
Citation: Hussain, K.F.; Thangavel, K.;

Gardi, A.; Sabatini, R. Passive

Electro-Optical Tracking of Resident

Space Objects for Distributed Satellite

Systems Autonomous Navigation.

Remote Sens. 2023, 15, 1714. https://

doi.org/10.3390/rs15061714

Academic Editors: Roberto

Opromolla, Vincenzo Capuan,

Jérôme Leclère and Javier Tegedor

Received: 9 February 2023

Revised: 14 March 2023

Accepted: 17 March 2023

Published: 22 March 2023

Corrected: 17 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Passive Electro-Optical Tracking of Resident Space Objects for
Distributed Satellite Systems Autonomous Navigation
Khaja Faisal Hussain 1 , Kathiravan Thangavel 2,3,4 , Alessandro Gardi 1,2,3,4 and Roberto Sabatini 1,2,3,4,*

1 Department of Aerospace Engineering, Khalifa University of Science and Technology,
Abu Dhabi P.O. Box 127788, United Arab Emirates

2 School of Engineering, Aerospace Engineering and Aviation, RMIT University, Bundoora, VIC 3083, Australia
3 Sir Lawrence Wackett Defence and Aerospace Centre, RMIT University, Melbourne, VIC 3000, Australia
4 SmartSat Cooperative Research Centre, Adelaide, SA 5000, Australia
* Correspondence: roberto.sabatini@ku.ac.ae

Abstract: Autonomous navigation (AN) and manoeuvring are increasingly important in distributed
satellite systems (DSS) in order to avoid potential collisions with space debris and other resident space
objects (RSO). In order to accomplish collision avoidance manoeuvres, tracking and characterization
of RSO is crucial. At present, RSO are tracked and catalogued using ground-based observations, but
space-based space surveillance (SBSS) represents a valid alternative (or complementary asset) due
to its ability to offer enhanced performances in terms of sensor resolution, tracking accuracy, and
weather independence. This paper proposes a particle swarm optimization (PSO) algorithm for DSS
AN and manoeuvring, specifically addressing RSO tracking and collision avoidance requirements
as an integral part of the overall system design. More specifically, a DSS architecture employing
hyperspectral sensors for Earth observation is considered, and passive electro-optical sensors are
used, in conjunction with suitable mathematical algorithms, to accomplish autonomous RSO tracking
and classification. Simulation case studies are performed to investigate the tracking and system
collision avoidance capabilities in both space-based and ground-based tracking scenarios. Results
corroborate the effectiveness of the proposed AN technique and highlight its potential to supplement
either conventional (ground-based) or SBSS tracking methods.

Keywords: avionics; astrionics; automation; autonomous system; distributed satellite system; navigation;
resident space objects; space-based space surveillance; space situation awareness; space domain
awareness; trusted autonomous satellite operation (TASO)

1. Introduction

Despite growing awareness of the orbital debris problem, recent developments such
as launch ride-sharing, growth in the availability of small launch vehicles, and particularly
large-scale satellite constellation deployments are dramatically increasing the orbital con-
gestion. According to space environment statistics recently published by ESA [1] the current
space environment situation is alarming. Figure 1a,b, illustrate the current space situation
in terms of number of launches and debris population in space. Further exacerbating the
space situation are an unfortunate series of events such as anti-satellite weapons (ASAT)
tests, on orbit collisions, and satellite breakups. Further, several commercial entities have
made plans to launch larger constellations (700–5000 spacecraft each) in the coming months.
Currently, the space domain usage is unsustainable. If this continues, the population of
space debris will increase multifold, ceasing space activities in the near future. An increase
in space objects will increase the probability of collisions, which can, in- turn, lead to
Kessler Syndrome [2].
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Figure 1. (a) Space environment statistics by ESA; (b) Space debris population estimation by ESA 

Spacecraft operators must become more aware of the potential threats posed by the 
existing resident space objects (RSO) in order to prevent further collisions in Earth orbit. 
This includes not only tracking the total objects in space but also continuously estimating 
the probability of other accidental collisions. Unfortunately, neither of these tasks are triv-
ial and require considerable tracking resources (optical telescopes and radar), computing 
power, and sophisticated software to calculate numerous satellite–satellite or satellite–de-
bris conjunctions on a daily basis. The above tasks are referred to as ‘space situational 
awareness’ (SSA) or space domain awareness (SDA). Traditionally, these tasks are accom-
plished by a network of ground-based observation facilities known as the Space Surveil-
lance Network (SSN), owned and operated by the US Department of Defence (DoD) [3]. 
Besides this, various other ground-based telescopes and space surveillance systems con-
tribute to SSA. Different SSA systems in current use are briefly described in [4]. Table 1 
provides a summary of major ground-based systems and the time frames during which 
they were introduced. Although these ground-based radars, laser, and telescope systems 
continue to play a pivotal role in providing situational awareness in the space environ-
ment, whether or not these systems can effectively achieve the goal in the future, adapting 
to the evolving space domain, is still a question. This is due to the following reasons. 
• Most of the ground-based systems are able to perform regional surveillance and then 

randomly look at other areas. 
• They lack persistency in surveillance. In order to achieve true surveillance, it is nec-

essary to monitor objects or regions for extended periods of time. 
• Due to space perturbations, there is an on-orbit change in the RSO position. This will 

decrease the revisit frequency of the RSO within the field of view of the sensors on 
ground. 

• Weather conditions are still a significant concern for ground-based systems. In typi-
cal ground-based observation sites, weather restricts visibility more than half the 
time, with some sites having a visibility of no more than 25% [4]. 

• For optical sensors on the ground, daylight observations represent a significant chal-
lenge because the passage of objects between the Earth and the Sun is almost always 
difficult to monitor. 
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Spacecraft operators must become more aware of the potential threats posed by
the existing resident space objects (RSO) in order to prevent further collisions in Earth
orbit. This includes not only tracking the total objects in space but also continuously
estimating the probability of other accidental collisions. Unfortunately, neither of these
tasks are trivial and require considerable tracking resources (optical telescopes and radar),
computing power, and sophisticated software to calculate numerous satellite–satellite or
satellite–debris conjunctions on a daily basis. The above tasks are referred to as ‘space
situational awareness’ (SSA) or space domain awareness (SDA). Traditionally, these tasks
are accomplished by a network of ground-based observation facilities known as the Space
Surveillance Network (SSN), owned and operated by the US Department of Defence
(DoD) [3]. Besides this, various other ground-based telescopes and space surveillance
systems contribute to SSA. Different SSA systems in current use are briefly described
in [4]. Table 1 provides a summary of major ground-based systems and the time frames
during which they were introduced. Although these ground-based radars, laser, and
telescope systems continue to play a pivotal role in providing situational awareness in
the space environment, whether or not these systems can effectively achieve the goal in
the future, adapting to the evolving space domain, is still a question. This is due to the
following reasons.

• Most of the ground-based systems are able to perform regional surveillance and then
randomly look at other areas.

• They lack persistency in surveillance. In order to achieve true surveillance, it is
necessary to monitor objects or regions for extended periods of time.

• Due to space perturbations, there is an on-orbit change in the RSO position. This
will decrease the revisit frequency of the RSO within the field of view of the sensors
on ground.

• Weather conditions are still a significant concern for ground-based systems. In typical
ground-based observation sites, weather restricts visibility more than half the time,
with some sites having a visibility of no more than 25% [4].

• For optical sensors on the ground, daylight observations represent a significant chal-
lenge because the passage of objects between the Earth and the Sun is almost always
difficult to monitor.
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Table 1. Main ground-based SSA systems.

USA Russia Japan Europe

System Year System Year System Year System Year

Thule radar 1943 Dnepr radar 1963 BSGC 2002 GRAVES (France) 2005

Eglin radar 1969 Dunay-3U radar 1968 KSGC 2004 TIRA (Germany) 2009

GEODSS 1980 Daryal radar 1984

SST 2011 Don-2N radar 1996

Space fence 2020 Okno optical complex 1997

Krona system 2008

1.1. Space-Based Space Surveillance (SBSS)

The gaps associated with ground-based measurements pave a path for tracking RSO
by exploiting space borne measurements [5,6]. This type of approach is termed space-
based space surveillance (SBSS). SBSS is an effective approach due to its capability to
offer enhanced performances in terms of tracking accuracy and weather independence,
allowing space-borne measurements to provide a broader range of useful observations [7].
In addition, space-based observation systems are not prone to atmospheric scattering,
diffraction, turbulence, and aberrations [8]. Historically, radar sensors have been explored
for space-borne measurements; however, the challenges associated with size and power
consumption have shifted the focus towards optical sensors. Technological developments
in optical sensor principles (e.g., coupled charged device (CCD)) [9], complementary metal–
oxide–semiconductor (CMOS), and photon counting sensors [7,10]) have significantly
enhanced optical detection performance, demonstrating the ability to track a 3 cm diameter
object at a 3000 km range [7,9].

The precision in state information of the RSO will continue to be pivotal for the future
space traffic management (STM) applications. These estimations can be provided using
two approaches. Cooperative surveillance relies on state estimates from on-board time
and space position information (TSPI)/navigation systems (e.g., GNSS, INS) and on the
collaborative exchange of information among all other vehicles in the course of a potential
collision. Whereas non-cooperative surveillance is typically carried out by ground or
space-based radar or electro-optical sensors that do not require communication with the
observed object. These systems are prone to errors caused by physical phenomena or by the
mathematical extrapolation itself. In other words, a non-cooperative scenario is described as
an encounter between a host platform and a RSO or possibly a non-cooperative spacecraft,
in which only the host spacecraft is capable of preventing a potential collision. On the
other hand, a cooperative scenario is described as a scenario in which all the potentially
colliding RSO are capable of communicating position data and, if necessary, they can
perform manoeuvres to avoid a collision [11].

SBSS has already been attempted in the past; [12] describes various SBSS missions and
Figure 2 summarizes different attempts made by different countries for debris tracking.
The current space-based SSA systems face issues such as latency and limited coverage,
making them unreliable for the future to come. Hence, there is a need for a reliable and
sustainable SSA system to fill the gaps in the present.

In 1996, the space-based visible instrument (SBV) onboard the mid-course space
experiment led to the first SBSS mission [13–15]. This was followed by the United States
Air Force’s SBSS mission, also known as the SBSS block 10 satellite. The SBSS constellation
aimed to detect and track all space resident objects in orbit around the Earth in real-time [16].
A similar space surveillance mission was conducted by Sapphire, a Canadian satellite for US
SSN. It was able to provide accurate measurements in rate track or sidereal track modes [17].
Furthermore, the ORS-5 demonstrator, also known as Sensor-Sat, was launched by the
United States with an objective to demonstrate technologies for geosynchronous SSA. The
success of the above-mentioned technological demonstrations paved a path to create new
evolutionary frameworks for SBSS and to create new profitable pathways for accurate RSO
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tracking for various commercial actors and orbital startup companies [18]. The overall
business of SDA faces formidable challenges. Most objects are extremely difficult to observe
when they pass between the Earth and the Sun. Although space-based sensors can provide
observations much closer to the Sun, they have limitations when the target positioned
between Sun and the sensor [19].
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Recent technological advances have led to the concept of multiple spacecraft operat-
ing in optimal coordination to accomplish desired mission goals [20]. Considering this,
distributed satellite systems (DSS) is a promising concept for the future of SSA and STM.
DSS mission architectures move away from the monolith system concept to adopt multiple
elements that interact, cooperate, and communicate with each other [21–23], resulting in
new systematic properties and/or emerging functions. Different types of DSS have been
proposed to date, including constellations [24], clusters, swarms, trains, fractionated space-
craft, and federated satellites [25–28]. From the system architecture point of view, these
concepts vary across different verticals, such as the number of assets, homogeneity of the
assets, physical separation between the assets, and so forth [29]. For better understanding
of various DSS configurations, the reader is referred to references [30–36].

In contrast to the conventional ground-based systems whose observations are con-
ducted from accurately surveyed locations, SBSS platforms are subjected to positional
errors and tracking errors caused by onboard TSPI/Navigation systems and tracking sen-
sors, respectively. These errors can be represented geometrically in the form of ellipsoids
which can be combined to form the total uncertainty volume that determines the total
uncertainty in the tracking estimates [37] to support separation assurance (SA) and collision
avoidance (CA) between the RSO, which is followed by the application of relevant collision
avoidance manoeuvres. There exists a duality to the approach mentioned previously. On
one hand, for the existing DSS constellation, optimized manoeuvres can be performed to
avoid collisions with RSO. Alternatively, the design of the astrionics onboard could be opti-
mized to mitigate errors and achieve mission objectives. In this paper, a non-cooperative
SBSS scenario is analysed, in which DSS spacecraft collaboratively track the RSO subject
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to specific errors in tracking and navigation systems for positioning that will ultimately
determine the uncertainty volume or a confidence region around the detected RSO.

1.2. Aim and Structure of the Article

This article proposes a unified approach that combines RSO tracking and AN/mano-
euvring algorithms with an aim to realize trusted autonomy in heterogenous DSS platforms
for SA and CA. The remainder of the article is structured as follows. Section 2 presents
an overview of various RSO tracking approaches and the equations corresponding to the
proposed tracking algorithm. Section 3 summarises autonomous navigation (AN) and
various trajectory optimization approaches for spaceflight applications and the equations
for PSO algorithm. Verification case studies carried out in various scenarios are defined in
Section 4. The results obtained from the case studies are discussed in Section 5. Section 6
comprises the conclusions and scope for future research.

2. Tracking Algorithms Overview

A single angles-only sensor is not sufficient for accurate RSO tracking. In contrast,
using two angles-only sensors allows one to determine the range, and thus the 3D location,
of an object via simple triangulation [38–41]. Typically, an error in the sensor measurement
always prevails because the sensors do not exactly point towards the RSO, making it
necessary to find the most probable RSO position. Without the error in measurement,
the triangulation becomes trivial. In [42,43] a ground-based optical system was proposed,
consisting of two ground-based optical sensors located at two different sites to track the
debris using simultaneous optical measurements.

Several algorithms are proposed in the literature to solve this problem. For instance,
in [44], the proposed algorithm estimates the most probable position of the RSO as the
midpoint of the shortest line joining the two lines of sight. In [45], the most probable
RSO position is estimated as a point on the shortest line between the two lines of sight
that subtends an equal angle with respect to the observation sites. Although numerical
solutions are proposed to calculate position errors in the triangulation solution, relating
the measurement errors with the experimental parameters is a huge challenge. In [46],
the analytical expressions for the position error for tracking an RSO in space for several
observation-station configurations is presented. The current work deals with AN and
tracking through simultaneous optical measurements performed by multiple heterogenous
platforms that constitute a DSS architecture. In order to justify the aim of the current work,
a suitable tracking algorithm with high position accuracy is tested in different operating
scenarios (ground-based tracking, space-based tracking).

2.1. Triangulation Problem

This section introduces a suitable tracking algorithm and the corresponding equations
required to estimate the position of the RSO, and the errors associated with the measure-
ments. Attention is then turned towards the uncertainty quantification of navigation and
tracking errors in the form of a covariance matrix to generate an overall uncertainty volume.
Figures 3 and 4 illustrate the tracking problem in both ground-based and space-based
scenarios respectively.

2.2. Tracking Algorithm

In order to compute the RSO position estimate, it is necessary to know the location of
each sensor (xi, yi, zi), as well as the line of sight (LOS) azimuth and elevation pointing an-
gles (θ,φ) from each sensor to the target. An inaccuracy in determining these 10 parameters
will result in an error in the target position estimate. Furthermore, the relationship between
the measurement error and the errors in the estimated target location is a function of the
sensor–target–sensor geometry, where a sensor–target–sensor separation of 90◦ results in
the lowest error sensitivity, while a sensor separation of 0◦ or 180◦ results in impossible
solutions (as seen from the target). To define the triangulation problem, we need to define
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the positions of the sensors and the RSO in a right-handed coordinate system as illustrated
in Figure 4.
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The x and y axes form the horizontal plane, and the z axis points out of plane vertically.
θ1 and θ2 are the azimuth angles of the corresponding sensors measured clockwise from
positive y axis towards positive x axis. The corresponding elevation angles are denoted by
φ1 and φ2 which increase from 0

◦
in the xy plane to 90

◦
pointing vertically. The separation

angle θsep is measured from sensor 1 through the RSO to sensor 2. The sensor positions
and the LOS from sensor to target allows the 3D target position computation.

The equations to calculate the position estimates are defined below [47]:

xt =
x2tan (θ1)− x1tan (θ2) + (y1 − y2)tan (θ1)tan (θ2)

tan (θ1)− tan (θ2)
(1)

yt =
y1tan (θ1)− y2 tan (θ2) + (x2 − x1)

tan (θ1)− tan (θ2)
(2)

ri =
√
(xi − xt)

2 + (yi − yt)
2 (3)
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zt =
r1 tan(ϕ1) + z1 + r2 tan(ϕ2) + z2

2
(4)

where:

(xt,yt,zt) = target RSO position coordinates,
(xi,yi,zi) = corresponding sensor position coordinates
ri = horizontal ranges from the x − y components of the corresponding sensor to the x and
y components of the RSO,
ϕi = corresponding sensor to RSO elevation angle,
θi = corresponding sensor to RSO azimuth angle.
i = 1, 2 (number of sensors used to perform triangulation)

These equations relate the target location to measurements of the sensor position
and LOS from the sensors to the target, aiding the target position estimation. The error
propagation equations corresponding to the respective position coordinates are derived
in [48], with a key assumption that the error generated by each sensor follows a Gaussian
distribution. The sigmas for each xt, yt, zt are the sums of various partial derivatives that
are simplified as [49]:

σxt =
√

c2
x,pσ

2
p + (rcx,θ)

2σ2
θ (5)

σyt =
√

c2
y,pσ

2
p +

(
rcy,θ

)2
σ2
θ (6)

σri =
√

c2
r,pσ

2
p + (rcr,θ)

2σ2
θ (7)

σzt =
√

c2
z,rσ

2
r + σ

2
p + (rcz,∅)

2σ2
ϕ (8)

The various c’s mentioned in the equations are the error coefficients that are func-
tions of the sensor-to-sensor separation angle [48,49]. The error coefficients describe the
dependence of target position estimates (xt, yt, zt) on errors in each of the sensor po-
sition coordinates (xi, yi, zi). For instance, the cx,p indicates the error coefficient for the
x coordinate of the target position. cx,θ corresponds to error coefficient for azimuth error
in xt. Equations (5)–(8) relate the target position uncertainties to the standard deviations of
measurement errors: σp for position; σθ for the azimuth; and σ∅ for elevation measurements.

Equation (8) refers to the error in measurement of zt from a single sensor. However,
since the measurements performed during triangulation involve two sensors, we can
compute the error estimates from:

σzt =
1
2

√
σ2

zt(1) + σ
2
zt(2) + 2

∂zt

∂r1

∂zt

∂r2
Cov(δr1, δr2) (8a)

where : Cov(δr1, δr2) =
∂r1

∂xt

∂r2

∂xt
σ2

xt +
∂r1

∂yt

∂r2

∂yt
σ2

yt
(8b)

2.3. Uncertainty Quantification

In multi-sensor platforms, the uncertainty position of the RSO is influenced by the
accuracy of the sensor positions and the sensor to target LOS. It is crucial to know each
sensor location (x1, y1, z1), (x2, y2, z2) and the corresponding LOS vector’s azimuth and
elevation (θ and ϕ), respectively. The tracked RSO position can be analysed by combining
the tracking and the navigation uncertainty using the proposed mathematical framework.
To obtain the covariance matrix corresponding to the navigation error, the reader is directed
to [37] in which the steps are described in detail. Therefore, navigation measurements are
assumed to be provided by an on-board GNSS system, and the corresponding uncertainty
values are derived from a literature LEO GPS accuracy experiment [50]. The uncertainty in
the tracking measurements can be expressed in terms of the covariances as follows:
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QTRK =

σ
2
x 0 0

0 σ2
y 0

0 0 σ2
z

 (9)

where σ2
x, σ2

y and σ2
z are obtained using Equations (5), (6) and (8a).

To determine the total covariance matrix Gauss–Helmert formulation, [51,52] are used
in order to relate the sensor measurement errors

(
σp1,σp2,σθ1,σθ2,σϕ1,σϕ2

)
to the final

RSO position (xt, yt, zt). We define the L, X vectors of estimated observations and estimated
parameters, respectively:

L = [x1, y1, z1, θ1,ϕ1, x2, y2, z2, θ2,ϕ2]
T (10)

X = [xt, yt, zt]
T (11)

The total covariance matrix can then be expressed as:

QTOT(3∗3) = BCrBT (12)

where Cr is the covariance matrix of the observations which can be written as a 10∗10
diagonal matrix with elements [σx1,σy1,σz1,σθ1,σϕ1,σx2,σy2,σz2,σθ2,σϕ2]. For matrix B,
we first define the function F(X, L) = 0 as:

xt −
x2tan (θ1)− x1tan (θ2) + (y1 − y2) tan (θ1) tan (θ2)

tan (θ1)− tan (θ2)
= 0

yt −
y1tan (θ1)− y2tan (θ2) + (x2 − x1)

tan (θ1)− tan (θ2)
= 0 (13)

zt −
r1 tan(ϕ1) + z1 + r2 tan(ϕ2) + z2

2
= 0

Then, matrix B is defined as ∂F
∂L and, therefore, has a 3 × 10 dimension.

2.4. Covariance Matrix to Ellipsoid

It is crucial to understand the influence of a single term of the covariance matrix
on the size and orientation of the ellipsoid. The principle component analysis (PCA)
framework [11,53] describes the relationship between the covariance matrix Q and the
rotated ellipsoid as follows:

Q =

 σ2
x ρxyσxσy ρxzσxσz

ρxyσxσy σ2
y ρyzσyσz

ρxzσxσz ρyzσyσz σ2
z

 (14)

where the correlation coefficient ρ is expressed as:

ρxy =
cov(x, y)
σxσy

ρxz =
cov(x, z)
σxσz

(15)

ρyz =
cov(y, z)
σyσz
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A convenient way to express the ellipsoid equation is to use the covariance matrix Q:

→
x

T
Q−1→x = 1 (16)

where
→
x = {xyz}T is a vector expressed in Cartesian coordinates. Q−1 can be written as:

Q−1 =
1
ρ


1−ρ2

yz

σ2
x

−ρxy+ρyzρxz
σxσy

−ρxz+ρyzρxy
σxσz

−ρxy+ρyzρxz
σxσy

1−ρ2
xz

σ2
y

−ρyz+ρxyρxz
σyσz

−ρxz+ρyzρxy
σxσz

−ρyz+ρxyρxz
σyσz

1−ρ2
xy

σ2
z

 (17)

where:
ρ =

(
1 + 2ρxyρxzρyz − ρyz

2 − ρxz
2 − ρxy

2
)

(18)

Hence, the rotated ellipsoid equation can be written as:

(1−ρ2
yz)

σ2
x

x2 +
(1−ρ2

xz)
σ2

y
y2 +

(1−ρ2
xy)

σ2
z

z2 − ρxy−ρyzρxz
σxσy

2xy

−ρxz−ρyzρxy
σxσz

2xz− ρyz−ρxyρxz
σyσz

2yz = ρ

(19)

Equation (20) expresses the contribution of the individual terms of the covariance
matrix to the overall ellipsoid shape and size:

Q = UΛUT (20)

where:

Λ =

λ1 · · · 0
...

. . .
...

0 · · · λn

 (21)

Hence, the ellipsoid equation in (17) can be modified as:

(
→
x −→c )

T
RA−1RT

(→
x −→c

)
= 1 (22)

where:
→
x is a vector in the Cartesian coordinates about the nominal position (origin),

→
c of the

ellipsoid.
R = rotation matrix,
A = diagonal eigenvalues matrix respectively, which are derived from Q.

→
x =

xECI

yECI
zECl

 (23a)

→
c =

xECIN

yECIN

ZECIN

 (23b)

Given a pair of angles the corresponding radial distance (R) from the centre of the
ellipse, this can be calculated using:
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r2
[
(
→
x −→c )

T
RA−1RT((

→
x −→c ))

]
= 1

r =
[
((
→
x −→c ))

T
RA−1RT((

→
x −→c ))

]− 1
2

(24)

where α ∈ {−180◦ : 180◦}, ε ∈ {−90◦ : 90◦}

3. Trajectory Optimization Techniques Overview

Spacecraft trajectory optimization is of paramount importance due to its direct influ-
ence on the system performance [54]. It is one of the highly studied problems in the field
of aerospace engineering [55,56]. An optimal trajectory for a spacecraft can be defined as
the one that meets some criteria, including initial and final conditions. The first serious
attempt to classify these approaches was conducted back in 1998 by Betts [57], known as the
direct and indirect methods. Both branches aim to minimize cost functions and constraint
through discrete approximations. The direct methods transcribe the continuous optimal
control problem into an optimization problem [58] adopting the state-space representation.
The system equations are satisfied by integrating them implicitly or explicitly within a
finite interval, thereby converting it into a non-linear programming problem (NLP) [59].
Although the solution obtained from direct methods is not necessarily optimal, its simple
implementation, reduced problem size, and larger domain of convergence makes this
method a widely used one [60]. One of the direct methods is referred to as the shape based
method [61,62]. In the method, the state variables are interpolated, and the control variables
are taken in the objective function. This is followed by a gradient-based technique or meta-
heuristic to minimize the cost by varying the state variables. The most popular technique
among the direct methods is the Fourier series, specifically for low-thrust trajectory opti-
mization applications [63–65]. The solution obtained by the shape-based method satisfies
the equation of motion and the boundary conditions. Moreover, the solution obtained from
the shape-based method can serve as a very good guess for other optimization approaches.

Gradient-based methods such as NLP appear to be the most popular computational
techniques for addressing trajectory optimization problems. The NLP uses the gradient
information and is often capable of quick convergence and accurate results, leading to its
popularity. However, the most noticeable limitation of gradient-based methods is that the
analyst must have some a priori knowledge of the optimal trajectory. In other words, the
initial guess should be near to the global optimal solution. Failing to do so will lead to a
non-global optimal solution or the optimization routine will become extremely slow.

An entirely different class of optimization approaches are referred to as metaheuristics,
an alternative approach that addresses the issues faced by gradient-based methods. Essen-
tially, a metaheuristic is an iterative approach to exploring and exploiting the search space
that intelligently combines different concepts that are inspired by phenomena occurring
in nature for guiding a subordinate heuristic [66]. These algorithms belong to a special
class of artificial intelligence (AI) techniques, which also include evolutionary algorithms
such as genetic algorithms (GA), PSO, and other insect/swarm inspired algorithms [67].
The metaheuristic approaches are classified into two types, single solution algorithms and
population based algorithms, the latter are often used for spacecraft trajectory optimization
problems [68,69]. The second branch of optimization approaches is that of indirect methods.
Indirect methods consider the dualized form of the equations, including the states and
co-states within the discretized time frame [65]. Although the indirect methods are better
than direct methods in terms of accuracy, they have certain limitations, such as:

• The necessary conditions, including the co-state differential equations, the Hamilto-
nian, and the optimality conditions, must be expressed analytically.

• Due to discretization of co-states, the problem size becomes large.
• The analyst must guess certain aspects of the solution, such as portions of the time

domain containing constrained or unconstrained control arcs.
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• The domain of convergence decreases due to the requirement of the initial guess being
close to optimal solution.

The feasibility of performing the on-board optimization routine depends on computa-
tion time and cost. Hence, the PSO technique is chosen as a primary optimization routine
due to its capability for global convergence and its robustness to solve highly non-linear
problems with greater computational efficiency. Moreover, this technique is used widely to
solve diverse spacecraft trajectory optimization problems, and its on-board implementa-
tion was verified, through various case studies, for adequate convergence time and low
computation cost [70].

Autonomous Navigation Models

As discussed, PSO algorithms were used for trajectory optimization. PSO was first
introduced in 1995 by J. Kennedy and R.C. Hebarhart [71]. Among several metaheuristic
algorithms available, PSO is the most frequently used technique, as demonstrated by
several works that exploit this approach [72–74]. PSO is a metaheuristic algorithm with an
enhanced ability to perform global optimization. The PSO comprises a fixed-size population
of particles, N, that are candidate solutions to the problem which move inside the search
domain, modifying their position through appropriate perturbation called velocity, which
allows the particle to perform a displacement. The particles move iteratively until they
converge onto a global optimal solution considering the goal of optimality and minimizing
the cost function, which describes the quality of the solution and the imposed constraints.
The position of the particles iterates according to:

Xk+1
1 = Xk

i + Vk+1
i (25)

Vk+1
i = Vk

i + c1 · r1 ·
(

pk
i − xk

i

)
+ c2 · r2 ·

(
pk

g − xk
i

)
(26)

where V(k+1)
i is the velocity required to move from kth iteration to (k + 1)th iteration.

pk
i = best position of particle i at time k,

pk
g = global best solution for all particles at time k,

r1 and r2 = random numbers between 0 and 1,
c1 = cognitive parameter assigned with a value 2. This is a hyperparameter that enables
defining the ability of the swarm to be influenced by the best local solutions found over
the iterations.
c2 = scaling parameter assigned with a value 2. This is a hyperparameter that enables
defining the ability of the swarm to be influenced by the best global solutions during
the iterations.

In our case, the PSO implementation requires an appropriate spacecraft dynamics
model, optimality criteria, and constraints that fulfil the collision avoidance requirements.
Typically, satellite motion in an orbit can be modelled using the classical orbital elements
based on Gaussian variational equations. However, using these equations will result in
ambiguity, especially for orbits with low eccentricities or inclinations [75]. In order to avoid
this ambiguity, a new model that employs a set of modified equinoctial elements (MEE)
developed in [76,77] is used to solve the low thrust transfer problem. The MEE parameters,
in terms of the classical orbit parameters, are used as inputs for the PSO algorithm and can
be written as follows:

p = a
(

1− e2
)

(27)

f = ecos(ω+ Ω) (28)

g = esin(ω+ Ω) (29)

h = tan
(

i
2

)
cos(Ω) (30)
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k = tan
(

i
2

)
sin(Ω) (31)

L = ω + Ω + θ (32)

where:

p = semi-latus rectum,
a = semimajor axis,
e = orbital eccentricity,
i = orbital inclination,
ω = argument of perigee,
Ω = RAAN,
L = true longitude,
f,g = x,y components of the eccentricity vector in the orbital frame,
h,k = x,y components of the node vector in the orbital frame.

The following equations describe the inverse relationship amongst classical and modi-
fied equinoctial elements:

a =
p

1− f2 − g2
(33)

e =
√

f2 + g2 (34)

i = tan−1

(
2
√(

h2 + k2
)

, 1− h2 − k2

)
(35)

ω = tan−1(gh− fk, fh + gk) (36)

Ω = tan−1(k, h) (37)

θ = L− ω− Ω (38)

The ECI state vector is expressed in terms of MEE using:

→
r =


r
s2

[
cos(L) + α2 cos(L) + 2hksin(L)

]
r
s2

[
(sin(L)− α2 cos(L) + 2hkcos(L)

]
2r
s2 [hsin(L)− kcos(L)]

 (39)

→
v =


− 1

s2

√
µ
p
[(

sin(L) + α2 sin(L)− 2hkcos(L) + g− 2fhk + α2g
)]

− 1
s2

√
µ
p
[(
− cos(L) + α2 sin(L) + 2hksin(L)− f + 2ghk + α2f

)]
2
s2

√
µ
p [(hcosL + ksin(L) + fh + gk)]


(40)

where α, s, r, q can be expressed in terms of MEE as:

α2 = h2 − k2 (41)

s2 = 1 + h2 + k2 (42)

r =
p
q

(43)

q = 1 + fcos(L) + gsin(L) (44)

The motion of the spacecraft is modelled by the following second order differential equation:

d2→r
dt2 +

µ
→
r

r3 =
→
a d (45)
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where:

r = magnitude of the inertial position,
ad = disturbing acceleration.

The disturbing acceleration is replaced by ∆ when MEE are used. The perturbations
will therefore be composed of the Earth effects and the applied thrust. The disturbing
acceleration is expressed in the rotating RSW frame whose principal axes are defined by:

QT =

 →r∣∣∣→r ∣∣∣
(→

r ×→v
)
×→r∣∣∣(→r ×→v)×→r ∣∣∣

→
r ×→v∣∣∣→r ×→v ∣∣∣

 (46)

The J2 perturbations are modelled using the following equations:

fr = −
3µJ2R2

2r4

[
1− 12

(h sin L− k cos L)2

s4

]
(47)

fs = −
12µJ2R2

2r4

[
(h sin L− k cos L)(h cos L− k sin L)

s4

]
(48)

fw = −6µJ2R2

2r4

 (h sin L− k cos L)
(

1− k2 − h2
)

s4

 (49)

The total perturbation, if the thrust applied in the low thrust manoeuvre is very small,
can be expressed as:

→
∆ =

→
∆pert +

→
∆T (50)

where ∆pert corresponds to J2 and ∆T is thrust. The thrust acceleration
→
aT can be expressed as:

→
aT =

T
m
→
uT =

cn0

c− n0t
u


sinα cosβ

cosβ cosα

sinβ

 (51)

where:
→
uT = thrust control vector,
T = thrust,
c = effective exhaust gas velocity,
n0 = thrust to mass ratio at the initial time.

The thrust control magnitude is expressed in the form of a square wave with frequency
fT and phase kT to reduce the infinitely dimensional optimal control problem into a finite
non-linear programming problem.

u = square
(
πfT

t
tf
+ kT

)
(52)

where:

tf = time duration of the total manoeuvre, which is determined by the optimization algorithm.

The thrust vector angles are expressed using the following equations:

α(t) = παM sin
π

2

[(
t
tf

)p1
+

(
t
tf

)p2
]

(53)
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β(t) = πβM sin
π

2

[(
t
tf

)p1
+

(
t
tf

)p2
]

(54)

where αM, βM, p1, p2 are the control parameters for the thrust orientation control. The
thrust acceleration vector in the RSW frame is expressed as:

→
a

RSW
T =

T
m


sinα cosβ

cosβ cosα

sinβ

 (55)

The thrust control vector can be transformed to the ECI frame as follows:

→
u

ECI
T = QT

→
u

RSW
T (56)

Since the satellite operates in low earth orbit, the effects of aerodynamic drag must be
considered. MSIS90 atmospheric model was employed in the PSO algorithm [78].The drag
in RSW frame is expressed as: ∆DR

∆DS

∆DW

= 1
2
ρSCDvR

vr

vs

0

 (57)

where:

ρ = atmospheric density,
S = aerodynamic reference area,
CD = drag coefficient,
VR = velocity magnitude.

The velocity components vr, vs are expressed as:

vr =

√
µ

p
(f sin L− g cos L) (58)

vs =

√
µ

p
(1 + f cos L− g sin L) (59)

4. Case Studies
4.1. SBSS Scenario

Globally, the UAE is classified as a country with a high vulnerability to climate change,
adversely affecting the infrastructure, human health, and natural habitat, which in turn
impacts various sectors and policies including socioeconomic, health, and environment [79].
Adding on to the problem of climate change are intermittent events of oil spills that have
a long term effect on eco-systems and economies. An Earth observation constellation
comprising 40 satellites evenly spaced across four orbital planes with RAAN distributed
between 0 degrees and 360 degrees (i.e., 0, 90, 180, 360) as illustrated in Figure 5 is hypothe-
sized to detect oil spills, monitor climate change, and track RSOs simultaneously for SA
and CA. The spacecraft in the DSS constellation are assumed to be placed in nearly circular
arrangement (eccentricity = 0.001) at an altitude of 500 km at an inclination of 99 degrees,
and are equipped with a hyperspectral payload with artificial intelligence (AI) to process
the data on-board of the satellite for oil spill detection and climate change analysis [80–82].
The characteristics of the on-board payload are listed in Table 2. To ensure the safety of
DSS assets, the DSS constellation performs RSO tracking and establishes a collaborative
exchange of tracking information through inter-satellite links to accomplish AN (AN) for
CA [83,84]. The DSS constellation also acts as a service provider for other operational
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satellites or sub-orbital vehicles by establishing a data exchange using inter-satellite links
so that they can perform AN for CA, as illustrated in Figure 6.
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In recent studies, star trackers have been investigated as an alternative sensor for
debris surveillance [85]. The participating spacecraft in the constellation are equipped with
star trackers for attitude determination and RSO tracking. The spacecraft are assumed to
simultaneously perform Earth observation operations along with AN for CA. RSO tracking
and detection are performed using optical sensors and star trackers due to [86]:

• The passage of the RSO across the sensor’s field of view [10].
• The exploitation of brightness, angular velocity, and other threshold parameters for

RSO travelling across the FOV of the sensor [87].

The major focus is to come up with a suitable mission architecture that accomplishes
Earth observation and SSA mission objectives expeditiously. The requirements of the
mission architecture are as follows:

• The system configuration must be feasible for multiple applications. For instance, AN
for CA (current interest), SBSS for STM, multi-domain traffic management (MDTM) [88],
and point-to-point sub orbital space transport, which are envisioned in the longer term.

• The satellites in the DSS architecture should complement each other and form ad-hoc
or optional teams to make autonomous decisions and maximize mission objectives
without involving the ground control segment, making them distinct compared to
conventional satellite systems.

Table 2. Hyperspectral payload specifications.

Payload HyperScout-2

Field Of View (FOV) channel 1: 31◦ × 16◦

channel 2: 31◦ × 16◦

Ground Sample Distance (GSD) channel 1: 75 m
channel 2: 490 m

Swath 310 × 150 km

Active Pixels channel 1: 4000 × 1850 px
channel 2: 1024 × 768 px

Spectral Range channel 1: 400–1000 nm
channel 2: 8000–14,000 nm



Remote Sens. 2023, 15, 1714 16 of 27

Table 2. Cont.

Payload HyperScout-2

Spectral Bands channel 1: 45
channel 2: 3

Spectral Resolution channel 1: 16 nm
channel 2: 1100 nm (B1, B2) and 6000 nm (B3)

Signal to Noise Ratio (SNR) channel 1: 50–100
channel 2: 0.5–3000

Power 12 W
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Figure 6. Inter-Satellite links between the DSS assets.

As mentioned earlier, the on-board payload for Earth observation is HyperScout-2,
as specified in Table 2, whereas, for RSO tracking, the DSS assets are equipped with an
MAI-SS star tracker, which has the specifications tabulated in Table 3. The two payloads
are illustrated in Figure 7.

Table 3. Star tracker payload specifications.

Performance Parameter Specification

Accuracy (Cross Axis/Boresight) 5.7 arcsec/27 arcsec

Acquisition Time 130 ms Acq, 105 ms Track (typical)

Max Tracking Rate >2.0◦/s

Update Rate 4 Hz

Lens 0.9in f1.2 BK7 Glass
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For the proposed SBSS mission architecture, the following assumptions are critical:

• The star trackers on board track the RSOs with the stars in the background.
• The participating spacecraft are equipped with state-of-the-art GPS for positioning

and navigation that provide a full set of navigation data.
• The RSO position is estimated by simultaneous optical measurements obtained from

two different spacecraft.
• The participating spacecraft share their position information and the estimated RSO

position through a network.
• Mutual separation between the spacecraft belonging to the DSS constellation is guar-

anteed using intersatellite links and continuous monitoring from the ground stations.

The proposed AN system comprises the following components. Figure 8 illustrates
the system architecture and its individual components:

• Navigation hardware comprises the state-of-the-art GPS to obtain a full set of naviga-
tion data comprising the DSS satellite positions, velocities, and attitude rates.

• Tracking hardware comprises star trackers that track the RSO.
• The obtained data from the hardware is used as inputs by the on-board Tracking

System to obtain the RSO position estimates, error measurement budget, and to
generate the uncertainty ellipsoids.

• The navigation and guidance system exploits the data generated by the tracking system
for trajectory optimization and AN/manoeuvring to generate the steering commands.

• Actuators use the steering commands to perform the collision avoidance manoeuvres
in order to avoid a collision with the RSO.
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4.2. Case Study 2—Ground-Based Surveillance

The ground-based surveillance system comprises two electro-optical (EO) sensors
that are located at two different observation sites, as illustrated in Figure 9. As illustrated
in Figure 4b, two ground-based EO sensors track the RSO simultaneously and share the
estimated RSO position data with a distributed satellite system (DSS) constellation through
a network [24,81,82,91]. For the ground-based tracking scenario, the following assumptions
are adopted [92]:

• The DSS assets are placed in a nearly circular low earth orbit (LEO) at an altitude of
500 km to carry out Earth observation activities.

• The participating spacecraft are equipped with sophisticated GPS for positioning and
navigation that provide a full set of navigation data.

• The estimated RSO position from ground-based sensors is uplinked to the DSS assets
to ensure their safety.

• The participating spacecraft share their position information and the RSO position
estimates with other satellites using inter-satellite links (ISL).

• The ground-based EO sensors assumed in this scenario are similar to the sensors used
in [93] and operate in the infra-red (IR) region between the wavelengths of 3–12 µm.
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The proposed AN system comprises the following components:

• Navigation hardware comprises the state of the art GPS to obtain a full set of naviga-
tion data comprising the DSS satellite positions, velocities, and attitude rates.

• Tracking hardware comprises ground-based EO sensors that track the RSO by simul-
taneous optical measurements.

• The obtained data from the hardware are used as inputs by the On-Board System
(OBS) to obtain the RSO position estimates, error measurement budget, and to gener-
ate the uncertainty ellipsoids.

• The navigation and guidance system exploits the data generated by the OBS for
trajectory planning and optimization to generate the steering commands.
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• Actuators use the steering commands to perform the collision avoidance manoeuvres
in order to avoid a collision with the RSO.

Figure 10 illustrates the individual segments of the tracking system architecture.
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5. Results and Discussions

Simulation case studies were performed in both space-based and ground-based track-
ing scenarios. The results obtained are presented and discussed in the following sections.
However, it has to be noted that the current work focuses on estimating the RSO position
and the associated errors. Assuming that the tracked RSO moves in a circular orbit, the
equations used to estimate RSO velocity from position estimates are defined in [94]. As-
suming that the RSO is moving freely in a circular orbit, then its motion can be governed
by classic orbital dynamics, as:

..
rt =

−µ
|rt|3

+ fi (60)

where:

rt = the position vector of the RSO in ECI frame,
fi = orbital perturbations that take into account J2 perturbations and drag.
The velocity of the RSO can be calculated by integrating Equation (60).

5.1. Space-Based Tracking Scenario

To estimate the target position using the algorithm defined in Section 2.2, we define
the satellite orbital elements in the ECI frame and the Cartesian frame (Table 4). The
values of the corresponding error coefficients must be computed to calculate the errors
in target position estimates. The error coefficients are sums of partial derivatives that are
mentioned in [48]. The sigmas for each xt, yt, zt are calculated using Equations (5)–(8)
with the corresponding azimuth angles θ1 = 27 deg and θ2 = 315 deg, and elevation angles
φ1=58 deg and φ2 = 62 deg. Assuming that the state-of-the-art star trackers can provide
the RSO sigma position σp= 0.5 m and sensor angular error σθ = 0.0022 degrees, running
the algorithm allows us to obtain the sigmas listed in Table 5.

Using the mathematical framework presented in Sections 2.2 and 2.3, the covariance
matrix corresponding to the navigation errors, tracking errors, and total error can be
presented in the form of an uncertainty ellipsoid, illustrated in Figure 11.
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Table 4. Sensor orbital state elements.

Orbital Parameters Sensor 1 Sensor 2 Cartesian Coordinates Sensor 1 Sensor 2

a (km) 6878 6878 Xi (km) 6456.74 3843.01

e 0.001 0.001 Yi (km) −367.63 −891.28

i (deg) 99 99 Zi (km) 2321.12 5627.35

ω (deg) 20 20 VX (km/s) −2.6 −6.31

Ω (deg) 0 0 VY (km/s) −1.12 −0.66

θ (deg) 0 36 VZ (km/s) 7.07 4.21

Table 5. RSO position estimates and errors.

Cartesian Coordinate xt (km) yt (km) zt (km) R (km)

RSO-state parameters 5397.7 −2446 7908.3 2265.65

Total Error (σ’s) 4.7 10.46 20.36 9.12
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5.2. Ground-Based Tracking Scenario

To track the RSO using the ground-based optical sensors, it is crucial to define the
sensor positions in the Cartesian frame. For this particular scenario, two ground-based
sensors are assumed to be located in Goldstone, California and Canberra, Australia. The
geocentric coordinates of these two sites are converted to a Cartesian frame and the sensor
positions are tabulated in Table 6.

Table 6. Ground-based sensor positions.

Cartesian Co-Ordinates Xi (km) Yi (km) Zi (km)

Sensor 1 1880.82 13.78 6221.92

Sensor 2 −1502.52 −5.24 6356.15
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The sensor positions in Table 6 are used as inputs in the tracking algorithm to calculate
the RSO position estimates and the corresponding errors listed in Table 7.

Table 7. RSO position estimates and the corresponding errors.

Cartesian Co-Ordinates xt (km) yt (km) zt (km) R (km)

RSO-state parameters 732.38 −2240.1 11,285 2818.1

Total Error (σ’s) 5.4 7.6 21.55 7.78

An uncertainty ellipsoid, as shown in Figure 12, can be generated using the mathemat-
ical framework presented in Sections 2.2 and 2.3 to represent the navigation errors, tracking
errors, and total error for the ground-based tracking scenario.
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5.3. Trajectory Optimization for Collision Avoidance

It is assumed that a user segment satellite (Figure 5b) is present in an orbit that
intercepts the orbit of the tracked RSO that was tracked in both the tracking scenarios,
indicating a possible collision event. In order to avoid the total uncertainty volume, the
spacecraft performs a collision avoidance manoeuvre based on the values obtained from
Tables 5 and 7 to reorient its initial orbit to a new orbit with a semimajor axis increased to
4.7 km in the SBSS scenario and 5.4 km in the ground-based tracking scenario (in-plane);
failing to do so may result in a collision. It is assumed that the spacecraft that performs the
orbit-raising manoeuvre is equipped with Nano Avionics EPSSC1 [95], which can generate
a thrust of 1 N with a specific impulse of 213 seconds. An orbit raising manoeuvre (in-plane)
is preferred over the out-of-plane manoeuvre (inclination change) due to its optimality in
terms cost and manoeuvre time. Table 8 tabulates the orbital parameters of the spacecraft
before and after the manoeuvre.

The control parameters for the constant thrust directions are tabulated in Table 9 for
both ground-based and space-based tracking scenarios.
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Table 8. Initial and final orbital parameters of the spacecraft after collision avoidance manoeuvres.

Orbital Parameter a (km) e i (deg) ω (deg) Ω (deg)

Initial state 6878 0.001 99 20 360

Final state (Space− based) 6882.7 0.001 99 20 360

Final state (Ground− based) 6883.4 0.001 99 20 360

Table 9. Generated control parameters for thrust directions.

Tracking Scenario tf (min) αM (deg) βM (deg) fT kT (rad) p1 p2

Space-based 28.97 3.02 −2.62 0.5 0.178 0.93 9.96

Ground-based 30.75 −1.44 −3.05 0.09 0.258 1 7.55

The total manoeuvre time is higher for the ground-based scenario than the space-
based scenario, as the variation in the semimajor axis is greater in comparison. The solution
converged after 465,000 iterations with a total run time of 4255.9 s on an Intel Core i7 7th
generation processor in a MATLAB environment. The change in thrust vector angles with
respect to time in both the tracking scenarios is illustrated in Figures 13 and 14.
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According to the results illustrated in Figures 13 and 14, the total reorientation time
in the SBSS and the ground-based scenarios is 100 min and 130 min, respectively. It can
be observed that the thrust vector angles start from 0◦ at time t = 0 and return to 0◦ at the
reorientation time, indicating the end of the orbit raising manoeuvre. The trajectory change
from the initial trajectory to the final optimal trajectory is illustrated in Figures 15 and 16.
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The proposed approach results in orbit raising manoeuvres that require minimum
∆V and manoeuvre time taking into account actual conditions, all modelled perturbations,
and any chosen thrust profile, thereby granting the spacecraft with responsive trajectory
planning and navigation capabilities.
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6. Conclusions and Future Work

Over the past decade, space debris has caused an increased congestion of the orbital
domain. Fragments of past space endeavours are trapped in orbit around Earth, posing
a threat to the sustainability of the space sector. As space debris accumulates over time,
it poses an increasingly higher risk to the satellites that are currently operational and to
future space missions. This paper proposes an autonomous navigation (AN) and tracking
framework for separation assurance (SA) in the low earth orbit (LEO) region. A suitable
tracking algorithm was tested in both ground-based and space-based scenarios to accom-
plish AN/manoeuvring for avoidance of collisions with debris and other resident space
objects (RSO). Particle swarm optimization (PSO) algorithms were developed to implement
autonomous on-board trajectory generation and manoeuvre planning for RSO avoidance.
Simulation case studies were performed in the presence of both ground-based surveillance
and space-based space surveillance (SBSS), demonstrating the validity of the proposed
techniques and the complementarity of ground-based and space-based tracking techniques
to support DSS AN for RSO collision avoidance. Current research is addressing the optimal
fusion of SBSS and ground-based sensors (using both conventional and AI-based tech-
niques) to enhance the tracking accuracy, coverage, and timeliness of AN tasks in complex
mission scenarios. By incorporating suitable AI techniques, trusted autonomous satellite
operations (TASO) can be achieved using optimal combinations of SBSS and ground-based
tracking data.
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