (6)

where Q̃t is the row-normalized Qt. In the calculation of Q ∈ Rn×m, only 9 superpixels
surrounding the pixel are considered to improve the computational efficiency, that is, m = 9.
This simplification is similar to the nearest neighbor searching of SLIC. The interactive
update of Q and S was realized by Equations (3) and (4). It is worth noting that P was
updated in the continuous learning of the model rather than in the iteration.

2.3. End-to-End Change Detection Network with SSN
2.3.1. Overall Framework

As shown in Figure 1, SAR images acquired at t1 and t2 were, respectively, fed into two
weight-shared SSNs to obtain the pixel–superpixel associations Q1 and Q2 and high-level
features Fpix1 and Fpix2 , which were set to be passed, respectively, to the two branches of the
following Siamese CD network. This study used two Siamese CD networks with different
designs, which we will introduce in the next section. The joint loss combining multiple loss
function with different roles was calculated between the predicted probability map and
the label map, which required Q1 and Q2 as well as the positional features of the input.
Finally, the binary change map was obtained. It is worth noting that Fpix1 and Fpix2 were
features generated specifically for superpixel segmentation; that is to say, these features
were averaged according to the segmented superpixels to compress the noise.

2.3.2. Siamese CD Network

In paper [34], three fully convolutional neural network (FCNN) architectures were
proposed for the CD of Earth observation data, and two of these Siamese networks were
used as our CD network. We connected the SSN in series with these two Siamese networks,
respectively, to verify the effectiveness of the proposed method.

• FC-Siam-conc

The first Siamese network (Figure 4a) is a fully convolutional network based on the
decoder–encoder architecture. Ignoring one branch of this network, we can find that
the backbone is actually a shallow version of U-net [29]. This structure uses the Siamese
network as its encoder to process images acquired at different times through two branches
with shared weights. This design can fully mine bi-temporal information to generate bi-
temporal high-level features. The multi-level features from the two branches of the encoder
are concatenated with the output of the corresponding scale decoding layer using two
skip connections. The purpose of this design is to use this decoder to mine the correlation
and difference between the bi-temporal information. This structure is named the full
convolutional Siamese connection (FC-Siam-conc).
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Figure 4. Two Siamese networks based on the encoder–decoder structure. (a) FC-Siam-conc; (b)
FC-Siam-diff. The top subfigure is the implementation details of the model. Two types of residual
blocks (Res-I and Res-II) and decoder modules (Dec-I and Dec-II) are used. Xe and X′e represent the
input features from the last residual block and output features, respectively, in the encoding stage. Xd

and X′d have a similar denotation to Xe and X′e but they belong to the decoding stage. Xe1,2 denotes
the bi-temporal features extracted from the encoding module by using skip connections. Orange
arrows illustrate weight sharing.

• FC-Siam-diff

The second Siamese network (Figure 4b) differs from FC-Siam-conc only in that it uses
one skip connection to obtain the absolute value of the difference in the bi-temporal features
from two encoding streams for each scale. This difference feature is then concatenated with
the output of the decoding layer. This design mines the multi-scale change information
by adding the robust and explicit difference, which is more specific to CD and is named
FC-Siam-diff.

These two Siamese networks have the same backbone, using 3 × 3 convolutional
layers and 2 × 2 max-pooling layers for downsampling as well as using the BN layer to
speed up model convergence. Each block uses residual connections to mitigate gradient
vanishing. The skip connections between the encoder and the decoder are used to fuse
multi-scale information. The implementation details are shown in Figure 4.
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2.4. Loss Function

The number of samples in the changed set Ωc and the unchanged set Ωu is often highly
unbalanced, and usually Ωc has fewer samples. If this situation is not considered, the
detection accuracy for the changed class will be reduced. Therefore, we use the weighted
cross entropy (CE) function to deal with this problem, defined as follows:

LCE(P, G) =
1
N ∑

i
[−ωcGilog(Pi)−ωu(1−Gi)log(1− Pi)] , (7)

where P and G represent the predicted change map and the ground truth, respectively, i
is pixel index, and ωc and ωu represent the weights of the changed and unchanged class,
respectively. N is the number of pixels excluding ignored pixels.

Dice loss is also an appropriate choice to further reduce the problem of sample imbal-
ance. Dice similarity is defined as Equation (8), which can measure the similarity of the
predicted change map P and ground truth G, and its value ranges from 0 to 1, i.e., [0, 1].
The dice loss is defined as in Equation (9):

Dice =
2|P

⋂
G|

|P|+ |G| , (8)

LDice(P, G) = 1− Dice (9)

To generate task-specific and more compact superpixels, we use a combination of a
task-specific reconstruction loss and compactness loss to train the SSN, as in paper [46]:

Lrec(G, Q) = LCE(G, G∗) = LCE

(
G, Q̃Q̂TG

)
, (10)

Lcpt
(
Ixy, Q

)
= ‖Ixy − Ixy‖2 (11)

where Ixy represents the positional pixel features of the input, firstly map the Ixy into the
superpixel space to obtain Sxy through Equation (12):

Sxy = Q̂TIxy (12)

Then, the pixel is endowed with the absolute index of the superpixel through hard associa-
tion rather than soft association Q to obtain Ixy:

Ixy = Sxy
j

∣∣∣ Hi = j (13)

Hi = argmax
j∈{1,...,m}

Qij (14)

Ixy also belongs to the pixel space. As shown in Equation (11), we calculate the L2 norm of
Ixy and Ixy.

Finally, the joint loss function is defined as in Equation (15), and we used it to train
our CD networks.

L = LCE(P, G) + LDice(P, G)
+λ1[LRec(G, Q1) + LRec(G, Q2)]

+λ2
[
Lcpt

(
Ixy, Q1

)
+ Lcpt

(
Ixy, Q2

)] (15)

where λ1 and λ2 are the weight factors. The first term is the main component of the loss
function, which penalizes the overall network learning. The second and last terms are
calculated from different times, which encourages the network to simultaneously mine bi-
temporal information as much as possible to generate task-specific and compact superpixels.
In addition, Algorithms 1 provides the training steps of our proposed method.
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3. Results
3.1. Datasets and Evaluation Criteria

Several public CD datasets were used in our experiment, including the Ottava dataset,
Sulzberger dataset, Yellow River dataset, and San Francisco dataset, whereby all of which
comprise single-polarization SAR images and are commonly used in published papers. In
addition, we also collected an optical CD dataset, the Mexico dataset.

• Ottava dataset: two images were acquired via the Radarsat-1 satellite over Ottawa
in May 1997 and August 1997, and the change was caused by the summer flooding
(Figure 5).
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Figure 5. Ottava dataset. (a) Image acquired in May 1997; (b) image acquired in August 1997;
(c) ground truth.

• Sulzberger dataset [51]: This dataset was acquired via the Envisat satellite on 11 and
16 March 2011. Both images show the process of sea ice breakup (Figure 6).
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Figure 6. Sulzberger dataset. (a) Image acquired on 11 March 2011; (b) image acquired on 16 March
2011; (c) ground truth.

• Yellow River dataset: These two images were acquired via the Radarsat-2 satellite in
June 2008 and June 2009 at the estuary of the Yellow River in Dongying, Shandong
Province (Figure 7). It is worth noting that the two images are single-look and four-look,
respectively. As a result, they are affected by noise to different degrees. Four typical
change areas were selected: Farmland-A, Farmland-B, inland water, and coastline
dataset.
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Figure 7. Yellow River dataset. (a) Image acquired in June 2008; (b) image acquired in June 2009;
(c) ground truth.

• San Francisco dataset [52]: This dataset was captured via the ERS-2 satellite in August
2003 and May 2004 (Figure 8).
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Figure 8. San Francisco dataset. (a) Image acquired in August 2003; (b) image acquired in May 2004;
(c) ground truth.
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• Mexico dataset: This dataset consists of two optical images captured via Landsat-7 in
Mexico City in April 2000 and May 2002, respectively. They were extracted from ETM+
images in band 4, the near infrared (NIR) band. This dataset shows the destruction of
vegetation after a forest fire in Mexico city (Figure 9).
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Figure 9. Mexico dataset. (a) Image acquired in April 2000; (b) image acquired in May 2002; (c) ground
truth.

Refer to Table 1 for more information about the experimental datasets.

Table 1. Details of the experimental datasets.

Items Ottawa Sulzberger Yellow River San Francisco Mexico

Satellite Radarsat-1 Envisat Radarsat-2 ERS-2 Landsat-7

Acquisition
time

May 1997–
August 1997

11 March 2011–
16 March 2011

June 2008–
June 2009

August 2003–
May 2004

April 2000–
May 2002

Band Band C Band C Band C Band C NIR
(0.775–0.900 µm)

Size 290 × 350 256 × 256

Farmland-A: 306 × 291

256 × 256 512 × 512
Farmland-B: 257 × 289
Inland water: 291 × 444

Coastline: 450 × 280

Reasons for
change Flood Sea ice breakup Environmental change Unknown Forest fire

Five evaluation indicators were introduced to quantitatively evaluate the method,
including overall accuracy (OA), precision (Pre), recall, F1-score (F1), and Kappa coefficient.
Specifically, OA is the ratio between the pixels correctly predicted against the sum of all
pixels. Precision corresponds to the proportion of the number of pixels correctly predicted
as the changed class and the total number of pixels predicted as the changed class. The
F1-score combines precision (Pre) and recall and is often used to evaluate the binary
classification accuracy. Recall reflects the percentage of pixels correctly predicted as the
changed class and the total changed pixels of the ground truth. They are calculated as
follows:

OA = (TP + TN)/(TF + FP + TN + FN) (16)

Pre = TP/(TP + FP) (17)

F1_score =
2× Pre× Recall

Pre + Recall
(18)

Recall = TP/(TP + FN) (19)

where TP and TN are the number of true positives and true negatives. FP and FN are the
number of false positives and false negatives. The Kappa coefficient can measure the overall
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consistency between the predicted map and the ground truth, and its value has higher
reference reliability for the CD with sample imbalance, which is calculated as follows:

Pe =
(TP + FP)× (TP + FN) + (FN + TN)× (FP + TN)

(TP + TN + FP + FN)
(20)

Kappa =
OA− Pe

1− Pe
(21)

3.2. Experimental Setting

We implemented the proposed method in PyTorch v1.8, and the training was driven
by the NVIDIA Quadro RTX 8000 GPU produced by Lenovo in Beijing, China.

The hyperparameter setting is shown in Table 2. To facilitate the reader in obtaining
information, we divide the hyperparameters into four parts: deep learning universal
hyperparameters, adjustable parameters for the feature extractor, differentiable SLIC in
SSN, and hyperparameters in the loss function. The initial learning rate was set to 0.001 and
halved for every 100 epochs using Lr_scheduler. L2 regularization and the aforementioned
data enhancement strategy were used to mitigate overfitting. The batch size could only be
set to one. The crop size was adjusted according to the size of the image, and the number
of superpixels in the SSN was adjusted according to crop size. For the feature extractor
of the SSN, we set the base channel to 64 and the output channel K to 20 for our data,
which could be adjusted based on the complexity of the data. The number of iterations
for differentiable SLIC in the SSN was set to 10 for both the training and prediction. In
the loss function, ωc and ωu were set to 0.4 and 0.6, and λ1 and λ2 were set to 0.0001 and
1.0. In addition, this study only involved a single-polarization SAR, and when we tried
to add two-channel positional features (x and y) into the input, the model was difficult
to converge. We suspect that the model mistakenly believed that the positional feature
was more important than the original image, as the original image only has one channel
while the positional feature has two channels. We also tried adding positional features
before feeding the differentiable SLIC of the SSN, which allowed the model to converge.
However, the results of 100 experiments showed that adding positional features reduced
the detection accuracy by 1–2%. We infer that the high-level features extracted by the deep
network are highly effective for superpixel segmentation, and adding original and primary
positional features may diminish the advancement of these features, resulting in a decrease
in accuracy. Therefore, in this study, only normalized single-channel SAR data were fed
into the SSN without positional features. Apparently, the scalers, γpos, and γcolor, as well as
η, are not required to be set.

To verify the effectiveness of the proposed method, we connected the SSN to two
Siamese CD networks, FC-Siam-conc and FC-Siam-diff, to obtain SSN-Siam-conc and
SSN-Siam-diff networks. We provide the running time of SSN-Siam-diff under the above
hardware conditions and experimental settings for the readers’ reference. The time to train
300 epochs is about 90 s, and the prediction time for an image size of 290 × 350 is about
0.08 s.

3.3. Enhancement Effect in Series with SSN

Two SAR datasets were used to verify the enhancement effect in series with the SSN,
i.e., the Ottawa (Figure 5) and Sulzberger (Figure 6) datasets. For each network and dataset,
we conducted 100 experiments and recorded the accuracy matrix of the best model for
each experiment. We present the best results of 100 experiments in the visualized and
quantitative CD results. Furthermore, the superpixel generation results are presented to
explore the reasons for the superior performance of our method.



Remote Sens. 2023, 15, 1724 14 of 26

Table 2. Hyperparameter setting.

Items Hyperparameter
Setting

Ottawa Sulzberger

Deep learning universal
hyperparameters

Initial learning rate 0.001
Optimizer Adam

Num epochs 300
Lr_scheduler StepLR (step_size = 100, gamma = 0.5)

Regularization L2 regularization
Batch size 1
Crop size 256 196

(SSN) Feature extractor
hyperparameters

Base channel 64
Output layer

channel K 20

(SSN) Differentiable SLIC
hyperparameters

Num superpixel 256 196
Num iterations 10

Loss function
ωc, ωu (0.4, 0.6)
λ1, λ2 (0.0001, 1.0)

3.3.1. CD Results

Figure 10 shows two groups of results obtained by connected and unconnected SSNs
to FC-Siam-conc and FC-Siam-diff for the Ottawa (first row) and Sulzberger (second row)
datasets. The results of column 1 and column 2 are compared, corresponding to FC-Siam-
diff and SSN-Siam-diff. Similarly, the results of column 3 and column 4 are compared,
corresponding to FC-Siam-conc and SSN-Siam-conc. SSN-Siam-diff and SSN-Siam-conc
win by a large margin. In the areas marked by the red box, the change boundary obtained by
the network with the SSN is closer to the ground truth, and very small change areas are also
detected more accurately. The quantitative results are shown in Tables 3 and 4. After being
connected with the SSN in series, every accuracy indicator of the network was improved,
and the improvement effect is particularly significant for the Ottawa dataset. These results
suggest that our proposed method with SSN not only has a good boundary-preserving
ability, but also improves the detection accuracy of small area changes.
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Figure 10. Comparison of CD results from networks with or without SSN in the Ottawa dataset (first
row) and Sulzberger dataset (second row). (a) FC-Siam-diff; (b) SSN-Siam-diff; (c) FC-Siam-conc;
(d) SSN-Siam-conc; and (e) ground truth. The areas marked by red boxes deserve more attention.
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Table 3. Quantitative results of Ottawa dataset for models with SSN or without.

Network OA (%) Pre (%) Recall (%) F1 (%) Kappa (%)

FC-Siam-diff 97.47 91.67 92.42 92.04 90.54

SSN-Siam-diff 98.42 93.00 97.35 95.13 94.19

FC-Siam-conc 98.01 94.83 92.47 93.64 92.46

SSN-Siam-conc 98.87 95.48 97.49 96.48 95.81

Table 4. Quantitative results of Sulzberger dataset for models with SSN or without.

Network OA (%) Pre (%) Recall (%) F1 (%) Kappa (%)

FC-Siam-diff 97.71 97.03 90.88 93.85 92.45

SSN-Siam-diff 98.36 95.48 96.00 95.74 94.72

FC-Siam-conc 98.28 96.42 94.57 95.48 94.42

SSN-Siam-conc 98.77 96.20 97.45 96.82 96.05

Figure 11 shows the distribution of accuracy indicators of 100 experiments for each
network and two datasets in the form of a boxplot. The boxplots of both datasets show
that all accuracy indicators of the networks with the SSN are significantly higher than
the original networks without the SSN. It is worth noting that in 100 experiments of the
networks without the SSN, many outliers with very low accuracy appear, while for the
networks with the SSN, the outliers are always much higher than the overall detection
accuracy, which indicates that the incorporation of superpixel segmentation has great
potential to improve the accuracy and is more stable, since its detection accuracy is always
maintained at a high level.
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Figure 11. Accuracy indicator distribution of 100 experiments. (a,b) refer to the boxplot of FC-Siam-
diff vs. SSN-Siam-diff and FC-Siam-conc vs. SSN-Siam-conc for the Ottawa dataset, respectively.
Similarly, (c,d) correspond to the Sulzberger dataset.

3.3.2. Superpixel Segmentation Results for Bi-Temporal SAR Images

We cropped a 256× 256 area on the Ottawa dataset to display the superpixel segmenta-
tion results from the SSN-Siam-diff network in Figure 12. The first column is the bi-temporal
SAR images, and the middle column corresponds to their superpixel generation results.
The third column shows the results where the pixel value is replaced by the mean value of
the superpixel to which this pixel belongs. The Ottawa dataset contains winding coastlines
and some narrow rivers, which are challenges for superpixel segmentation. For example,
in the areas marked in the red box, there are narrow streams of water or land with complex
boundaries. In these areas, it is difficult for the superpixel segmentation to perfectly adhere
to the boundaries, but the superpixel generation network in our method performs very
well. The segmentation results for different times demonstrate that our method fully mines
bi-temporal information and generates high-quality superpixels for both bi-temporal data.
These high-quality results can be attributed to our proposed end-to-end unified framework
for obtaining global optimal solutions, as well as Siamese structures, and the adaptive
adjustments of superpixels. High-quality superpixel segmentation lays a foundation for
boundary optimization and detail preservation for the final change map.

3.4. Transfer Learning Experiments

Deep learning relies heavily on a large number of training data. In the RSCD field,
although the Earth observation data have been considerably enriched, the available labeled
CD data are scarce, especially for the SAR data. Transfer learning is an important tool
to solve the problem of insufficient training samples. We think that the transfer learning
ability or generalization performance of the CD network is positively correlated with its
ability to detect changes. The better the ability of the model to detect changes, the better the
generalization performance of the other CD datasets. Research on how to design a model
with strong transfer learning ability is helpful to fully utilize multi-source CD datasets.

Therefore, in this section, we designed the transfer learning experiment to explore
the ability of the model to “learn how to detect change information”, and in comparison,
to examine whether the ability and generalization performances of our proposed method
are enhanced. In this part, the pre-trained models were obtained based on Ottawa dataset
training, which still followed the unsupervised CD flow as mentioned above. Then, these
pre-trained models were used on other SAR CD datasets, even optical CD datasets, that
are never seen during the training process. This is a simple “parameter sharing” type of
transfer learning.
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3.4.1. Transfer Learning for SAR Dataset

Figure 13 shows the results of applying pre-trained models to other SAR datasets, and
Tables 5–7 provide the quantitative results. For the San Francisco dataset (Figure 13, first
row), the results obtained by SSN-Siam-diff are smoother with less noise and holes than
FC-Siam-diff. These results prove that the proposed method can effectively compress noise
and holes, thus improving the CD accuracy, which indicates that the proposed network can
extract more robust deep features. The comparison between SSN-Siam-conc and FC-Siam-
conc also confirmed these conclusions. Among the four networks, only SSN-Siam-conc can
detect the narrow change area marked by the red box, which indicates that the design of
“conc” (Figure 4a) seems to exceed the design of “diff” (Figure 4b), but whether this is the
truth will be discussed briefly in Section 3.4.2.

Table 5. Quantitative results of transfer learning experiment for San Francisco dataset.

Network OA (%) Pre (%) Recall (%) F1 (%) Kappa (%)

FC-Siam-diff 96.62 76.83 75.43 76.12 74.30
SSN-Siam-diff 98.10 85.61 88.26 86.92 85.89

FC-Siam-conc 95.61 66.93 76.35 71.33 68.97
SSN-Siam-conc 98.97 91.91 93.85 92.87 92.32

Table 6. Quantitative results of transfer learning experiment for Yellow River–Farmland-A dataset.

Network OA (%) Pre (%) Recall (%) F1 (%) Kappa (%)

FC-Siam-diff 98.69 93.93 83.17 88.22 87.53
SSN-Siam-diff 98.88 97.43 83.30 89.81 89.22

FC-Siam-conc 98.80 89.30 90.63 89.96 89.32
SSN-Siam-conc 99.01 95.20 87.67 91.28 90.75
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Figure 13. Change detection results of transfer learning experiment for SAR datasets, including
the San Francisco (first row), Farmland-A (second row) and Farmland-B datasets. (a) FC-Siam-diff;
(b) SSN-Siam-diff; (c) FC-Siam-conc; (d) SSN-Siam-conc; and (e) ground truth. The areas marked by
red boxes deserve more attention.

Table 7. Quantitative results of transfer learning experiment for Yellow River–Farmland-B dataset.

Network OA (%) Pre (%) Recall (%) F1 (%) Kappa (%)

FC-Siam-diff 94.05 83.21 82.73 82.97 79.37
SSN-Siam-diff 95.20 89.68 82.04 85.69 82.81

FC-Siam-conc 94.78 90.46 78.49 84.05 80.94
SSN-Siam-conc 95.01 89.09 81.50 85.12 82.13

The accurate segmentation of farmland change boundaries is a challenge for CD. As for
the Yellow River Farmland-A dataset (Figure 13, second row), compared with FC-Siam-diff,
the results obtained by SSN-Siam-diff show that the change boundary segmentation is
unbroken and continuous (for example, the area marked with the red box), which is closer to
the ground truth and has less noise. The false connectivity between the independent change
components is also significantly reduced. FC-Siam-conc has the worst problem of false
boundary connectivity, which is probably related to the design of “conc”. However, SSN-
Siam-conc significantly improves this problem and compresses the noise, and it achieved
the best performance both in terms of visual presentation and accuracy indicators.

The results of the Farmland-B dataset (Figure 13, third row) strongly demonstrate
the robustness of the proposed method toward speckle noise. Furthermore, FC-Siam-diff
and SSN-Siam-diff can successfully detect the slender change area marked by the red box.
SSN-Siam-conc yields a less noisy result than FC-Siam-conc, but neither of them detected
the change in the red box. Therefore, it seems difficult to judge which design of “diff” or
“conc” has more advantages in transfer learning.

3.4.2. Comparison of Generalization Performance between Conc and Diff Models

According to the above experimental results, it seems difficult to judge which design
is better, diff or conc. Initially, we found that the “conc” pre-trained models failed to detect
changes in some datasets, which caught our attention. Therefore, we tried to exchange
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the order of the bi-temporal images, that is, exchange the input of the two branches in
Figure 4a. In this way, the “conc” model obtained completely different results from before.

FC-Siam-diff and FC-Siam-conc do not connect to SSN, have lower computational
cost, and can also clearly state this problem. Therefore, Figure 14 shows the CD results of
exchanging the input sequence of FC-Siam-diff and FC-Siam-conc applied to the Yellow
River coastline (first row), Farmland-A (second row), and inland water (third row) datasets.
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Figure 14. CD results of swapping the input sequence of bi-temporal images for FC-Siam-diff and
FC-Siam-conc. (a,b) correspond to the results of FC-Siam-diff switching the input sequence. Similarly,
(c,d) correspond to the results of FC-Siam-conc. (e) Ground truth. These three datasets are Yellow
River coastline (first row), Farmland-A (second row), and inland water (third row).

As the results for the coastline dataset show, FC-Siam-diff can effectively detect
changes regardless of the input order. However, when the input order is based on image
acquisition time, FC-Siam-conc does not work at all, and no valid information is detected
(Figure 14d, first row). However, after switching the order of inputs, FC-Siam-conc can
effectively detect the change (Figure 14c, first row). The results for Farmland-A also show
the same information as above. When FC-Siam-conc is used in the inland water dataset,
only a partial change can be detected in both orders. These two different change com-
ponents shown in Figure 14c,d (third row) correspond, respectively, to the positive and
negative change in the water. These results indicate that the “conc” model can only learn to
detect changes consistent with the change in the training data. As in the Ottawa dataset,
the flood in the image acquired at t2 has faded compared with the image acquired at t1,
and the water body shows a negative change. As a result, the “conc” pre-trained models
can only detect the change similar to the negative change in water. However, the “diff”
model overcomes this problem. We infer that FC-Siam-diff and SSN-Siam-diff add explicit
difference guidance to the model, which makes the model more specific to the CD and
gives the model the ability to detect changes even with few samples. Therefore, from these
results, the “diff” model shows better generalization performance.

When performing with few training samples, it is important to consider whether the
model can detect both positive and negative changes. However, many existing studies
have ignored this problem. The methods in many published papers are based on few
training data; for example, a small area is always clipped from a large image and marked
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as training data. This small area may only contain positive changes or negative changes, or
the samples of the two types of change may be extremely unbalanced. Therefore, designing
a model that is robust in all three conditions as above can be considered a useful generable
CD approach.

3.4.3. Transfer Learning for Optical Dataset

We further applied these pre-trained models to the optical CD data, which was more
challenging because their imaging mechanisms are completely different. Figure 15 shows
the CD results and the superpixel generated by the SSN-Siam-diff of the Mexico dataset.
In terms of SSN-Siam-diff vs. FC-Siam-diff and SSN-Siam-conc vs. FC-Siam-conc, the
networks with SSN were better at retaining the change details, such as in areas marked
by red circles. Therefore, these results show that the proposed method exhibits strong
generalization ability even when transferred to heterogeneous data, and the ability to
compress noise and refine boundaries is maintained.
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Figure 15. Change detection results and superpixel generation of transfer learning experiment for
Mexico (optical) datasets. (a) FC-Siam-diff; (b) SSN-Siam-diff; (c) FC-Siam-conc; (d) SSN-Siam-conc;
(e) ground truth; (f) t1 image; (g) t2 image; (h,i) superpixel generation via SSN-Siam-diff for t1 and t2

images. (j) The pixel value of the t2 image is replaced by the mean value of the superpixel to which
this pixel belongs. The areas marked by red circles deserve more attention.

Speckle noise does not exist in optical images, so the superpixels generated by SSN-
Siam-diff for the bi-temporal images of the Mexico dataset (Figure 15h–i) are tighter,
smoother, and less broken than the superpixels of the SAR images. This makes it easier to
observe and analyze the superpixel generation. Figure 15i shows that the pixel value of
the t2 image is replaced by the mean value of the superpixel to which this pixel belongs.
As can be seen from Figure 15i,j, the generated superpixel in the changed region better
fits the change boundary, such as the area marked by the red circle, while the superpixel
boundary in the unchanged region has a better consistency for bi-temporal images. In
conclusion, the proposed method has a promising prospect in making full use of multi-
source heterogeneous data to complete complex CD tasks.

3.5. Comparison with Other Methods

To verify the superiority of the proposed method, we compared our method with seven
classical and advanced DLCD algorithms, including DBN [32], PCANet [48], CNN [53],
LR-CNN [54], DCNet [55], SAFNet [56], and RUSACD [57].

In DBN [32], a pre-task was used to select reliable training samples, and the deep
belief network (DBN) was used to detect changes in SAR images. In PCANet [48], a SAR
CD algorithm based on PCANet and more robust toward speckle noise was presented. In
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CNN [53], the CNN based on patch sampling was used for SAR image CD for the first
time. In LR-CNN [54], a more advanced method was adopted to select training samples,
and local restricted CNN (LRCNN) was proposed to detect changes in polarized SAR
data. DCNet [55] is a channel-weighting-based deep cascade network, which has achieved
competitive detection accuracy. SAFNet [56], like our proposed method, is a Siamese
CD network with adaptive fusion for bi-temporal SAR images. RUSACD [57] adopted a
multi-scale superpixel reconstruction method to generate DI, and then used a clustering
algorithm to select training samples and designed a model based on the convolutional
wavelet neural network and deep convolutional generative adversarial network to detect
small area changes in SAR images.

The results of DBN, CNN, DCNet, SAFNet, and RUSACD were extracted from the
original paper with optimal accuracy. PCANet was implemented using the default optimal
parameters provided in the original paper. Since the original LR-CNN considered polariza-
tion information, we modified the LR-CNN to make it suitable for single-polarization SAR
images.

Figure 16 shows the results of different methods used for the Ottawa dataset. Table 8
lists the quantitative evaluation indicators; the best results are in bold font and the second-
best are underlined. We observed that many change pixels were missing for PCANet, LR-
CNN, and DCNet. SAFNet and RUSACD obtained competitive results, but the detection
accuracy for the small area change is poor, such as the part marked with the red circles.
It can be seen from the visual results that the proposed SSN-Siam-conc shows the most
abundant details, which are closer to the ground truth, and it achieved the highest values
of OA, Recall, F1-score, and Kappa. The proposed SSN-Siam-diff also achieved very good
performance. For this dataset, DBN obtained the second-best result in terms of evaluation
indicators, but the visual map contained more noise than the other methods, which may be
related to the significant limitation in the use of neighborhood information. In conclusion,
these results suggest that the proposed method can effectively improve the accuracy of
change boundary segmentation and compress speckle noise to a certain extent. Compared
with the state-of-the-art methods, it is highly competitive and has considerable potential
for exploitation.
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Figure 16. Change detection results of different methods on the Ottawa dataset. (a) DBN; (b) PCANet;
(c) CNN; (d) LR-CNN; (e) DCNet; (f) SAFNet; (g) RUSACD; (h) SSN-Siam-diff (ours); (i) SSN-Siam-
conc (ours); and (j) ground truth. The areas marked by red circles deserve more attention.
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Table 8. Quantitative results of different methods used for the Ottawa dataset.

Network OA (%) Pre (%) Recall (%) F1 (%) Kappa (%)

DBN 98.83 96.45 96.14 96.29 95.59
PCANet 98.67 95.36 93.07 94.20 93.06

CNN 98.67 96.41 95.13 95.77 95.00
LR-CNN 96.25 99.49 76.65 86.59 84.45
DCNet 98.30 95.67 93.45 94.55 93.54
SAFNet 98.60 94.62 96.67 95.64 94.81

RUSACD 98.13 92.06 96.51 94.24 93.12
SSN-Siam-diff (ours) 98.42 93.00 97.35 95.13 94.19

SSN-Siam-conc
(ours) 98.87 95.48 97.49 96.48 95.81

Figure 17 shows the results of the Farmland-A dataset, and Table 9 shows the quan-
titative results. It is worth noting that for this dataset, the results of SSN-Siam-diff and
SSN-Siam-conc were generated by the transfer learning experiment, that is, generated
by the pre-trained models trained by the Ottawa dataset. For DBN, PCANet, CNN, and
LR-CNN, the results contain a lot of speckle noise and false positive pixels. DCNet is
effective at suppressing noise but has large areas of false positive detection. In the results of
RUSACD, we can observe a lot of false connectivity between different change components.
The proposed SSN-Siam-conc and SSN-Siam-diff achieved very good performance. Both
of these two networks contain relatively little noise, and the continuity and details of the
change boundary are well maintained. In particular, SSN-Siam-conc won out of all of the
methods and achieved the best results with regard to OA, F1-score, and Kappa. SAFNet
also achieved very competitive results and was robust against speckle noise. We infer
that this is due to the design of the Siamese network and the appropriate bi-temporal
information fusion strategy. In conclusion, our results are the most competitive, although
we present the results obtained in the transfer learning experiment, which suggests that
our proposed method significantly enhances the ability to compress noise and preserve
boundaries and generalization performance.
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Table 9. Quantitative results of different methods used for the Farmland-A dataset.

Network OA (%) Pre (%) Recall (%) F1 (%) Kappa (%)

DBN 98.56 87.71 88.00 87.85 86.92
PCANet 96.14 61.89 90.65 73.55 71.55

CNN 98.59 92.31 83.10 87.46 87.09
LR-CNN 98.27 81.26 91.97 86.28 85.36

DCN 98.71 90.34 87.51 88.91 88.33
SAFNet 98.94 92.89 88.96 90.88 90.32

RUSACD 98.67 92.49 84.12 88.10 87.65
SSN-Siam-diff (ours) 98.88 97.43 83.30 89.81 89.22

SSN-Siam-conc
(ours) 99.01 95.20 87.67 91.28 90.75

4. Discussion

The experimental results show that our method outperforms several existing ad-
vanced CD methods. It can not only compress speckle noise effectively and refine the
change boundary, but it also has good generalization ability. Furthermore, some important
information still deserves to be discussed.

First of all, the proposed method is a combination of superpixel segmentation and
a deep CD network, as well as a successful practice of combining prior knowledge and
deep learning techniques. In addition, it is difficult for existing methods to balance noise
compression and detail preservation, while our proposed method achieves a balance
between the two because we can obtain globally optimal parameters.

This study provides a better segmentation strategy for the superpixel generation of
multi-temporal images to perform CD. On the one hand, different branches process data
acquired at different times to ensure the independence of superpixel generation for multi-
temporal data. On the other hand, weight sharing and using the task-specific loss function
result in an implicit correlation between the bi-temporal data to generate superpixels. This
correlation enables the bi-temporal information to be fully mined and combined, which not
only ensures the segmentation consistency of the unchanged area, but also results in the
segmentation of the changed area to better fit the change boundary.

It is worth noting that the generated superpixels are not used directly in this article,
but the advanced features generated by the SSN for the superpixel generation are fed into
the flowing CD network. The higher the quality of the visible superpixel generation, the
more accurate the segmentation information contained in this feature, and thus the more
the performance of the downstream CD network can be improved.

Lastly, this paper is the first to investigate the CD network’s ability to detect changes,
which is closely related to the generalization performance. When only a few samples with
a single change type (including only positive or negative changes) are available, which is
often the case when using SAR images, if the model has a strong ability to detect changes, it
can effectively identify both positive and negative changes. However, this issue has never
been discussed in published papers. Future research could pay more attention to the ability
to detect the change when designing CD models, which can promote the full utilization
of multi-source CD datasets, so as to design models with a larger capacity to solve more
complex CD tasks.

In conclusion, the proposed method is unsupervised, and it is easy to apply to other
more complex data to perform CD, such as fully polarized SAR data, which is worth
studying in the future. However, due to a lack of validation data, the performance of the
proposed method has not been demonstrated in heterogeneous scattering cases such as
buildings in SAR images. In addition, our study provides some heuristic information for
many tasks involving time series image data processing.
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5. Conclusions

In this paper, a novel end-to-end unsupervised CD method combining the superpixel
segmentation and the Siamese CD network was proposed for SAR images. Firstly, the
pseudo-training samples were selected using an unsupervised pre-task. Then, under the
unified framework, the superpixel segmentation network and CD network were trained
end-to-end to obtain the global optimal parameters. The superpixel segmentation network
generates task-adaptive superpixels and outputs features containing accurate semantic
information. The Siamese CD network based on U-net was used to mine multi-scale
change information. The design of the Siamese structure and the use of the joint loss
function enabled the multi-temporal information to be fully mined and combined to obtain
change information. Several public CD datasets were used to verify the effectiveness and
robustness of our proposed method. In addition, the transfer learning experiment was
designed to explore the generalization performance of the network. The experimental
results prove that the proposed method performs well in compressing noise, refining
boundaries, and improving the CD accuracy for small area changes. Furthermore, this
paper explores the ability of the network to detect changes for the first time, which deserves
further attention in future research. It would also be interesting to extend this method to
CD of more complex remote sensing data or sequential data in the future.
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